1
|
Cai H, He J, Zheng W, Cheng H, Ge X, Bao Y, Wei Y, Zhou Y, Liang X, Chen X, Liu C, Wang F, Yang X. Zinc Mitigates the Combined Neurotoxicity of Binary Metal Mixtures via Mitophagy and Mitochondrial Fusion. Mol Neurobiol 2025; 62:5961-5976. [PMID: 39673661 DOI: 10.1007/s12035-024-04648-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 11/25/2024] [Indexed: 12/16/2024]
Abstract
Environmental metal mixtures can cause combined neurotoxicity, but the underlying mechanism remains unclear. Mitochondria are crucial for energy metabolism in the nervous system, and their dysfunction leads to neurodegeneration. Zinc (Zn) is a coenzyme of many mitochondrial enzymes that controls mitochondrial function. This study investigated the role of Zn in the neurotoxicity induced by Mn + Pb and Pb + As mixtures. Zn supplementation improved the survival rate and learning ability of Caenorhabditis elegans following their exposure to mixtures of Mn + Pb and Pb + As by enhancing their mitochondrial morphology, membrane potential, and respiratory chain. Similarly, in HT22 cells, Zn mitigated the decrease in cellular activity and increase in apoptosis induced by the Mn + Pb and Pb + As mixtures by improving mitochondrial morphology and function. Mechanistically, Zn activated the PINK1 and MFN-2/OPA-1 pathways, promoting mitophagy and mitochondrial fusion. However, inhibition of mitophagy reversed the protective effect of Zn, indicating its reliance on mitophagy for neuroprotection. Our study demonstrated that Zn alleviates the combined neurotoxicity of Mn + Pb and Pb + As mixtures by enhancing mitophagy and mitochondrial fusion, suggesting that Zn supplementation is a potential treatment for metal-induced neurotoxicity.
Collapse
Affiliation(s)
- Haiqing Cai
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Junxiu He
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Wanting Zheng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Hong Cheng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoting Ge
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Yu Bao
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Yue Wei
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Yanfeng Zhou
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaolin Liang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Xing Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Chaoqun Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Fei Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaobo Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China.
| |
Collapse
|
2
|
Zwolak I. Disentangling the role of selenium in antagonizing the toxicity of arsenic and cadmium. Arch Toxicol 2025; 99:513-540. [PMID: 39776200 DOI: 10.1007/s00204-024-03918-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025]
Abstract
Cadmium (Cd) and inorganic arsenic (As) compounds are considered to be among the major public health hazards. This is due to both the high intrinsic toxicity of these substances and the often difficult to avoid exposure of the general population through contaminated water and food. One proposed method to reduce the toxic effects of As and Cd on animals and humans is the use of selenium (Se). As discussed in our previous article, laboratory studies show that this micronutrient can have a beneficial effect on the detoxification of As and Cd in the body through the formation of non-toxic complexes with these elements, as well as through the antioxidant effects of selenoproteins. New data that have emerged in recent years allow for a clearer description of the interaction between Se and As and Se and Cd. Human studies show that optimal levels of Se can have a beneficial effect in reducing the toxic effects associated with exposure to As or Cd. However, as Se levels in the body increase, the protective effects of Se may be reversed. Recent laboratory studies confirm the antagonistic effects of medium doses of Se toward Cd and As through the formation of nontoxic complexes, antioxidant, anti-inflammatory effects, and induction of pro-survival pathways in cells. In conclusion, Se has a complex effect on As and Cd toxicity, with both benefits and potential risks, depending on the form of Se and its dose as a supplement or the status (level) of this micronutrient in the body.
Collapse
Affiliation(s)
- Iwona Zwolak
- Department of Biomedicine and Environmental Research, Faculty of Medicine, Institute of Biological Sciences, The John Paul II Catholic University of Lublin, Konstantynów Ave. 1J, 20-708, Lublin, Poland.
| |
Collapse
|
3
|
Zeng D, Chen B, Wang H, Xu S, Liu S, Yu Z, Pan X, Tang X, Qin Y. The mediating role of inflammatory biomarkers in the association between serum copper and sarcopenia. Sci Rep 2025; 15:1673. [PMID: 39799188 PMCID: PMC11724950 DOI: 10.1038/s41598-024-84011-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 12/19/2024] [Indexed: 01/15/2025] Open
Abstract
This study aims to investigate the association between serum copper (Cu), selenium (Se), zinc (Zn), Se/Cu and Zn/Cu ratios and the risk of sarcopenia. In this study, which involved 2766 adults aged ≥ 20 years enrolled in the National Health and Nutrition Examination Survey (NHANES) from 2011 to 2016, multivariable logistic regression, restricted cubic spline (RCS) models and mediation analyses were used. After full adjustment, multivariable logistic regression revealed that higher serum copper levels were correlated with an increased risk of sarcopenia. Conversely, higher serum Se/Cu (OR 0.45, 95% CI 0.23-0.89, P = 0.023) and Zn/Cu (OR 0.49, 95% CI 0.27-0.90, P = 0.024) were associated with a decreased risk of sarcopenia. The RCS curve indicated a non-linear, roughly inverted L-shaped relationship between serum Cu and sarcopenia risk (P non-linear < 0.001). Additionally, Se/Cu (P non-linear = 0.179) and Zn/Cu (P non-linear = 0.786) showed negative linear associations with sarcopenia risk. Furthermore, white blood cell (WBC) count, neutrophil count, and systemic inflammation index (SII) were identified as significant mediators in the relationship between serum Cu and the risk of sarcopenia, with mediation proportions of 6.34%, 6.20%, and 4.37%, respectively (all P < 0.05). Therefore, balancing essential trace metals is crucial for maintaining muscle health.
