1
|
Hamdy N, El-Geundi M, Fuoad M, Alalm MG. Optimization and reusability of photocatalytic g-C 3N 4/W-TiO 2/PVDF membranes for degradation of sulfamethazine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:63977-63992. [PMID: 39522114 DOI: 10.1007/s11356-024-35445-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Pharmaceuticals and personal care products (PPCPs) are prevalent emerging pollutants in the aquatic environment. The photocatalysis process has proven high efficiency in degrading PPCPs; however, the fate and repercussions of photocatalyst residuals are a major concern. To avoid that, we developed a composite from graphitic carbon nitride/tungsten doped with titanium dioxide (g-C3N4/W-TiO2) and loaded it on polyvinylidene fluoride (PVDF) membranes by the phase-inversion method. X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and other different analyses implied the successful synthesis of g-C3N4/W-TiO2 composite and coating on PVDF membranes. A Box-Behnken design (BBD) was used to optimize the operational parameters, including pH, g-C3N4 ratio in the composite, and initial SMZ concentration by the response surface methodology (RSM). The highest SMZ degradation percentage was 98.60% after 240 min of irradiation. Liquid chromatography with tandem mass spectrometry (LC-MS/MS) along with suspect screening was used to identify the intermediate transformation products and propose the SMZ degradation pathway. The loss in membrane activity after five cycles of photocatalytic degradation was about 18%. According to the current study, the photocatalytic membrane g-C3N4/W-TiO2/PVDF is promising for removing sulfonamide antibiotics from wastewater.
Collapse
Affiliation(s)
- Nourhan Hamdy
- Department of Chemical Engineering, Faculty of Engineering, Minia University, Al Minya, Egypt
| | - Mohammad El-Geundi
- Department of Chemical Engineering, Faculty of Engineering, Minia University, Al Minya, Egypt
| | - Mohram Fuoad
- Public Works Engineering Department, Faculty of Engineering, Mansoura University, Mansoura, 35516, Egypt
| | - Mohamed Gar Alalm
- Public Works Engineering Department, Faculty of Engineering, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
2
|
Mahmoud ZH, Ajaj Y, Hussein AM, Al-Salman HNK, Mustafa MA, Kadhum EH, Abdullaev S, Khuder SA, Ghadir GK, Hameed SM, Muzammil K, Islam S, Kianfar E. CdIn 2Se 4@chitosan heterojunction nanocomposite with ultrahigh photocatalytic activity under sunlight driven photodegradation of organic pollutants. Int J Biol Macromol 2024; 267:131465. [PMID: 38604427 DOI: 10.1016/j.ijbiomac.2024.131465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/24/2024] [Accepted: 04/06/2024] [Indexed: 04/13/2024]
Abstract
This research focused on synthesizing a CdIn2Se4@Ch nanocomposite by doping CdIn2Se4 into chitosan using a photolysis assisted ultrasonic process. The aim was to enhance the photodegradation efficiency of ofloxacin and 2,4-dichlorophenoxyacetic acid under sunlight. The synthesized CdIn2Se4@Ch nanocomposite was investigated via different techniques, including XRD, XPS, FTIR, TEM, DSC, TGA, UV-Vis and PL. The study also investigated the influence of various reaction parameters, including the effects of inorganic and organic ions. The synthesized nanocomposite demonstrated exceptional efficiency, achieving 86 % and 95 % removal rates, with corresponding rate constants of 0.025 and 0.047 min-1. This performance surpasses that of CdIn2Se4 by approximately 1.35 and 2.25 times, respectively. The values of COD were decreased to 78 and 86 % for ofloxacin and 2,4-dichlorophenoxyacetic, while the TOC values decreased to 71 and 84 %, respectively, from their premier values. The improvement in performance is associated with the introduction of CdIn2Se4 into chitosan, resulting in the self-integration of Cd into the catalyst. This creates a localized accumulation point for electrons, enhancing the efficiency of charge separation and further reducing the surface charge of chitosan. Experimental evidence suggests that superoxide and hydroxyl radicals play a significant role in the photodegradation of pollutants. Additionally, the nanocomposite exhibits excellent stability and can be reused up to five times, indicating remarkable stability and reusability of the developed photocatalyst.
Collapse
Affiliation(s)
- Zaid H Mahmoud
- Department of Chemistry, College of Sciences, University of Diyala, Iraq.
| | | | - Ali M Hussein
- Department of Biomedical Sciences, College of Sciences, Cihan University-Erbil, Kurdistan Region, Iraq
| | - H N K Al-Salman
- Pharmaceutical Chemistry Department, College of Pharmacy, University of Basrah, Basrah, Iraq
| | | | | | - Sherzod Abdullaev
- Faculty of Chemical Engineering, New Uzbekistan University, Tashkent, Uzbekistan; Department of Science and Innovation, Tashkent State Pedagogical University Named After Nizami, Tashkent, Uzbekistan
| | | | | | - Safaa Mustafa Hameed
- Department of Optics, College of Health & Medical Technology, Sawa University, Almuthana, Iraq
| | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait Campus, King Khalid University, Abha, KSA, Saudi Arabia
| | - Saiful Islam
- Civil Engineering Department, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia
| | - Ehsan Kianfar
- Mechanical Engineering Department, Faculty of Engineering and Pure Sciences, Istanbul Medeniyet University, Istanbul, Turkey.
| |
Collapse
|