1
|
Zhang H, Zhang H, Liu W, Lei Z, Wang Y, Sheng J, Wang Z, Hu C, Zhao X. DL-alanine promotes the colonization of Pseudomonas aeruginosa and their synergistic enrichment of selenium and decrease of cadmium absorption by Brassica napus. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138154. [PMID: 40187250 DOI: 10.1016/j.jhazmat.2025.138154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/12/2025] [Accepted: 04/01/2025] [Indexed: 04/07/2025]
Abstract
In selenium-rich regions, selenium and cadmium coexist in soil, posing a threat to agricultural product safety. This study explores the influence of Pseudomonas aeruginosa and DL-alanine on selenium and cadmium uptake in Brassica napus. Through pot and medium experiments, along with FTIR and XPS analyses, we found that DL-alanine significantly boosts Pseudomonas aeruginosa biofilm formation and root colonization. Compared with the control group, the combined treatment of DL-alanine and Pseudomonas aeruginosa increased the selenium content in the shoots by 55.8 %, and decreased the cadmium content in the shoots and roots by 66.3 % and 67.9 %, respectively. The direct reason for this result is that the available selenium in the rhizosphere soil increased by 32 % and the available cadmium decreased by 10 %. Further investigation shows that DL-alanine promotes the transformation of Se(0) to Se(-II) and the formation of CdSe nanoparticles by Pseudomonas aeruginosa, which enhances the availability of selenium and reduces that of cadmium. Furthermore, gene expression analysis revealed that the expression levels of selenium-related genes were upregulated, while those of cadmium transport genes were downregulated. This study proposes a new method for improving selenium utilization and reducing cadmium absorption in soils where selenium and cadmium coexist, providing a theoretical basis for safer agricultural practices.
Collapse
Affiliation(s)
- Huan Zhang
- College of Resources and Environment, Huazhong Agricultural University/Research Center of Trace Elements, Wuhan 430070, China; State Key Laboratory of Environmental Geochemistry, Guiyang 550081, China; State Key Laboratory of North China Crop Improvement and Regulation, Baoding 071001, China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Guiyang 550081, China
| | - Wenju Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Baoding 071001, China.
| | - Zheng Lei
- College of Resources and Environment, Huazhong Agricultural University/Research Center of Trace Elements, Wuhan 430070, China
| | - Yin Wang
- College of Resources and Environment, Huazhong Agricultural University/Research Center of Trace Elements, Wuhan 430070, China
| | - Jiandong Sheng
- Xinjiang Key Laboratory of Soil and Plant Ecological Processes/College of Resource and Environment, Xinjiang Agricultural University, Urumqi 830052, China
| | - Zhen Wang
- School of Environmental Science and Engineering/Hubei Key Laboratory of Mine Environmental Pollution Control & Remediation, Hubei Polytechnic University, Huangshi 435003, China
| | - Chengxiao Hu
- College of Resources and Environment, Huazhong Agricultural University/Research Center of Trace Elements, Wuhan 430070, China
| | - Xiaohu Zhao
- College of Resources and Environment, Huazhong Agricultural University/Research Center of Trace Elements, Wuhan 430070, China; Xinjiang Key Laboratory of Soil and Plant Ecological Processes/College of Resource and Environment, Xinjiang Agricultural University, Urumqi 830052, China.
| |
Collapse
|
2
|
Yuan Y, Gao J, Wang Z, Xu H, Zeng L, Fu X, Zhao Y. Exposure to zinc and dialkyldimethyl ammonium compound alters bacterial community structure and resistance gene levels in partial sulfur autotrophic denitrification coupled with the Anammox process. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135070. [PMID: 38944986 DOI: 10.1016/j.jhazmat.2024.135070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Dialkyldimethyl ammonium compound (DADMAC) is widely used in daily life as a typical disinfectant and often co-exists with the heavy metal zinc in sewage environments. This study investigated the effects of co-exposure to zinc (1 mg/L) and DADMAC (0.2-5 mg/L) on the performance, bacterial community, and resistance genes (RGs) in a partial sulfur autotrophic denitrification coupled with anaerobic ammonium oxidation (PSAD-Anammox) system in a sequencing batch moving bed biofilm reactor for 150 days. Co-exposure to zinc and low concentration (0.2 mg/L) DADMAC did not affect the nitrogen removal ability of the PASD-Anammox system, but increased the abundance and transmission risk of free RGs in water. Co-exposure to zinc and medium-to-high (2-5 mg/L) DADMAC led to fluctuations in and inhibition of nitrogen removal, which might be related to the enrichment of heterotrophic denitrifying bacteria dominated by Denitratisoma. Co-exposure to zinc and high concentration DADMAC (5 mg/L) stimulated the secretion of extracellular polymeric substances and increased the proliferation risk of intracellular RGs in sludge. This study provided insights into the application of PSAD-Anammox system and the ecological risks of wastewater containing zinc and DADMAC.
