1
|
Liang B, Gu J, Zeng X, Yuan W, Rao M, Xiao B, Hu H. A Review of the Occurrence and Recovery of Rare Earth Elements from Electronic Waste. Molecules 2024; 29:4624. [PMID: 39407554 PMCID: PMC11477848 DOI: 10.3390/molecules29194624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Electronic waste (e-waste) contains valuable rare earth elements (REEs) essential for various high-tech applications, making their recovery crucial for sustainable resource management. This review provides an overview of the occurrence of REEs in e-waste and discusses both conventional and emerging green technologies for their recovery. Conventional methods include physical separation, hydrometallurgy, and pyrometallurgy, while innovative approaches such as bioleaching, supercritical fluid extraction, ionic liquid extraction, and lanmodulin-derived peptides offer improved environmental sustainability and efficiency. The article presents case studies on the extraction of REEs from waste permanent magnets and fluorescent powders, highlighting the specific processes involved. Future research should focus on developing eco-friendly leaching agents, separation materials, and process optimization to enhance the overall sustainability and efficiency of REE recovery from e-waste, addressing both resource recovery and environmental concerns effectively.
Collapse
Affiliation(s)
- Binjun Liang
- Ganzhou Key Laboratory of Mine Geological Disaster Prevention and Control and Ecological Restoration, School of Resources and Civil Engineering, Gannan University of Science and Technology, Ganzhou 341000, China; (B.L.); (J.G.); (X.Z.); (W.Y.)
| | - Jihan Gu
- Ganzhou Key Laboratory of Mine Geological Disaster Prevention and Control and Ecological Restoration, School of Resources and Civil Engineering, Gannan University of Science and Technology, Ganzhou 341000, China; (B.L.); (J.G.); (X.Z.); (W.Y.)
- Chongyi Green Metallurgy New Energy Co., Ltd., Ganzhou 341300, China
| | - Xiangrong Zeng
- Ganzhou Key Laboratory of Mine Geological Disaster Prevention and Control and Ecological Restoration, School of Resources and Civil Engineering, Gannan University of Science and Technology, Ganzhou 341000, China; (B.L.); (J.G.); (X.Z.); (W.Y.)
| | - Weiquan Yuan
- Ganzhou Key Laboratory of Mine Geological Disaster Prevention and Control and Ecological Restoration, School of Resources and Civil Engineering, Gannan University of Science and Technology, Ganzhou 341000, China; (B.L.); (J.G.); (X.Z.); (W.Y.)
| | - Mingjun Rao
- School of Minerals Processing & Bioengineering, Central South University, Changsha 410083, China;
| | - Bin Xiao
- Ganzhou Key Laboratory of Mine Geological Disaster Prevention and Control and Ecological Restoration, School of Resources and Civil Engineering, Gannan University of Science and Technology, Ganzhou 341000, China; (B.L.); (J.G.); (X.Z.); (W.Y.)
| | - Haixiang Hu
- Ganzhou Key Laboratory of Mine Geological Disaster Prevention and Control and Ecological Restoration, School of Resources and Civil Engineering, Gannan University of Science and Technology, Ganzhou 341000, China; (B.L.); (J.G.); (X.Z.); (W.Y.)
| |
Collapse
|
2
|
Pinto J, Fernandes R, Tavares D, Henriques B, Trindade T, Pereira E. Removal of Rare Earth Elements from complex mixtures by using manganese ferrite nanoparticles: Optimization through surface response methodology. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122211. [PMID: 39182376 DOI: 10.1016/j.jenvman.2024.122211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/27/2024] [Accepted: 08/11/2024] [Indexed: 08/27/2024]
Abstract
The crucial role of Rare Earth Elements (REEs) in the development of hi-tech in addition to their limited availability have urged countries to develop sustainable alternatives to their conventional primary sources (ore mining). Sorption technologies using magnetic materials such as spinel ferrite nanoparticles provide efficient removal of REEs from contaminated solutions and ease of separation through application of an external magnetic field. However, there is still limited knowledge available regarding the optimal operational conditions in which to use these materials, especially in complex aqueous mixtures with different REEs. In this study, we have used Surface Response Methodology (SRM) applied to MnFe2O4 nanosorbents to identify their ideal sorption conditions of pH (4-8), REEs concentration (1-5 μM) and sorbent mass (20-180 mg L-1) in a mixture of nine REEs in water samples of distinct salinity (NaCl: 0-30 g L-1). Our results indicated that high pH favored REEs sorption because of the material's surface charge, which promoted interactions with REEs ions at pH 6-8. Yttrium was the least removed element, but total removal was achieved for lowest REEs concentration using 151 mg L-1 of sorbent. High removals were also obtained for the concentration of 5 μM (100 % removal, except for Y and La). Salinity did not impair sorption significantly (<10 %), which was owed to the high sorbent mass used in those assays. An increase in sorbent mass and initial REEs concentration also promoted faster kinetics. The spinel type MnFe2O4 nanoparticles showed great promise in a realistic application, which is the next proposed step in this line of research.