Collapse
Affiliation(s)
- Dapeng Zeng
- The Orthopaedic Medical Center, Second Hospital of Jilin University, Changchun, Jilin Province, China
- Joint International Research Laboratory of Ageing Active Strategy and Bionic Health in Northeast Asia of Ministry of Education, Changchun, Jilin Province, China
| | - Bo Chen
- The Orthopaedic Medical Center, Second Hospital of Jilin University, Changchun, Jilin Province, China
- Joint International Research Laboratory of Ageing Active Strategy and Bionic Health in Northeast Asia of Ministry of Education, Changchun, Jilin Province, China
| | - Hao Wang
- The Orthopaedic Medical Center, Second Hospital of Jilin University, Changchun, Jilin Province, China
- Joint International Research Laboratory of Ageing Active Strategy and Bionic Health in Northeast Asia of Ministry of Education, Changchun, Jilin Province, China
| | - Shenghao Xu
- The Orthopaedic Medical Center, Second Hospital of Jilin University, Changchun, Jilin Province, China
- Joint International Research Laboratory of Ageing Active Strategy and Bionic Health in Northeast Asia of Ministry of Education, Changchun, Jilin Province, China
| | - Shibo Liu
- The Orthopaedic Medical Center, Second Hospital of Jilin University, Changchun, Jilin Province, China
- Joint International Research Laboratory of Ageing Active Strategy and Bionic Health in Northeast Asia of Ministry of Education, Changchun, Jilin Province, China
| | - Zehao Yu
- The Orthopaedic Medical Center, Second Hospital of Jilin University, Changchun, Jilin Province, China
- Joint International Research Laboratory of Ageing Active Strategy and Bionic Health in Northeast Asia of Ministry of Education, Changchun, Jilin Province, China
| | - Xiangjun Pan
- The Orthopaedic Medical Center, Second Hospital of Jilin University, Changchun, Jilin Province, China
- Joint International Research Laboratory of Ageing Active Strategy and Bionic Health in Northeast Asia of Ministry of Education, Changchun, Jilin Province, China
| | - Xiongfeng Tang
- The Orthopaedic Medical Center, Second Hospital of Jilin University, Changchun, Jilin Province, China.
- Joint International Research Laboratory of Ageing Active Strategy and Bionic Health in Northeast Asia of Ministry of Education, Changchun, Jilin Province, China.
| | - Yanguo Qin
- The Orthopaedic Medical Center, Second Hospital of Jilin University, Changchun, Jilin Province, China.
- Joint International Research Laboratory of Ageing Active Strategy and Bionic Health in Northeast Asia of Ministry of Education, Changchun, Jilin Province, China.
| |
Collapse
|
4
|
Hong S, Wu S, Wan Z, Wang C, Guan X, Fu M, Liu C, Wu T, Zhong G, Zhou Y, Xiao Y, You Y, Chen S, Wang Y, Zhao H, Zhang Y, Lin J, Bai Y, Guo H. Associations between multiple metals exposure and cognitive function in the middle-aged and older adults from China: A cross-sectional study. ENVIRONMENTAL RESEARCH 2024; 263:120038. [PMID: 39305974 DOI: 10.1016/j.envres.2024.120038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/05/2024] [Accepted: 09/18/2024] [Indexed: 12/01/2024]
Abstract
The rapidly rising risk of cognitive decline is a serious challenge for the elderly. As the wide-distributed environmental chemicals, the effects of metals exposure on cognitive function have attracted much attention, but the results remain inclusive. This study aimed to investigate the roles of multiple metals co-exposure on cognition. We included a total of 6112 middle-aged and older participants, detected their plasma levels of 23 metals by using inductively coupled plasma mass spectrometry, and assessed their cognitive function by using the Mini-Mental State Examination (MMSE). The results showed that increased plasma levels of iron (Fe) and zinc (Zn) were positively associated with MMSE score, but the increased levels of nickel (Ni) and lead (Pb) were associated with decreased MMSE score (all FDR < 0.05). Subjects exposed to both high levels of Ni and Pb showed the lowest MMSE score [β (95% CI) = -0.310 (-0.519, -0.100)], suggesting that Ni and Pb had a synergistic toxic effect on cognitive function. In addition, the hazardous roles of Ni and Pb were mainly found among subjects with low plasma level of Zn, but were not significant among those with high-Zn level [Ni: β (95% CI) = -0.281 (-0.546, -0.015) vs. -0.146 (-0.351, 0.058); Pb: β (95% CI) = -0.410 (-0.651, -0.169) vs. -0.060 (-0.275, 0.155)], which suggested that Zn could attenuate the adverse effects of Pb and Ni on cognitive function. The cognitive function was gradually decreased among subjects with increased number of adverse exposures to the above four metals (Ptrend < 0.001). In conclusion, our findings revealed the individual, interactive, and combined effects of Fe, Ni, Pb, and Zn on cognitive function, which may provide new perspectives on cognitive protection, but further prospective cohort studies and biological researches are needed to validate these findings.
Collapse
Affiliation(s)
- Shiru Hong
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Sheng Wu
- The Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, Hubei, 430015, China
| | - Zhengce Wan
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Chenming Wang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xin Guan
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Ming Fu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Chenliang Liu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Tianhao Wu
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Guorong Zhong
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yuhan Zhou
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yang Xiao
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yingqian You
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Shengli Chen
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yuxi Wang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Hui Zhao
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yichi Zhang
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Jie Lin
- Community Health Service Center of Shuiguohu Street, Wuchang District, Wuhan, Hubei, 430071, China
| | - Yansen Bai
- Institute for Chemical Carcinogenesis, School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong, 511416, China
| | - Huan Guo
- Department of Occupational and Environmental Health, State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
5
|
Li JM, Bai YZ, Liu QY, Zhang SQ. Mediation Effect of Oxidative Stress on Association Between Selenium Intake and Cognition in American Adults. Nutrients 2024; 16:4163. [PMID: 39683557 DOI: 10.3390/nu16234163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/15/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
OBJECTIVES Dementia affects millions of aged people globally and mainly results from oxidative stress. Selenium shows beneficial effects on dementia however it remains elusive for the mediation effect of oxidative stress on the association between selenium and cognition. The present study firstly investigated the potential mediation role of oxidative stress on the relationship of selenium and cognition. METHODS A total of 2154 adults aged 60 years and older from the National Health and Nutrition Examination Survey 2011-2014 were selected for the study. Weighted multivariate linear regression, weighted logistic regression, and mediation effect analysis were employed to investigate the association among selenium intake, cognition, and oxidative stress. RESULTS Selenium intake was positively associated with cognition, albumin, and vitamin D, negatively associated with uric acid, and exhibited no correlation with gamma glutamyl transpeptidase (GGT). Cognition was positively correlated with albumin and vitamin D, negatively related to GGT, and had no association with uric acid. Albumin and vitamin D significantly mediated the relationship between selenium intake and cognition, and the mediation proportion values of albumin and vitamin D were 3.85% and 8.02%, respectively. CONCLUSIONS For the first time, our findings demonstrated that higher selenium intake decreased cognitive impairment and oxidative stress levels. Moreover, the relationship between selenium intake and cognition was mediated by oxidative stress.
