1
|
Dai S, Feng W, Song F, Li T, Tao Y, Yang F, Miao Q, Duan P, Liao H, Shi H, Gonçalves JM, Duarte IM. Review of biological algal fertilizer technology: Alleviating salinization, sequestering carbon, and improving crop productivity. BIORESOURCE TECHNOLOGY 2025; 429:132507. [PMID: 40209912 DOI: 10.1016/j.biortech.2025.132507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 04/04/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
Periphyton-based biofertilizer have a high potential for soil remediation, particularly for controlling soil salinization. This global environmental problem leads to low soil utilization and insufficient crop yields. Efficient and sustainable methods of managing saline soils are needed to reduce salinization and improve soil fertility and crop quality. Traditional methods such as physical mulching and chemical amendments, while improving soil conditions, exhibit limited effectiveness and may damage soil structure. This study aims to evaluate the feasibility of algae-based fertilizers in remediating saline-alkali soils and improving crop performance. The review delves into the and application prospects of algae-based fertilizers, highlighting their potential from both sustainable development and economic perspectives. It further advocates integrating other emerging technologies with the production and application of algae-based fertilizers to address the increasingly severe challenges posed by degraded soil resources and environmental instability. The review found that algal fertilizers are more environmentally friendly than traditional chemical fertilizers but are not inferior in function. This approach offers more efficient and sustainable solutions for managing saline-alkaline soils and effectively achieves sustainable agricultural production. Furthermore, it is necessary to conduct experimental research and monitoring evaluations of algal fertilizers to formulate scientific and rational fertilization plans to meet the increasingly serious challenges facing soil resources and unstable environments. The findings of this study will provide theoretical and technical support for using algae biofertilizers for soil remediation, improving crop quality and sequestering carbon.
Collapse
Affiliation(s)
- Siyao Dai
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Weiying Feng
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China.
| | - Fanhao Song
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Tingting Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yingru Tao
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China
| | - Fang Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Qingfeng Miao
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Pengcheng Duan
- Inner Mongolia Algal Life Science Co., LTD, Ulanqab 011800, China
| | - Haiqing Liao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Haibin Shi
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - José Manuel Gonçalves
- Polytechnic Institute of Coimbra, Coimbra Agriculture School, CERNAS - Research Centre for Natural Resources, Environment and Society, Bencanta 3045-601 Coimbra, Portugal
| | - Isabel Maria Duarte
- Polytechnic Institute of Coimbra, Coimbra Agriculture School, CERNAS - Research Centre for Natural Resources, Environment and Society, Bencanta 3045-601 Coimbra, Portugal
| |
Collapse
|
2
|
Gullì M, Cangioli L, Frusciante S, Graziano S, Caldara M, Fiore A, Klonowski AM, Maestri E, Brunori A, Mengoni A, Pihlanto A, Diretto G, Marmiroli N, Bevivino A. The relevance of biochar and co-applied SynComs on maize quality and sustainability: Evidence from field experiments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 968:178872. [PMID: 39970561 DOI: 10.1016/j.scitotenv.2025.178872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/21/2025]
Abstract
Adoption of sustainable maize cropping practices is urgently needed. Synthetic microbial communities (SynComs) made of plant growth-promoting microorganisms (PGPMs), coupled with biochar from residual biomass, offer an environmentally compatible alternative to inorganic fertilizers and may improve soil fertility. This article extends in a two-year field trial with preliminary results obtained in previous pot experiments, monitoring plant physiology, soil biology and chemistry, and kernel metabolomics. Here, we report the synergistic effect of the co-application of biochar, SynComs, and arbuscular mycorrhizal fungi on the soil microbiome, maize growth, and kernel metabolomic profile. SynComs application did not affect the diversity and richness of soil microbial communities; therefore, it posed a low risk of long-term effects on soil microbial ecology. With SynComs and biochar co-application to the soil, the physiology of maize plants was characterized by higher chlorophyll content, ear weight, and kernel weight. The combination of SynComs and biochar also affected the kernel metabolome, resulting in enriched health-beneficial and anti-stress metabolites. Since the preliminary evidence on the environmental and economic impact of these new associations was more favorable than that of conventional fertilizers, it seems reasonable that their large-scale implementation can eventually favor the transition to more sustainable agriculture.