Collapse
Affiliation(s)
- João Pinto
- Department of Chemistry, LAQV-REQUIMTE - Associated Laboratory for Green Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Raquel Fernandes
- Department of Chemistry, LAQV-REQUIMTE - Associated Laboratory for Green Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Daniela Tavares
- Department of Chemistry, LAQV-REQUIMTE - Associated Laboratory for Green Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal; LCA - Central Laboratory of Analysis, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Bruno Henriques
- Department of Chemistry, LAQV-REQUIMTE - Associated Laboratory for Green Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Tito Trindade
- Department of Chemistry, CICECO - Centre for Research in Ceramics and Composite Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Eduarda Pereira
- Department of Chemistry, LAQV-REQUIMTE - Associated Laboratory for Green Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal; LCA - Central Laboratory of Analysis, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
3
|
Fila D, Kołodyńska D. Facile synthesis of eco-friendly alginate-chitosan bio-adsorbent for critical raw materials adsorption: A comprehensive study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121609. [PMID: 38943744 DOI: 10.1016/j.jenvman.2024.121609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/07/2024] [Accepted: 06/23/2024] [Indexed: 07/01/2024]
Abstract
Sustainable management of critical raw materials is of paramount importance to ensure a steady supply and reduce environmental impact. The application of newly synthesized and environmentally friendly ALG@CS material as a bio-adsorbent for the effective rare earth elements removal from aqueous solution has been presented. The synthesized material underwent FTIR, XPS, EDX, and SEM analysis to determine its suitability for metal uptake. To evaluate the adsorption capacity of ALG@CS for rare earth elements several factors were taken into consideration. These factors included alginate:chitosan ratios, bead size, pH level, composite mass, interaction time, metal ion concentration, and temperature, being all varied during the batch mode evaluation process. Under the optimal conditions, the maximum adsorption capacities were found to be 145.90 mg La(III)/g, 168.44 mg Ce(III)/g, 132.51 mg Pr(III)/g, 128.40 mg Nd(III)/g, 154.36 mg Sm(III)/g, and 165.10 mg Ho(III)/g. The equilibrium data fits well with non-linear three-parameter Sips and Redlich-Peterson isotherm models. The PSO model finds the highest process suitability. The synthesized ALG@CS bio-adsorbent showed excellent regenerative capacity in ten cycles, making it a suitable adsorbent for rare earth elements uptake. The unique bio-adsorbents combination allows for efficient critical raw materials adsorption providing a promising solution for their recovery and recycling.
Collapse
Affiliation(s)
- Dominika Fila
- Department of Inorganic Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Sq. 2, 20-031, Lublin, Poland.
| | - Dorota Kołodyńska
- Department of Inorganic Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Sq. 2, 20-031, Lublin, Poland
| |
Collapse
|
4
|
Viana T, Colónia J, Tavares DS, Pinto J, Ferreira N, Jacinto J, Pereira E, Henriques B. Optimizing the Recovery of Rare Earth Elements from Spent Fluorescent Lamps by Living Ulva sp. ACS SUSTAINABLE RESOURCE MANAGEMENT 2024; 1:1464-1474. [PMID: 39081539 PMCID: PMC11285805 DOI: 10.1021/acssusresmgt.4c00104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 08/02/2024]
Abstract
Given the significant industrial applications of rare earth elements (REEs), supply chain constraints, and negative environmental impacts associated with their extraction, finding alternative sources has become a critical challenge. Previously, we highlighted the potential of living Ulva sp. in the removal and pre-concentration of Y from a solution obtained by sequential acid leaching of spent fluorescent lamps (SFLs). Here, we extended that study to other REEs extracted from SFLs and evaluated the effect of pH (4.5-9.0), light exposure (absence, natural and supplemented with artificial light), and Hg (presence and absence). The results showed small differences in the removal of Y (23-30%) and other REEs at the different pH values, opening the scope of the methodology. However, Ulva sp. relative growth rate (RGR) was negatively affected in the higher acidity condition, without any visible signs of decay. In the absence of light, the RGR also decreased, which was accompanied by a halving of the removal efficiency compared to that with artificial light supplementation (40% for Y). Although Hg had minimal influence on the removal and concentration of REEs by Ulva sp., its presence in the enriched biomass is undesirable. Therefore, this contaminant was selectively removed from the solution using Fe3O4@SiO2/SiDTC nanoparticles before contact with the macroalgae (70% removal in 30 min; 99% in 72 h). In addition to easy solubilization, macroalgae enriched with REEs have a simpler composition compared to SFLs. Calcination of the biomass allowed the REEs to be further concentrated, with concentrations (130 mg/g for Y) up to 240 times higher than in typical apatite ore. This highlights enriched biomass as a sustainable alternative to traditional mining for obtaining these critical raw materials.