Collapse
Affiliation(s)
- Jia-Meng Li
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Beijing 100050, China
| | - Ya-Zhi Bai
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Beijing 100050, China
| | - Quan-Ying Liu
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Beijing 100050, China
| | - Shuang-Qing Zhang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Beijing 100050, China
| |
Collapse
|
6
|
Fu Z, Xu X, Cao L, Xiang Q, Gao Q, Duan H, Wang S, Zhou L, Yang X. Single and joint exposure of Pb, Cd, Hg, Se, Cu, and Zn were associated with cognitive function of older adults. Sci Rep 2024; 14:28567. [PMID: 39558028 PMCID: PMC11574263 DOI: 10.1038/s41598-024-79720-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Impaired cognitive function following exposure to heavy metals has emerged as a significant global health concern. Nevertheless, the impact of combined exposure to multiple heavy metals on cognitive impairment remains unclear. OBJECTIVE This study aimed to explore the association between multiple heavy metals exposure and cognitive function to provide theoretical evidence to guide prevention strategies. METHODS The blood levels of lead (Pb), cadmium (Cd), mercury (Hg), selenium (Se), copper (Cu) and zinc (Zn) and the results of the cognitive function tests were extracted from 811 elderly Americans who completed the NHANES between 2011 and 2014. Quantile regression (QR), restricted cubic splines (RCS), and Bayesian kernel machine regression (BKMR) were used to explore the individual and joint association between heavy metals exposure and performance in 4 standardized cognitive tests; Item Response Theory (IRT), Delayed Recall Test (DRT), Animal Fluency Test (AFT) and Digit Symbol Substitution Test (DSST). RESULTS A negative association was noted between Cd levels and IRT (p = 0.048, 95%CI: -2.7, -0.1). Se concentrations ranging between 2.197 µg/L (95%CI: 0.004, 0.15) to 2.29 µg/L (95%CI: 2.56, 7.64) (log10Se) was postively associated with DSST (p = 0.001 ). Cu was negatively associated with DSST (p = 0.049, 95%CI: -37.75, -0.09), while Zn was positively associated with IRT (p = 0.022, 95%CI: 0.55, 11.73). Exposure to the 6 heavy metals combined showed a positive linear association with IRT, DRT, and a negative linear association with DSST. An interaction between Cd and the other heavy metals (excepted for Pb). CONCLUSION Exposure to Pb, Cd, Hg, Se, Cu, and Zn was associated with cognitive function. Joint exposure to the 6 heavy metals showed a positive linear association with IRT, DRT, contrarily, a negative linear association with DSST.
Collapse
Affiliation(s)
- Zixuan Fu
- MOE Key Laboratory of Coal environmental pathopoiesis and control, Shanxi Medial University, Taiyuan, 030001, China
- School of Management, Shanxi Medical University, Taiyuan, 030001, China
| | - Xiaofang Xu
- MOE Key Laboratory of Coal environmental pathopoiesis and control, Shanxi Medial University, Taiyuan, 030001, China
- School of Management, Shanxi Medical University, Taiyuan, 030001, China
| | - Li Cao
- MOE Key Laboratory of Coal environmental pathopoiesis and control, Shanxi Medial University, Taiyuan, 030001, China
- Department of Public Health Laboratory Sciences, School of Public Health, Shanxi Medical University, No. 56 Xinjian South Road, Taiyuan, 030001, China
| | - Qianying Xiang
- MOE Key Laboratory of Coal environmental pathopoiesis and control, Shanxi Medial University, Taiyuan, 030001, China
- Department of Public Health Laboratory Sciences, School of Public Health, Shanxi Medical University, No. 56 Xinjian South Road, Taiyuan, 030001, China
| | - Qian Gao
- MOE Key Laboratory of Coal environmental pathopoiesis and control, Shanxi Medial University, Taiyuan, 030001, China
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, 030001, China
| | - Huirong Duan
- MOE Key Laboratory of Coal environmental pathopoiesis and control, Shanxi Medial University, Taiyuan, 030001, China
- Department of Public Health Laboratory Sciences, School of Public Health, Shanxi Medical University, No. 56 Xinjian South Road, Taiyuan, 030001, China
| | - Shuhan Wang
- MOE Key Laboratory of Coal environmental pathopoiesis and control, Shanxi Medial University, Taiyuan, 030001, China
- Department of Public Health Laboratory Sciences, School of Public Health, Shanxi Medical University, No. 56 Xinjian South Road, Taiyuan, 030001, China
| | - Liye Zhou
- School of Management, Shanxi Medical University, Taiyuan, 030001, China.
- Department of Mathematics, School of Basic Medical Sciences, Shanxi Medical University, No. 56 Xinjian South Road, Taiyuan, 030001, China.
| | - Xiujuan Yang
- MOE Key Laboratory of Coal environmental pathopoiesis and control, Shanxi Medial University, Taiyuan, 030001, China.
- Department of Public Health Laboratory Sciences, School of Public Health, Shanxi Medical University, No. 56 Xinjian South Road, Taiyuan, 030001, China.