Collapse
Affiliation(s)
- Mariolina Gullì
- Interdepartmental Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Lisa Cangioli
- Department of Biology, University of Florence, 50019 Sesto Fiorentino, Italy
| | - Sarah Frusciante
- Department for Sustainability, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy
| | - Sara Graziano
- Interdepartmental Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy
| | - Marina Caldara
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Alessia Fiore
- Department for Sustainability, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy
| | - Alexandra M Klonowski
- Exploration & Utilisation of Genetic Resources, Matís ohf., Icelandic Food and Biotech R&D, Vínlandsleið 12, 113 Reykjavík, Iceland
| | - Elena Maestri
- Interdepartmental Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Andrea Brunori
- Department for Sustainability, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy
| | - Alessio Mengoni
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy
| | - Anne Pihlanto
- Natural Resources Institute Finland (Luke), Myllytie 1, 31600 Jokioinen, Helsinki, Finland
| | - Gianfranco Diretto
- Department for Sustainability, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy
| | - Nelson Marmiroli
- Interdepartmental Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze, 43124 Parma, Italy; Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A, 43124 Parma, Italy.
| | - Annamaria Bevivino
- Department for Sustainability, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, ENEA Casaccia Research Center, Via Anguillarese 301, 00123 Rome, Italy.
| |
Collapse
|
3
|
Yuan Z, Shen Q, Yu K, Liu Y, Zheng H, Yao Y, Jia B. Half-Century Scientometric Analysis: Unveiling the Excellence of Fungi as Biocontrol Agents and Biofertilisers. J Fungi (Basel) 2025; 11:117. [PMID: 39997411 PMCID: PMC11856747 DOI: 10.3390/jof11020117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/27/2025] [Accepted: 01/31/2025] [Indexed: 02/26/2025] Open
Abstract
Reducing the use of chemical inputs is becoming a major challenge in developing sustainable agriculture. Fungi, known as biocontrol agents (BCAs) and biofertilisers, are crucial in scientific research and are celebrated for their efficacy, eco-friendliness, and multifaceted roles. In this study, a bibliometric analysis was conducted on 5349 articles related to fungi as BCAs and biofertilisers over the past half-century using the Web of Science Core Collection (WoSCC) database. The publications on fungi, such as BCAs and biofertilisers, have increased significantly over the last 20 years, with a maximum growth rate of 33.7%. The USA and China lead in this field. Keyword clustering analysis revealed that entomopathogenic fungi, including Hemiptera, Coleoptera, and Lepidoptera, can be used to manage plant pests. It also showed that fungi can be used as biofertilisers to promote plant growth. The analysis of research trends shows that Beauveria bassiana in biological control is highly significant. This study also showed that entomopathogenic fungi control plant pests by infiltrating the insect cuticles. Trichoderma spp. exert biocontrol effects by producing antibiotics. Arbuscular mycorrhizal fungi can trigger plant defence mechanisms by modulating secondary metabolite synthesis. This study contributes to the current knowledge of fungi as BCAs and biofertilisers and can guide future research.
Collapse
Affiliation(s)
- Ziqi Yuan
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou 311300, China; (Z.Y.); (K.Y.)
- Xianghu Laboratory, Hangzhou 311300, China;
| | - Qi Shen
- Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Kefei Yu
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou 311300, China; (Z.Y.); (K.Y.)
| | - Yan Liu
- Xianghu Laboratory, Hangzhou 311300, China;
| | - Huabao Zheng
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou 311300, China; (Z.Y.); (K.Y.)