Collapse
Affiliation(s)
- Thainara Viana
- LAQV-REQUIMTE
− Associated Laboratory for Green Chemistry, Department of
Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - João Colónia
- LAQV-REQUIMTE
− Associated Laboratory for Green Chemistry, Department of
Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Daniela S. Tavares
- LAQV-REQUIMTE
− Associated Laboratory for Green Chemistry, Department of
Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - João Pinto
- LAQV-REQUIMTE
− Associated Laboratory for Green Chemistry, Department of
Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Nicole Ferreira
- LAQV-REQUIMTE
− Associated Laboratory for Green Chemistry, Department of
Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- CICECO
− Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Jéssica Jacinto
- LAQV-REQUIMTE
− Associated Laboratory for Green Chemistry, Department of
Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Eduarda Pereira
- LAQV-REQUIMTE
− Associated Laboratory for Green Chemistry, Department of
Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Bruno Henriques
- LAQV-REQUIMTE
− Associated Laboratory for Green Chemistry, Department of
Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
5
|
Kastenhofer J, Spadiut O, Papangelakis VG, Allen DG. Roles of pH and phosphate in rare earth element biosorption with living acidophilic microalgae. Appl Microbiol Biotechnol 2024; 108:262. [PMID: 38483568 PMCID: PMC10940408 DOI: 10.1007/s00253-024-13068-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/01/2024] [Accepted: 02/11/2024] [Indexed: 03/17/2024]
Abstract
The increasing demand for rare earth elements (REEs) has spurred interest in the development of recovery methods from aqueous waste streams. Acidophilic microalgae have gained attention for REE biosorption as they can withstand high concentrations of transition metals and do not require added organic carbon to grow, potentially allowing simultaneous sorption and self-replication of the sorbent. Here, we assessed the potential of Galdieria sulphuraria for REE biosorption under acidic, nutrient-replete conditions from solutions containing ≤ 15 ppm REEs. Sorption at pH 1.5-2.5 (the growth optimum of G. sulphuraria) was poor but improved up to 24-fold at pH 5.0 in phosphate-free conditions. Metabolic activity had a negative impact on REE sorption, additionally challenging the feasibility of REE biosorption under ideal growth conditions for acidophiles. We further examined the possibility of REE biosorption in the presence of phosphate for biomass growth at elevated pH (pH ≥ 2.5) by assessing aqueous La concentrations in various culture media. Three days after adding La into the media, dissolved La concentrations were up to three orders of magnitude higher than solubility predictions due to supersaturation, though LaPO4 precipitation occurred under all conditions when seed was added. We concluded that biosorption should occur separately from biomass growth to avoid REE phosphate precipitation. Furthermore, we demonstrated the importance of proper control experiments in biosorption studies to assess potential interactions between REEs and matrix ions such as phosphates. KEY POINTS: • REE biosorption with G. sulphuraria increases significantly when raising pH to 5 • Phosphate for biosorbent growth has to be supplied separately from biosorption • Biosorption studies have to assess potential matrix effects on REE behavior.