- Academic Affairs Office, Shanxi Medical University, Taiyuan, 030001, China.
| |
Collapse
|
7
|
Liu Q, Li J, Cheng X, Chen G, Zhang Y, Tian Z, Wang Y, Wang H, Guo X, Li H, Sun L, Hu B, Zhang D, Liang C, Sheng J, Tao F, Wang J, Yang L. APOE ε4 allele modifies the associations of toxic metals and their mixture with cognitive impairment among older adults. ENVIRONMENTAL RESEARCH 2024; 255:119148. [PMID: 38754607 DOI: 10.1016/j.envres.2024.119148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/01/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND The evidence of interactive effect of the toxic metal (TM) mixture and apolipoprotein E (APOE) ε4 gene on cognitive impairment in older adults is scarce. We aimed to explore whether the associations of single TMs and their mixture with cognitive impairment depend on APOE ε4 in Chinese community-dwelling older people. METHODS A total of 1148 older adults from a subset of the baseline survey of a cohort study were included. Blood arsenic (As), cadmium (Cd), lead (Pb), strontium (Sr), and vanadium (V) were detected by inductively coupled plasma mass spectrometry. APOE gene (rs429358, rs7412) polymorphisms were analyzed by the Polymerase Chain Reaction instrument. Mixed effects logistic regression was applied to estimate the relationships of single TMs and APOE genotype with cognitive impairment. Weighted quantile sum (WQS) and Bayesian kernel machine regression (BKMR) models were performed to examine joint impacts of the TM mixture, as well as the interaction of the TM mixture with APOE ε4 genotype on cognitive impairment. RESULTS Pb displayed a significant linear association with an increased odds of cognitive impairment after adjustment for covariates (Ptrend = 0.045). While APOE genotype did not show a significant correlation with cognitive impairment. WQS showed that the TM mixture was associated with an increased risk of cognitive impairment by 31.0% (OR=1.31, 95% CI: 0.92, 1.87) while no significance was found. BKMR exhibited a significant linear association between the TM mixture and cognitive impairment. Moreover, both WQS and BKMR indicated that Pb contributed the most to cognitive impairment within the mixture. Significant interactions of Pb or the TM mixture and APOE genotype on cognitive impairment were observed, contributing to 38.1% and 38.2% of total effects, respectively. CONCLUSIONS APOE ε4 allele amplifies the associations of single Pb or the TM mixture with cognitive impairment. These findings may help to develop precision prevention.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Epidemiology and Health Statistics, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Junzhe Li
- Department of Epidemiology and Health Statistics, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xuqiu Cheng
- Department of Epidemiology and Health Statistics, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Guimei Chen
- School of Health Services Management, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yan Zhang
- Department of Epidemiology and Health Statistics, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Ziwei Tian
- Department of Epidemiology and Health Statistics, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yuan Wang
- Department of Epidemiology and Health Statistics, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Hongli Wang
- Department of Epidemiology and Health Statistics, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xianwei Guo
- Department of Epidemiology and Health Statistics, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Huaibiao Li
- Fuyang Center for Diseases Prevention and Control, Fuyang, 236069, Anhui, China
| | - Liang Sun
- Fuyang Center for Diseases Prevention and Control, Fuyang, 236069, Anhui, China
| | - Bing Hu
- Fuyang Center for Diseases Prevention and Control, Fuyang, 236069, Anhui, China
| | - Dongmei Zhang
- School of Health Services Management, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Chunmei Liang
- Department of Hygiene Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Jie Sheng
- Scientific Research Center in Preventive Medicine, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Fangbiao Tao
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, 230032, Anhui, China
| | - Jun Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Linsheng Yang
- Department of Epidemiology and Health Statistics, Center for Big Data and Population Health of IHM, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China.
| |
Collapse
|
8
|
Qian S, Xu F, Wang M, Zhang M, Ding S, Jin G, Zhang X, Cheng W, Wang L, Zhu Y, Wang W, Ofosuhemaa P, Wang T, Lin X, Zhu Y, Lv Y, Hu A, Yang W, He G, Zhao Q. Association analyses between urinary concentrations of multiple trace elements and gastric precancerous lesions and gastric cancer in Anhui province, eastern China. Front Public Health 2024; 12:1423286. [PMID: 39220462 PMCID: PMC11363071 DOI: 10.3389/fpubh.2024.1423286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/24/2024] [Indexed: 09/04/2024] Open
Abstract
Background Limited epidemiological evidence suggests that exposure to trace elements adversely impacts the development of gastric precancerous lesions (GPL) and gastric cancer (GC). This study aimed to estimate the association of individual urinary exposure to multiple elements with GPL and GC. Methods A case-control investigation was conducted in Anhui Province from March 2021 to December 2022. A total of 528 subjects (randomly sampled from 1,020 patients with GPL, 200 patients with GC, and 762 normal controls) were included in our study. Urinary levels of iron (Fe), copper (Cu), zinc (Zn), nickel (Ni), strontium (Sr), and Cesium (Cs) were measured using inductively coupled plasma mass spectrometry (ICP-MS). Four different statistical approaches were employed to explore the risk of GPL and GC with mixed exposure, including multivariate logistic regression, weighted quantile regression (WQS), quantile g-computation (Qgcomp), and the Bayesian kernel machine regression (BKMR) model. Results The WQS model indicated that urinary exposure to a mixture of elements is positively correlated with both GPL and GC, with ORs for the mixture exposure of 1.34 (95% CI: 1.34-1.61) for GPL and 1.38 (95% CI: 1.27-1.50) for GC. The Qgcomp and BKMR models also demonstrated a statistically significant positive correlation between the mixture and both GPL and GC. Conclusion Considering the limitations of case-control studies, future prospective studies are warranted to elucidate the combined effects and mechanisms of trace elements exposure on human health.