| | - Yanlai Yao
- Xianghu Laboratory, Hangzhou 311300, China;
- Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Baolei Jia
- Xianghu Laboratory, Hangzhou 311300, China;
| |
Collapse
|
4
|
Argentel-Martínez L, Peñuelas-Rubio O, Herrera-Sepúlveda A, González-Aguilera J, Sudheer S, Salim LM, Lal S, Pradeep CK, Ortiz A, Sansinenea E, Hathurusinghe SHK, Shin JH, Babalola OO, Azizoglu U. Biotechnological advances in plant growth-promoting rhizobacteria for sustainable agriculture. World J Microbiol Biotechnol 2024; 41:21. [PMID: 39738995 DOI: 10.1007/s11274-024-04231-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 12/13/2024] [Indexed: 01/02/2025]
Abstract
The rhizosphere, the soil zone surrounding plant roots, serves as a reservoir for numerous beneficial microorganisms that enhance plant productivity and crop yield, with substantial potential for application as biofertilizers. These microbes play critical roles in ecological processes such as nutrient recycling, organic matter decomposition, and mineralization. Plant growth-promoting rhizobacteria (PGPR) represent a promising tool for sustainable agriculture, enabling green management of crop health and growth, being eco-friendly alternatives to replace chemical fertilizers and pesticides. In this sense, biotechnological advancements respecting genomics and gene editing have been crucial to develop microbiome engineering which is pivotal in developing microbial consortia to improve crop production. Genome mining, which involves comprehensive analysis of the entire genome sequence data of PGPR, is crucial for identifying genes encoding valuable bacterial enzymes and metabolites. The CRISPR-Cas system, a cutting-edge genome-editing technology, has shown significant promise in beneficial microbial species. Advances in genetic engineering, particularly CRISPR-Cas, have markedly enhanced grain output, plant biomass, resistance to pests, and the sensory and nutritional quality of crops. There has been a great advance about the use of PGPR in important crops; however, there is a need to go further studying synthetic microbial communities, microbiome engineering, and gene editing approaches in field trials. This review focuses on future research directions involving several factors and topics around the use of PGPR putting special emphasis on biotechnological advances.
Collapse
Affiliation(s)
- Leandris Argentel-Martínez
- Tecnológico Nacional de México/Instituto Tecnológico del Valle del Yaqui, CP: 85260, Bácum, Sonora, Mexico.
| | - Ofelda Peñuelas-Rubio
- Tecnológico Nacional de México/Instituto Tecnológico del Valle del Yaqui, CP: 85260, Bácum, Sonora, Mexico
| | - Angélica Herrera-Sepúlveda
- Tecnológico Nacional de México/Instituto Tecnológico del Valle del Yaqui, CP: 85260, Bácum, Sonora, Mexico
| | - Jorge González-Aguilera
- Department of Agronomy, Universidad Estadual de Mato Grosso Do Sul (UEMS), Cassilândia, MS, 79540-000, Brazil
| | - Surya Sudheer
- Institute of Ecology and Earth Sciences, Department of Botany, University of Tartu, 51005, Tartu, Estonia
| | - Linu M Salim
- Faculty of Fisheries Engineering, Kerala University of Fisheries and Ocean Studies, Cochin, India
| | - Sunaina Lal
- Department of Biochemistry, Sikkim Manipal Institute of Medical Sciences, Gangtok, Sikkim, India
| | - Chittethu Kunjan Pradeep
- Microbiology Division, Jawaharlal Nehru Tropical Botanic Garden & Research Institute, Palode, Thiruvananthapuram, Kerala, 695562, India
| | - Aurelio Ortiz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, C.P. 72570, Puebla, Puebla, México
| | - Estibaliz Sansinenea
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, C.P. 72570, Puebla, Puebla, México
| | | | - Jae-Ho Shin
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Ugur Azizoglu
- Department of Crop and Animal Production, Safiye Cikrikcioglu Vocational College, Kayseri University, Kayseri, Türkiye.
- Genome and Stem Cell Research Center, Erciyes University, Kayseri, Türkiye.
| |
Collapse
|
5
|
Mafune KK, Winkler MK. The expansion of fungal organisms in environmental biotechnology. Curr Opin Biotechnol 2024; 90:103217. [PMID: 39454464 DOI: 10.1016/j.copbio.2024.103217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024]
Abstract
Fungal organisms hold vital roles in ecosystem processes. Despite their intricate entanglement with most life on earth and their powerful metabolic capacities, they remain under-represented in environmental biotechnology. The interest in applying fungal biotechnologies to different environments is growing, as light is shed on their versatile potential. A diversity of fungi can be harnessed to promote crop yield, remediate pollutants from terrestrial and aquatic environments, and mitigate climate change impacts. Current technological advancements, such as the increase in high-accuracy 'omics pipelines, provide improvement. However, it is emphasized that there are many knowledge gaps regarding applying fungal biotechnology at scale where other organisms are inherently present. Hence, there is a dire need to increase funding that enables in-depth studies on fungal processes, such as degradation capacities, metabolite production, and cross-kingdom interactions, that promote climate-smart biotechnologies.