Collapse
Affiliation(s)
- Jens Kastenhofer
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada
| | - Oliver Spadiut
- Institute of Chemical, Environmental and Bioscience Engineering, Research Division Biochemical Engineering, Research Group Integrated Bioprocess Development, TU Vienna, Gumpendorfer Straße 1a, 1060, Vienna, Austria
| | - Vladimiros G Papangelakis
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada
| | - D Grant Allen
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON, M5S 3E5, Canada.
| |
Collapse
|
6
|
Colombo F, Fantini R, Di Renzo F, Malavasi G, Malferrari D, Arletti R. An insight into REEs recovery from spent fluorescent lamps: Evaluation of the affinity of an NH 4-13X zeolite towards Ce, La, Eu and Y. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 175:339-347. [PMID: 38241823 DOI: 10.1016/j.wasman.2024.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/21/2024]
Abstract
The constantly increasing demand of Rare Earth Elements (REEs) made them to be part of the so-called "critical elements" indispensable for the energy transition. The monopoly of only a few countries, the so-called balance problem between demand and natural abundance, and the need to limit the environmental costs of their mining, stress the necessity of a recycling policy of these elements. Different methods have been tested for REEs recovery. Despite the well-known ion-exchange properties of zeolites, just few preliminary works investigated their application for REEs separation and recycle. In this work we present a double ion exchange experiment on a NH4-13X zeolite, aimed at the recovery of different REEs from solutions mimicking the composition of liquors obtained from the leaching of spent fluorescent lamps. The results showed that the zeolite was able to exchange all the REEs tested, but the exchange capacity was different: despite Y being the more concentrated REE in the solutions, the cation exchange was lower than less concentrated ones (16 atoms p.u.c. vs 21 atoms for Ce and La solutions), suggesting a possible selectivity. In order to recover REEs from the zeolite, a second exchange with an ammonium solution was performed. The analyses of the zeolites show that almost all of Ce and Eu remain in the zeolite, while nearly half of La and Y are released. This, once again, suggests a possible selective release of REEs and open the possibility for a recovery process in which Rare Earths can be effectively separated.
Collapse
Affiliation(s)
- Francesco Colombo
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia, Modena, Italy.
| | - Riccardo Fantini
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| | - Francesco Di Renzo
- ICGM, University of Montpellier, CNRS, ENSCM, Place Eugène Bataillon, 34095 Montpellier, France
| | - Gianluca Malavasi
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| | - Daniele Malferrari
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia, Modena, Italy
| | - Rossella Arletti
- Dipartimento di Scienze Chimiche e Geologiche, Università degli Studi di Modena e Reggio Emilia, Modena, Italy.
| |
Collapse
|
7
|
Danouche M, Bounaga A, Oulkhir A, Boulif R, Zeroual Y, Benhida R, Lyamlouli K. Advances in bio/chemical approaches for sustainable recycling and recovery of rare earth elements from secondary resources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168811. [PMID: 38030017 DOI: 10.1016/j.scitotenv.2023.168811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/30/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
Rare Earth Elements (REEs) are indispensable in the growing smart technologies, such as smart phones and electronic devices, renewable energy, new generation of hybrid cars, etc. These elements are naturally occurring in specific geological deposits (bastnäsite, monazite, and xenotime), primarily concentrated in the regions of China, Australia, and the USA. The extraction and processing of REEs and the mismanagement of secondary REE resources, such as industrial waste, end-of-life materials, and mining by-products, raise major environmental and health concerns. Recycling represents a convincing solution, avoiding the necessity to separate low-value or coexisting radioactive elements when REEs are recovered from raw ore. Despite these advantages, only 1 % of REEs are usually recycled. This review overreached strategies for recycling REEs from secondary resources, emphasizing their pivotal role. The predominant approach for recycling REEs involves hydrometallurgical processing by leaching REEs from their origins using acidic solutions and then separating them from dissolved impurities using techniques like liquid-liquid extraction, membrane separation, chromatography, adsorption, flotation, and electrochemical methods. However, these methods have notable disadvantages, particularly their over requirements for water, reagents, and energy. Biohydrometallurgy introduces an innovative alternative using microorganisms and their metabolites to extract REEs through bioleaching. Other investigations are carried out to recover REEs through biological strategies, including biosorption, affinity chromatography with biological ligands, bioflotation employing biological surfactants, and bioelectrochemical methods. However, biohydrometallurgical processes can also be relatively slow and less suitable for large-scale applications, often lacking specificity for targeted REEs recovery. Overcoming these challenges necessitates ongoing research and development efforts to advance recycling technologies.