Collapse
Affiliation(s)
- Yukun Yuan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Jingfeng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Zhiqi Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China; Institute of NBC Defense, P.O. Box 1048, Beijing 102205, China
| | - Hongxin Xu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Liqin Zeng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Xiaoyu Fu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yifan Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Department of Environmental Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
3
|
Ouyang P, Wang Y, Peng X, Shi X, Chen X, Li Z, Ma Y. Harnessing plant-beneficial bacterial encapsulation: A sustainable strategy for facilitating cadmium bioaccumulation in Medicago sativa. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135232. [PMID: 39024768 DOI: 10.1016/j.jhazmat.2024.135232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/25/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Plant-beneficial bacteria (PBB) have emerged as a promising approach for assisting phytoremediation of heavy metal (HM)-contaminated soils. However, their colonization efficiency is often challenged by complex soil environments. In this study, we screened one rhizobacterium (Klebsiella variicola Y38) and one endophytic bacterium (Serratia surfactantfaciens Y15) isolated from HM-contaminated soils and plants for their high resistance to Cd and strong growth-promoting abilities. These strains were encapsulated individually or in combination with alginate and applied with Medicago sativa in Cd-contaminated soil pot experiments. The effectiveness of different bacterial formulations in promoting plant growth and enhancing Cd bioconcentration in M. sativa was evaluated. Results showed that PBB application enhanced plant growth and antioxidant capacity while reducing oxidative damage. Encapsulated formulations outperformed unencapsulated ones, with combined formulations yielding superior results to individual applications. Quantitative PCR indicated enhanced PBB colonization in Cd-contaminated soils with alginate encapsulation, potentially explaining the higher efficacy of alginate-encapsulated PBB. Additionally, the bacterial agents modified Cd speciation in soils, resulting in increased Cd bioaccumulation in M. sativa by 217-337 %. The alginate-encapsulated mixed bacterial agent demonstrated optimal effectiveness, increasing the Cd transfer coefficient by 3.2-fold. Structural equation modeling and correlation analysis elucidated that K. variicola Y38 promoted Cd bioaccumulation in M. sativa roots by reducing oxidative damage and enhancing root growth, while S. surfactantfaciens Y15 facilitated Cd translocation to shoots, promoting shoot growth. The combined application of these bacteria leveraged the benefits of both strains. These findings contribute to diversifying strategies for effectively and sustainably remediating Cd-contaminated soils, while laying a foundation for future investigations into bacteria-assisted phytoremediation.
Collapse
Affiliation(s)
- Peng Ouyang
- Chongqing Key Laboratory of Interface Process and Soil Health, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Yue Wang
- Chongqing Key Laboratory of Interface Process and Soil Health, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Xinyue Peng
- Hanhong College, Southwest University, Chongqing 400716, China
| | - Xiaojun Shi
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Xinping Chen
- College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Zhenlun Li
- Chongqing Key Laboratory of Interface Process and Soil Health, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Ying Ma
- Chongqing Key Laboratory of Interface Process and Soil Health, College of Resources and Environment, Southwest University, Chongqing 400716, China.
| |
Collapse
|
4
|
Zhang Y, Zhou Q, Gao C, Lu Y, Sheng Y, Xiao M, Yun Y, Selvaraj JN, Zhang X, Li Y, Yu X. Endophytic bacteria for Cd remediation in rice: Unraveling the Cd tolerance mechanisms of Cupriavidus metallidurans CML2. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133846. [PMID: 38412644 DOI: 10.1016/j.jhazmat.2024.133846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/30/2024] [Accepted: 02/18/2024] [Indexed: 02/29/2024]
Abstract
The utility of endophytic bacteria in Cadmium (Cd) remediation has gained significant attention due to their ability to alleviate metal-induced stress and enhance plant growth. Here, we investigate C. metallidurans CML2, an endophytic bacterial strain prevalent in rice, showing resilience against 2400 mg/L of Cd(II). We conducted an in-depth integrated morphological and transcriptomic analysis illustrating the multifarious mechanisms CML2 employs to combat Cd, including the formation of biofilm and CdO nanoparticles, upregulation of genes involved in periplasmic immobilization, and the utilization of RND efflux pumps to extract excess Cd ions. Beyond Cd, CML2 exhibited robust tolerance to an array of heavy metals, including Mn2+, Se4+, Ni2+, Cu2+, and Hg2+, demonstrating effective Cd(II) removal capacity. Furthermore, CML2 has exhibited plant growth-promoting properties through the production of indole-3-acetic acid (IAA) at 0.93 mg/L, soluble phosphorus compounds at 1.11 mg/L, and siderophores at 22.67%. Supportively, pot experiments indicated an increase in root lengths and a decrease in Cd bioaccumulation in rice seedlings inoculated with CML2, consequently reducing Cd translocation rates from 43% to 31%. These findings not only contribute to the understanding of Cd resistance mechanisms in C. metallidurans, but also underscore CML2's promising application in Cd remediation within rice farming ecosystems.
Collapse
Affiliation(s)
- Yuan Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Qi Zhou
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Chang Gao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Yue Lu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Yang Sheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Ming Xiao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Yueli Yun
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Jonathan Nimal Selvaraj
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Xianhua Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Yadong Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China
| | - Xuejing Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan 430062, PR China.
| |
Collapse
|