Collapse
Affiliation(s)
- Shiqing Qian
- Department of Pathology, Lujiang County People's Hospital, Hefei, Anhui, China
| | - Fang Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Min Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Meng Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Shaopeng Ding
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Guoqing Jin
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Xiaohui Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Wenli Cheng
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Li Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yuting Zhu
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Wuqi Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Princess Ofosuhemaa
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Tingting Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Xiao Lin
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yu Zhu
- School of Public Health, Wannan Medical College, Wuhu, Anhui, China
| | - Yaning Lv
- Technology Center of Hefei Customs, Anhui Province Key Laboratory of Analysis and Detection for Food Safety, Hefei, Anhui, China
| | - Anla Hu
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Wanshui Yang
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Gengsheng He
- Department of Nutrition and Food Hygiene, School of Public Health, Fudan University, Shanghai, China
| | - Qihong Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
9
|
Li C, Peng X, Zheng J, Shi K, Qin L, Yang Q, Wang Z, Liu Y, Huang L. Comprehensive Insights into the Health Effects of Selenium Exposure and Supplementation Among the Chinese Community Middle-Aged and Elderly: a Combined Retrospective Cohort Study and Intervention Study. Biol Trace Elem Res 2024; 202:3517-3528. [PMID: 37996719 DOI: 10.1007/s12011-023-03963-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/11/2023] [Indexed: 11/25/2023]
Abstract
Selenium (Se) is an essential trace element for maintaining human health, for example, plays a crucial role in preventing aging-related diseases. However, most studies on the health effects of Se among the community middle-aged and elderly have been observational or the health indices were single, and the related study among the Chinese population is limited. Additionally, China is recognized as among the countries facing a significant deficiency in Se, and Se contents in the human body may decrease with age. Therefore, a two-step study was conducted to explore the health effects of Se exposure and supplementation among such populations in China. Firstly, a retrospective cohort study was conducted to compare the health outcomes between such populations residing in Se-rich regions and non-Se-rich regions, involving a total of 102 subjects, with 51 residing in Se-rich regions and 51 in non-Se-rich regions. The hair-Se (H-Se) contents, serum-Se (S-Se) contents, and total cholesterol of subjects from Se-rich regions were significantly higher than their counterparts. Notably, significant positive associations were observed between S-Se and lipids. Secondly, a before-after self-control Se supplementation study among subjects residing in non-Se-rich regions was conducted. A total of 40 subjects administered Se tablets orally for 30 days, with Se of 120 μg/day. The results showed significant increases in H-Se and S-Se. Se supplementation also exhibited positive effects on alanine aminotransferase, homocysteine, and fasting glucose; however, high-density lipoprotein cholesterol significantly decreased. Overall, the community middle-aged and elderly residing in Se-rich regions or receiving quantitative Se supplementation could effectively improve Se contents in bodies and certain health indices, excluding lipids. These improvements encompass liver function, cardiovascular health, and glucose metabolism. These findings enhance our understanding of how Se impacts the health of the middle-aged and elderly, emphasizing the significance of targeted interventions for such populations in non-Se-rich regions. Trial registration: ChiCTR2000040987 ( https://www.chictr.org.cn ).
Collapse
Affiliation(s)
- Chen Li
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, 210093, China
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Xiangwen Peng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Jiayang Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Kexin Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Liqiang Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Medical College of Soochow University, Suzhou, 215123, China
| | - Qinyi Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Zhangmin Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
- Jiangsu Bio-Engineering Research Center for Selenium, Suzhou, 215123, China
| | - Ying Liu
- Development and Utilization Center of Selenium Resources in Yichun City, Jiangxi Province, Yichun, 336000, China
| | - Lei Huang
- Center for Public Health Research, Medical School, Nanjing University, Nanjing, 210093, China.
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
- Nanjing University (Suzhou) High-Tech Institute, Suzhou, 215123, China.
| |
Collapse
|
10
|
Du G, Song X, Zhou F, Ouyang L, Li Q, Ruan S, Su R, Rao S, Zhu Y, Xie J, Feng C, Fan G. Association Between Multiple Metal(loid)s Exposure and Blood Lipid Levels: Evidence from a Cross-Sectional Study of Southeastern China. Biol Trace Elem Res 2024; 202:3483-3495. [PMID: 37991670 DOI: 10.1007/s12011-023-03951-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/01/2023] [Indexed: 11/23/2023]
Abstract
Exposure to essential and toxic metals occurs simultaneously as a mixture in real-life. However, there is no consensus regarding the effects of co-exposure to multiple metal(loid)s (designated hereafter metals) on blood lipid levels. Thus, blood concentrations of six human essential metals and five toxic metals in 720 general populations from southeastern China were simultaneously determined as a measure of exposure. In addition, quantile g-computation, Bayesian kernel machine regression, elastic net regression, and generalized linear model were used to investigate both the joint and individual effects of exposure to this metal mixture on human blood lipid levels. The significant positive joint effect of exposure to this metal mixture on serum total cholesterol (TC) levels, rather than on serum triglycerides, high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol, Castelli risk index I, Castelli risk index II, atherogenic coefficient, and non-HDL-C levels, was found. In addition, the positive effect may be primarily driven by selenium (Se), lead (Pb), and mercury (Hg) exposure. In addition, on the effect of TC levels, the synergistic effect between Pb and Hg and the antagonistic effect between Se and Pb were identified. Our finding suggests that combined exposure to this metal mixture may affect human blood lipid levels. Therefore, reducing exposure to heavy metals, such as Pb and Hg, should be a priority for the general population. In addition, Se supplementation should also be considered with caution.
Collapse
Affiliation(s)
- Guihua Du
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Xiaoguang Song
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, 330006, People's Republic of China
- Institute of Environmental Health, Jiangxi Province Center for Disease Control and Prevention, Nanchang, 330046, People's Republic of China
| | - Fankun Zhou
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Lu Ouyang
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Qi Li
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Shiying Ruan
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, 330006, People's Republic of China
- The First Affiliated Hospital of Nanchang University, Nanchang, 330006, People's Republic of China
| | - Rui Su
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Shaoqi Rao
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Yanhui Zhu
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Jie Xie
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Chang Feng
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, 330006, People's Republic of China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, People's Republic of China
| | - Guangqin Fan
- Department of Occupational Health and Toxicology, School of Public Health, Nanchang University, Nanchang, 330006, People's Republic of China.
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, 330006, People's Republic of China.