Collapse
Affiliation(s)
- M Danouche
- Department of Chemical & Biochemical Sciences-Green Process Engineering (CBS), Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco
| | - A Bounaga
- Department of Chemical & Biochemical Sciences-Green Process Engineering (CBS), Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco
| | - A Oulkhir
- Department of Chemical & Biochemical Sciences-Green Process Engineering (CBS), Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco; Institute of Chemistry, Nice UMR7272, Côte d'Azur University, French National Centre for Scientific Research (CNRS), Nice, France
| | - R Boulif
- Department of Chemical & Biochemical Sciences-Green Process Engineering (CBS), Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco
| | - Y Zeroual
- Situation Innovation, OCP Group BP 118, Jorf Lasfar, El Jadida 24000, Morocco
| | - R Benhida
- Department of Chemical & Biochemical Sciences-Green Process Engineering (CBS), Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco; Institute of Chemistry, Nice UMR7272, Côte d'Azur University, French National Centre for Scientific Research (CNRS), Nice, France.
| | - K Lyamlouli
- College of Sustainable Agriculture and Environmental Sciences, AgroBioScience Department, Mohammed VI Polytechnic University (UM6P), Ben Guerir 43150, Morocco
| |
Collapse
|
8
|
Ly NH, Barceló D, Vasseghian Y, Choo J, Joo SW. Sustainable bioremediation technologies for algal toxins and their ecological significance. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122878. [PMID: 37967713 DOI: 10.1016/j.envpol.2023.122878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/01/2023] [Accepted: 11/03/2023] [Indexed: 11/17/2023]
Abstract
The emergence of algal toxins in water ecosystems poses a significant ecological and human health concern. These toxins, produced by various algal species, can lead to harmful algal blooms, and have far-reaching consequences on biodiversity, food chains, and water quality. This review explores the types and sources of algal toxins, their ecological impacts, and the associated human health risks. Additionally, the review delves into the potential of bioremediation strategies to mitigate the effects of algal toxins. It discusses the role of microorganisms, enzymes, and algal-bacterial interactions in toxin removal, along with engineering approaches such as advanced oxidation processes and adsorbent utilization. Microbes and enzymes have been studied for their environmentally friendly and biocompatible properties, which make them useful for controlling or removing harmful algae and their toxins. The challenges and limitations of bioremediation are examined, along with case studies highlighting successful toxin control efforts. Finally, the review outlines future prospects, emerging technologies, and the need for continued research to effectively address the complex issue of algal toxins and their ecological significance.
Collapse
Affiliation(s)
- Nguyễn Hoàng Ly
- Department of Chemistry, Gachon University, Seongnam, 13120, Republic of Korea
| | - Damià Barceló
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 1826, Barcelona, 08034, Spain; Sustainability Cluster, School of Engineering, UPES, Dehradun, 248007, India
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, Republic of Korea; School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Mechanical Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India.
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul, 06974, Republic of Korea.
| | - Sang-Woo Joo
- Department of Chemistry, Soongsil University, Seoul, 06978, Republic of Korea.
| |
Collapse
|
9
|
Malcomson T, Edwards-Yates L, Kerridge A. Tailoring the pore size of expanded porphyrinoids for lanthanide selectivity. RSC Adv 2023; 13:28426-28433. [PMID: 37771918 PMCID: PMC10523133 DOI: 10.1039/d3ra05710k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/15/2023] [Indexed: 09/30/2023] Open
Abstract
Despite increase in demand, capacity for the recycling of rare earth elements remains limited, partly due to the inefficiencies with processes currently utilised in the separation of lanthanides. This study highlights the potential use of expanded porphyrinoids in lanthanide separation through selective binding, dependent on the tailored pore size of the macrocycle. Each emerging trend is subjected to multi-factored analysis to decompose the underlying source. Results promote the viability of size-based separation with preferential binding of larger lanthanum(iii) ions to amethyrin and isoamethyrin macrocycles, while smaller macrocycles such as pentaphyrin(0.0.0.0.0) present a preferential binding of lutetium(iii) ions. Additionally, the porphyrin(2.2.2.2) macrocycle shows a selectivity for gadolinium(iii) ions over both larger and smaller ions. An upper limit of applicable pore size is shown to be ≈2.8 Å, beyond which the formed complexes are predicted to be less stable than the corresponding nitrate complexes.
Collapse
Affiliation(s)
- Thomas Malcomson
- Department of Chemistry, School of Natural Sciences, University of Manchester Oxford Road Manchester M13 9PL UK
| | | | | |
Collapse
|