Collapse
Affiliation(s)
- Korena K Mafune
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98105, USA.
| | - Mari Kh Winkler
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
6
|
Santos F, Melkani S, Oliveira-Paiva C, Bini D, Pavuluri K, Gatiboni L, Mahmud A, Torres M, McLamore E, Bhadha JH. Biofertilizer use in the United States: definition, regulation, and prospects. Appl Microbiol Biotechnol 2024; 108:511. [PMID: 39531072 PMCID: PMC11557716 DOI: 10.1007/s00253-024-13347-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/23/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
The increasing demand for sustainable food production has driven a surge in the use and commercialization of biological inputs, including biofertilizers. In this context, biofertilizers offer potential benefits for nutrient use efficiency, crop yield and sustainability. However, inconsistent definition of the term "biofertilizer" and regulations, particularly in the USA, hinder market growth and consumer confidence. While the European Union, and countries like Brazil, India, and China have made progress in this area, the USA market, projected to exceed $1 billion by 2029, lacks clear guidelines for biofertilizer production and sale. The USA market is dominated by Rhizobium genus, Mycorrhizae fungi, and Azospirillum species and based products targeting various crops. Although there is a growing and promising market for the use of biofertilizers, there are still many challenges to overcome, and to fully realize the potential of biofertilizers, future research should focus on modes of action, specific claims, and robust regulations that must be established. KEY POINTS: • The term "biofertilizer" lacks a universally accepted definition • It is necessary establishing a national regulation for biofertilizers in the USA • The biofertilizer market is growing fast and the biggest one is in America.
Collapse
Affiliation(s)
- Flavia Santos
- Soil, Water & Ecosystem Sciences Department, University of Florida, Belle Glade, FL, USA
- Embrapa Maize and Sorghum, Sete Lagoas, Minas Gerais, Brazil
| | - Suraj Melkani
- Soil, Water & Ecosystem Sciences Department, University of Florida, Belle Glade, FL, USA
| | | | - Daniel Bini
- Embrapa Maize and Sorghum, Sete Lagoas, Minas Gerais, Brazil
| | - Kiran Pavuluri
- International Fertilizer Development Center, Muscle Shoals, AL, USA
| | - Luke Gatiboni
- North Carolina State Extension, North Carolina State University, Raleigh, NC, USA
| | - Anik Mahmud
- Soil, Water & Ecosystem Sciences Department, University of Florida, Belle Glade, FL, USA
| | - Maria Torres
- Plant and Environmental Sciences, Clemson University, Clemson, SC, USA
| | - Eric McLamore
- Agricultural Sciences, Clemson University, Clemson, SC, USA
- Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC, USA
| | - Jehangir H Bhadha
- Soil, Water & Ecosystem Sciences Department, University of Florida, Belle Glade, FL, USA.
| |
Collapse
|
7
|
Hossain A, Shahidi F. Upcycling Shellfish Waste: Distribution of Amino Acids, Minerals, and Carotenoids in Body Parts of North Atlantic Crab and Shrimp. Foods 2024; 13:2700. [PMID: 39272466 PMCID: PMC11395550 DOI: 10.3390/foods13172700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
The snow/pink crab (Chionoecetes opilio) and Northern shrimp (Pandalus borealis) are widely distributed in the North Atlantic Ocean. During processing/consumption, about 80% of the harvest is discarded as processing waste, which is a rich source of protein, chitin, minerals, and carotenoids. This study, for the first time, investigated the proximate composition and individual amino acids, minerals, and carotenoids from different body parts (carapace, shoulder, claw, tip, and leg) of snow crabs and shrimp shells. Shrimp proteins were found to be abundant and well-balanced in their amino acid composition. Compared to shrimp shells, a lower content of amino acids was found in the snow crab, depending on the part of the shell used. Moreover, crab shells, mainly crab claws, contained a higher (p < 0.05) level of chitin compared to shrimp shells. Seven micro-elements (Mn, Fe, Cu, Zn, As, Ba, and Ce) and six macro-elements (Ca, Na, K, Mg, P, and Sr) were identified using inductively coupled plasma-mass spectrometry (ICP-MS). Among them, calcium and iron were higher in crab carapaces (p < 0.05), followed by shrimp shells and other crab shell segments. Additionally, shrimp and crab carapaces contained a significant level of carotenoids, and these were mainly composed of astaxanthin and its mono- and diesters, along with zeaxanthin, astacene, canthaxanthin, and lutein. Thus, this investigation provides detailed information to allow upcycling of shellfish waste and addresses the knowledge gap concerning the availability of various nutrients in different crab sections and shrimp shells.