| |
Collapse
|
11
|
Wei Y, Zhou YF, Xiao L, Qin J, Cheng H, Cai H, Chen X, Zou Y, Yang L, Zhang H, Zhang Z, Yang X. Associations of Heavy Metals with Cognitive Function: An Epigenome-Wide View of DNA Methylation and Mediation Analysis. Ann Neurol 2024; 96:87-98. [PMID: 38661228 DOI: 10.1002/ana.26942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/26/2024]
Abstract
OBJECTIVE Exposure to heavy metals has been reported to be associated with impaired cognitive function, but the underlying mechanisms remain unclear. This pilot study aimed to identify key heavy metal elements associated with cognitive function and further explore the potential mediating role of metal-related DNA methylation. METHODS Blood levels of arsenic, cadmium, lead, copper, manganese, and zinc and genome-wide DNA methylations were separately detected in peripheral blood in 155 older adults. Cognitive function was evaluated using the Mini-Mental State Examination (MMSE). Least absolute shrinkage and selection operator penalized regression and Bayesian kernel machine regression were used to identify metals associated with cognitive function. An epigenome-wide association study examined the DNA methylation profile of the identified metal, and mediation analysis investigated its mediating role. RESULTS The MMSE scores showed a significant decrease of 1.61 (95% confidence interval [CI]: -2.64, -0.59) with each 1 standard deviation increase in ln-transformed arsenic level; this association was significant in multiple-metal models and dominated the overall negative effect of 6 heavy metal mixture on cognitive function. Seventy-three differentially methylated positions were associated with blood arsenic (p < 1.0 × 10-5). The methylation levels at cg05226051 (annotated to TDRD3) and cg18886932 (annotated to GAL3ST3) mediated 24.8% and 25.5% of the association between blood arsenic and cognitive function, respectively (all p < 0.05). INTERPRETATION Blood arsenic levels displayed a negative association with the cognitive function of older adults. This finding shows that arsenic-related DNA methylation alterations are critical partial mediators that may serve as potential biomarkers for further mechanism-related studies. ANN NEUROL 2024;96:87-98.
Collapse
Affiliation(s)
- Yue Wei
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Yan-Feng Zhou
- Department of Social Medicine, School of Public Health, Guangxi Medical University, Nanning, China
| | - Lili Xiao
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Jian Qin
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Hong Cheng
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Haiqing Cai
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Xing Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Yunfeng Zou
- Department of Toxicology, School of Public Health, Guangxi Medical University, Nanning, China
| | - Li Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Haiying Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| | - Zhiyong Zhang
- Department of Environmental Health and Occupational Medicine, Guangxi Key Laboratory of Environmental Exposomics and Entire Lifecycle Heath Research, Guilin Medical University, Guilin, China
| | - Xiaobo Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, China
| |
Collapse
|
12
|
Sun X, Deng Y, Fang L, Ni M, Wang X, Zhang T, Chen Y, Cai G, Pan F. Association of Exposure to Heavy Metal Mixtures with Systemic Immune-Inflammation Index Among US Adults in NHANES 2011-2016. Biol Trace Elem Res 2024; 202:3005-3017. [PMID: 37817047 DOI: 10.1007/s12011-023-03901-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/30/2023] [Indexed: 10/12/2023]
Abstract
In reality, people are often co-exposed to multiple heavy metals; however, current research has focused on the association between individual heavy metals and inflammation. Therefore, it is more relevant to explore the combined effects of multiple heavy metal exposure on inflammation. The study included data from the National Health and Nutrition Examination Survey (NHANES), 2011-2016. The systemic immune-inflammation index (SII) was used to reflect systemic immune-inflammation status. In this study, single variable models were used to assess the linear and non-linear relationships between single heavy metal exposures and SII. To analyze the combined effect of mixed heavy metals exposure on SII, we constructed three statistical models, including weighted quantile sum (WQS) regression, quantile-based g computation (qgcomp), and Bayesian kernel machine regression (BKMR). The single-exposure analysis found positive associations between multiple heavy metals and SII, while mercury in blood was negatively associated with SII, and U-shaped correlations were observed between blood lead, urine barium and strontium, and SII. In the WQS model, SII increased significantly with increasing concentrations of mixed heavy metals, while consistent results in the qgcomp model, but not statistically significant. In the BKMR model, exposure to heavy metal mixtures was positively associated with SII, with mercury, cadmium, and cobalt in urine contributing the most to the mixed exposure. In addition, synergistic and antagonistic effects between heavy metals on increasing SII were found in our study. In summary, our results reveal that combined exposure to multiple heavy metals is positively associated with SII in the US adults.
Collapse
Affiliation(s)
- Xiaoya Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Rd, Hefei, 230032, Anhui, China
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yujie Deng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Rd, Hefei, 230032, Anhui, China
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Lanlan Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Rd, Hefei, 230032, Anhui, China
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Man Ni
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Rd, Hefei, 230032, Anhui, China
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Xinqi Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Rd, Hefei, 230032, Anhui, China
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Tao Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Rd, Hefei, 230032, Anhui, China
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Yuting Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Rd, Hefei, 230032, Anhui, China
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Guoqi Cai
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Rd, Hefei, 230032, Anhui, China
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Faming Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Rd, Hefei, 230032, Anhui, China.
- The Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
13
|
Wang H, Zhang Y, Sun L, Guo X, Liu Q, Li J, Tian Z, Cheng X, Wang Y, Li H, Hu B, Sheng J, Qu G, Chen G, Liu X, Lin W, Tao F, Yang L. Associations of toxic metals and their mixture with hyperuricemia in Chinese rural older adults. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:256. [PMID: 38884822 DOI: 10.1007/s10653-024-02035-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 05/14/2024] [Indexed: 06/18/2024]
Abstract
Previous studies have related single toxic metals (TMs) to hyperuricemia (HUA) among the general population, however, the association of the TM mixture with HUA, especially in older adults, remains poorly understood. We aimed to examine the relationships between individual TMs and their mixture and HUA in Chinese rural older adults. This study consisted of 2075 rural older adults aged 60 years or over. Blood concentrations of aluminum (Al), arsenic (As), barium (Ba), cadmium (Cd), cesium (Cs), gallium (Ga), mercury (Hg), lead (Pb), thallium (Tl), and uranium (U) were detected using inductively coupled plasma mass spectrometry. The associations of single TMs with HUA were assessed using logistic regression and restricted cubic spline (RCS) models, and the association of TM mixture with HUA was explored using the elastic net with environmental risk score (ENET-ERS), quantile g-computation (QGC), and Bayesian kernel machine regression (BKMR) models, respectively. Adjusted logistic regression model showed that Cs (OR = 1.65, 95% CI 1.37-1.99) and Pb (OR = 1.46, 95% CI 1.28-1.67) were positively related to HUA, and RCS model exhibited a positive linear association of Cs and Pb with HUA. ENET-ERS and QGC models quantified a positive correlation between the TM mixture and the odds of HUA, with estimated ORs of 1.15 (95% CI 1.11-1.19) and 1.84 (95% CI 1.37-2.47), respectively, and Cs and Pb had the most weight. BKMR model demonstrated a significant linear association between the TM mixture and increased odds of HUA, with the posterior inclusion probabilities (PIPs) of both Cs and Pb being 1.00. Moreover, we observed a positive interaction between Cs and Pb on HUA. The TM mixture is associated with increased odds of HUA in rural older adults, which may mainly be driven by Cs and Pb. Subsequent studies are warranted to confirm these findings and clarify the mechanisms linking multiple TMs with HUA.