Collapse
Affiliation(s)
- Abul Hossain
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| |
Collapse
|
8
|
Li C, Hua C, Chen L, Miao Z, Xu R, Peng S, Ge Z, Mao L. Preparation of bacterial fertilizer from biogas residue after anaerobic co-digestion of kitchen waste and residual sludge. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:44005-44022. [PMID: 38918298 DOI: 10.1007/s11356-024-33924-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024]
Abstract
Azotobacter chroococcum and Bacillus subtilis were selected as fermentation strains, and biogas residue after anaerobic digestion of kitchen waste and residual sludge was used as fermentation substrate. A single factor optimization test was used to optimize the solid-state fermentation parameters of biogas residue with the number of viable bacteria and the number of spores as indexes. The results showed that the optimum inoculation conditions involved the following: 55% initial moisture content, 15% initial inoculation amount, 30 ℃, and 1:1 initial inoculation ratio for 13 days. Pot experiment showed that the prepared three kinds of bacterial fertilizers could not only effectively promote the growth of white clover, improve the composition of soil nutrients, but also change the structure of soil bacterial community, which is of great significance to the health of soil ecosystem in white clover.
Collapse
Affiliation(s)
- Chuan Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Laboratory of Biodiversity and Conservation, College of Ecology and Environment, Nanjing Forestry University, Nanjing, 210037, China
- National Positioning Observation Station of Hung-Tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, 223100, China
| | - Chang Hua
- Co-Innovation Center for Sustainable Forestry in Southern China, Laboratory of Biodiversity and Conservation, College of Ecology and Environment, Nanjing Forestry University, Nanjing, 210037, China
- National Positioning Observation Station of Hung-Tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, 223100, China
| | - Lingling Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, Laboratory of Biodiversity and Conservation, College of Ecology and Environment, Nanjing Forestry University, Nanjing, 210037, China
- National Positioning Observation Station of Hung-Tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, 223100, China
| | - Zimei Miao
- College of Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Longpan Road 159, Nanjing, 210037, China.
| | - Rui Xu
- Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| | - Sili Peng
- Co-Innovation Center for Sustainable Forestry in Southern China, Laboratory of Biodiversity and Conservation, College of Ecology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhiwei Ge
- Co-Innovation Center for Sustainable Forestry in Southern China, Laboratory of Biodiversity and Conservation, College of Ecology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Lingfeng Mao
- Co-Innovation Center for Sustainable Forestry in Southern China, Laboratory of Biodiversity and Conservation, College of Ecology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
9
|
Saberi Riseh R, Vatankhah M, Hassanisaadi M, Varma RS. A review of chitosan nanoparticles: Nature's gift for transforming agriculture through smart and effective delivery mechanisms. Int J Biol Macromol 2024; 260:129522. [PMID: 38246470 DOI: 10.1016/j.ijbiomac.2024.129522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/29/2023] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
Chitosan nanoparticles (CNPs) have emerged as a promising tool in agricultural advancements due to their unique properties including, biocompatability, biodegradability, non-toxicity and remarkable versatility. These inherent properties along with their antimicrobial, antioxidant and eliciting activities enable CNPs to play an important role in increasing agricultural productivity, enhancing nutrient absorption and improving pest management strategies. Furthermore, the nano-formulation of chitosan have the ability to encapsulate various agricultural amendments, enabling the controlled release of pesticides, fertilizers, plant growth promoters and biocontrol agents, thus offering precise and targeted delivery mechanisms for enhanced efficiency. This review provides a comprehensive analysis of the latest research and developments in the use of CNPs for enhancing agricultural practices through smart and effective delivery mechanisms. It discusses the synthesis methods, physicochemical properties, and their role in enhancing seed germination and plant growth, crop protection against biotic and abiotic stresses, improving soil quality and reducing the environmental pollution and delivery of agricultural amendments. Furthermore, the potential environmental benefits and future directions for integrating CNPs into sustainable agricultural systems are explored. This review aims to shed light on the transformative potential of chitosan nanoparticles as nature's gift for revolutionizing agriculture and fostering eco-friendly farming practices.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan 7718897111, Iran; Pistachio Safety Research Center, Rafsanjan University of Medical Sciences, Rafsanjan 771751735, Iran.
| | - Masoumeh Vatankhah
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan 7718897111, Iran
| | - Mohadeseh Hassanisaadi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan 7718897111, Iran
| | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil
| |
Collapse
|