Collapse
Affiliation(s)
- Hongli Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Meishan Road 81, Hefei, 230032, Anhui, China
- Center for Big Data and Population Health of IHM, Anhui Medical University, Hefei, 230032, Anhui, China
- Scientific Research Center in Preventive Medicine, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yan Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Meishan Road 81, Hefei, 230032, Anhui, China
- Center for Big Data and Population Health of IHM, Anhui Medical University, Hefei, 230032, Anhui, China
- Scientific Research Center in Preventive Medicine, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Liang Sun
- Fuyang Center for Diseases Prevention and Control, Fuyang, 236069, Anhui, China
| | - Xianwei Guo
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Meishan Road 81, Hefei, 230032, Anhui, China
| | - Qiang Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Meishan Road 81, Hefei, 230032, Anhui, China
- Center for Big Data and Population Health of IHM, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Junzhe Li
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Meishan Road 81, Hefei, 230032, Anhui, China
- Center for Big Data and Population Health of IHM, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Ziwei Tian
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Meishan Road 81, Hefei, 230032, Anhui, China
- Center for Big Data and Population Health of IHM, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xuqiu Cheng
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Meishan Road 81, Hefei, 230032, Anhui, China
- Center for Big Data and Population Health of IHM, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Yuan Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Meishan Road 81, Hefei, 230032, Anhui, China
- Center for Big Data and Population Health of IHM, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Huaibiao Li
- Fuyang Center for Diseases Prevention and Control, Fuyang, 236069, Anhui, China
| | - Bing Hu
- Fuyang Center for Diseases Prevention and Control, Fuyang, 236069, Anhui, China
| | - Jie Sheng
- Scientific Research Center in Preventive Medicine, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Guangbo Qu
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Meishan Road 81, Hefei, 230032, Anhui, China
| | - Guimei Chen
- School of Health Services Management, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Xuechun Liu
- Department of Neurology, The Second People's Hospital of Hefei, Hefei, 230011, Anhui, China
| | - Wenbo Lin
- Second School of Clinical Medicine, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Fangbiao Tao
- Center for Big Data and Population Health of IHM, Anhui Medical University, Hefei, 230032, Anhui, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, 230032, Anhui, China
| | - Linsheng Yang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Meishan Road 81, Hefei, 230032, Anhui, China.
- Center for Big Data and Population Health of IHM, Anhui Medical University, Hefei, 230032, Anhui, China.
- Scientific Research Center in Preventive Medicine, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China.
- Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, 230032, Anhui, China.
| |
Collapse
|
14
|
Duan L, Su L, He X, Du Y, Duan Y, Xu N, Wu R, Zhu Y, Shao R, Unverzagt FW, Hake AM, Jin Y, Gao S. Multi-element Exposure and Cognitive Function in Rural Elderly Chinese. Biol Trace Elem Res 2024; 202:1401-1410. [PMID: 37715918 DOI: 10.1007/s12011-023-03774-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 07/10/2023] [Indexed: 09/18/2023]
Abstract
To investigate the relationship between selenium (Se) based multi-element combined exposure and cognitive function in rural elderly individuals, a cross-sectional study was conducted. The study involved 416 older adults aged 60 and above, residing in four different areas of Enshi county, China, with varying soil Se levels. Inductively coupled plasma mass spectrometry (ICP-MS) was employed to measure the concentrations of Se, copper (Cu), iron (Fe), zinc (Zn), calcium (Ca), magnesium (Mg), cadmium (Cd), arsenic (As), and lead (Pb) in whole blood. Nine standard cognitive tests were applied to assess cognitive function. Analysis of the least absolute shrinkage and selection operator regression (LASSO), covariance (ANCOVA), and generalized linear model (GLM) were utilized to investigate the relationship between element exposure and cognitive function. The results of LASSO revealed that Se, Cu, Fe, Zn, Ca, and Pb were independently identified to be associated with cognition. Both ANCOVA and GLM demonstrated that Se and Ca were correlated with cognitive function. The multi-element model showed higher composite Z scores of 0.32 (95% CI: 0.09 to 0.55) for log-transformed Se (P = 0.007), 0.75 (95% CI: 0.01 to 1.49) for log-transformed Cu (P = 0.048), and a lower score of - 0.67 (95% CI: - 1.26 to - 0.08) for log-transformed Ca (P = 0.025). Furthermore, there was evidence that Se could counteract the negative impact of Ca on cognitive function (P for interaction = 0.031). Our findings suggested that higher levels of Se and Cu were associated with better cognitive function in the elderly and Se can counteract the cognitive damage caused by Ca.
Collapse
Affiliation(s)
- Lidan Duan
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
- Xiangya School of Public Health, Central South University, Changsha, 410000, China
| | - Liqin Su
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China.
| | - Xiaohong He
- Enshi Tujia and Miao Autonomous Prefecture Center for Disease Control and Prevention, Enshi, 445000, China
| | - Yegang Du
- Shenzhen Academy of Metrology & Quality Inspection, Shenzhen, 518000, China
| | - Yanying Duan
- Xiangya School of Public Health, Central South University, Changsha, 410000, China
| | - Ning Xu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Rangpeng Wu
- Enshi Tujia and Miao Autonomous Prefecture Center for Disease Control and Prevention, Enshi, 445000, China
| | - Yunfeng Zhu
- Enshi Tujia and Miao Autonomous Prefecture Center for Disease Control and Prevention, Enshi, 445000, China
| | - Ranqi Shao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Frederick W Unverzagt
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Ann M Hake
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yinlong Jin
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Sujuan Gao
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| |
Collapse
|
15
|
Liang Y, Wang J, Wang T, Li H, Yin C, Liu J, Wei Y, Fan J, Feng S, Zhai S. Moderate selenium mitigates hand grip strength impairment associated with elevated blood cadmium and lead levels in middle-aged and elderly individuals: insights from NHANES 2011-2014. Front Pharmacol 2023; 14:1324583. [PMID: 38161700 PMCID: PMC10757617 DOI: 10.3389/fphar.2023.1324583] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024] Open
Abstract
Background: Selenium (Se) has been reported to have an antagonistic effect on heavy metals in animals. Nevertheless, there is a lack of epidemiological research examining whether Se can mitigate the adverse effects of cadmium (Cd) and lead (Pb) on hand grip strength (HGS) in middle-aged and elderly individuals. Methods: This study used data from the 2011-2014 National Health and Nutrition Examination Survey (NHANES). HGS measurements were conducted by trained examiners with a dynamometer. Concentrations of Se, Cd, and Pb in blood were determined via inductively coupled plasma mass spectrometry. We employed linear regression, restricted cubic splines, and quantile g-computation (qgcomp) to assess individual and combined associations between heavy metals and HGS. The study also explored the potential influence of Se on these associations. Results: In both individual metal and multi-metal models adjusted for confounders, general linear regression showed Se's positive association with HGS, while Cd and Pb inversely related to it. At varying Se-Cd and Se-Pb concentrations, high Se relative to low Se can attenuate Cd and Pb's HGS impact. An inverted U-shaped correlation exists between Se and both maximum and combined HGS, with Se's benefit plateauing beyond approximately 200 μg/L. Stratified analysis by Se quartiles reveals Cd and Pb's adverse HGS effects diminishing as Se levels increase. Qgcomp regression analysis detected Se alleviating HGS damage from combined Cd and Pb exposure. Subsequent subgroup analyses identified the sensitivity of women, the elderly, and those at risk of diabetes to HGS impairment caused by heavy metals, with moderate Se supplementation beneficial in mitigating this effect. In the population at risk for diabetes, the protective role of Se against heavy metal toxicity-induced HGS reduction is inhibited, suggesting that diabetic individuals should particularly avoid heavy metal-induced handgrip impairment. Conclusion: Blood Cd and Pb levels are negatively correlated with HGS. Se can mitigate this negative impact, but its effectiveness plateaus beyond 200 μg/L. Women, the elderly, and those at risk of diabetes are more vulnerable to HGS damage from heavy metals. While Se supplementation can help, its protective effect is limited in high diabetes risk groups.
Collapse
Affiliation(s)
- Yafeng Liang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Junqi Wang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tianyi Wang
- School of Management, Beijing University of Chinese Medicine, Beijing, China
| | - Hangyu Li
- School of Life and Science, Beijing University of Chinese Medicine, Beijing, China
| | - Chaohui Yin
- School of Resources and Environment, Henan Agricultural University, Zhengzhou, Henan, China
| | - Jialin Liu
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yulong Wei
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Junxing Fan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shixing Feng
- School of Life and Science, Beijing University of Chinese Medicine, Beijing, China
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
- Centre France Chine de la Médecine Chinoise, Selles sur Cher, France
| | - Shuangqing Zhai
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
16
|
Fan H, Xiong Y, Huang Y, Wang L, Xu C, Li W, Feng X, Yang Y, Hua R, Wang Z, Yuan Z, Zhou J. Moderate selenium alleviates the pulmonary function impairment induced by cadmium and lead in adults: A population-based study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166234. [PMID: 37572899 DOI: 10.1016/j.scitotenv.2023.166234] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
Selenium (Se) has been reported to have an antagonistic effect on heavy metals in animals. However, there is no epidemiological study investigating whether Se could protect against the pulmonary toxicity of Cadmium (Cd) and Lead (Pb). Data was collected from the 2011-2012 National Health and Nutrition Examination Survey (NHANES) cycle. Pulmonary function was assessed by Forced Vital Capacity (FVC), Forced Expiratory Volume 1st Second (FEV1) and FEV1/FVC. Blood concentrations of Cd, Pb, and Se were measured using inductively coupled plasma mass spectrometry. Linear regression, restricted cubic splines, and quantile-based g-computation (qgcomp) were performed to evaluate the individual and joint associations of Cd and Pb with pulmonary function and whether Se modified these associations. In the adjusted multi-metal model, every 1-unit increase in Cd, FEV1, FVC, and FEV1/FVC decreased by 76.437 mL (95 % CI: -110.928 to -41.947), 42.719 mL (95 % CI: -84.553 to -0.885), and 0.012 (95 % CI: -0.016 to -0.007), respectively. Meanwhile, FEV1 decreased by 9.37 mL (95 % CI: -18.61 to -0.13) for every 1 unit increase in Pb. Furthermore, we found an inverted U-shape association between Se and lung function, and participants in the second quartile Se group had the highest increases in FEV1 and FVC compared with participants in the lowest quartile. Qgcomp model also revealed that the toxic metal mixture (Cd and Pb) exhibited a significant inverse association with FEV1 and FEV1/FVC. Furthermore, we found that the inverse association of Pb and Cd, either alone or in combination, with pulmonary function first diminished with increasing Se levels but was re-enforced when blood Se concentrations were in the highest quartile. Our results indicated that moderate Se attenuated the harmful effects of Cd and Pb on lung function.
Collapse
Affiliation(s)
- Heze Fan
- Cardiovascular Department, First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an 710061, China
| | - Ying Xiong
- Cardiovascular Department, First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an 710061, China
| | - Yuzhi Huang
- Cardiovascular Department, First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an 710061, China
| | - Lijun Wang
- Cardiovascular Department, First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an 710061, China
| | - Chenbo Xu
- Cardiovascular Department, First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an 710061, China
| | - Wenyuan Li
- Cardiovascular Department, First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an 710061, China
| | - Xueying Feng
- Cardiovascular Department, First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an 710061, China
| | - Yuxuan Yang
- Cardiovascular Department, First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an 710061, China
| | - Rui Hua
- Cardiovascular Department, First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an 710061, China
| | - Zihao Wang
- Cardiovascular Department, First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an 710061, China
| | - Zuyi Yuan
- Cardiovascular Department, First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an 710061, China.
| | - Juan Zhou
- Cardiovascular Department, First Affiliated Hospital of Xi'an Jiao Tong University, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an 710061, China.
| |
Collapse
|