1
|
Ribou AC. Synthetic Sensors for Reactive Oxygen Species Detection and Quantification: A Critical Review of Current Methods. Antioxid Redox Signal 2016; 25:520-33. [PMID: 27225539 DOI: 10.1089/ars.2016.6741] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
SIGNIFICANCE Redox reactions play important roles in both physiological and pathological processes, highlighting the importance of quantifying and localizing intracellular redox-active components. Most research has focused on direct investigation of reactive oxygen species (ROS). Intensity-based fluorescent methods are very sensitive and easy to use, but they lack specificity and can produce artifacts. In this article, we focus on synthetic sensors, describing experimental pitfalls associated with their use. We also present alternative methods for the detection of free radicals. RECENT ADVANCES New approaches have been developed to overcome the main artifact of intensity-based methods: spurious changes in fluorescence intensity caused by oxidation. These new approaches are based on analytical measurements of the oxidized sensors or techniques that are not susceptible to oxidation, such as electron spin resonance and fluorescence lifetime-based methods. Regardless of the approach, the need for detection of ROS on the subcellular level, especially in the mitochondria, has motivated the development of new probes. CRITICAL ISSUES Flow cytometry systems and confocal microscopes are now available to the majority of biologists, and commercially available probes are, therefore, more widely used. The fact that these new applications are cited in thousands of publications makes these sensors even more attractive. FUTURE DIRECTIONS The field of ROS detection by synthetic sensors continues to expand, bringing needed additional research to the development of robust techniques that are applicable both in vitro and in vivo. Antioxid. Redox Signal. 25, 520-533.
Collapse
Affiliation(s)
- Anne-Cécile Ribou
- Institute of Modeling and Analysis in Geo-Environmental and Health (IMAGES_ESPACE-DEV), University of Perpignan Via Domitia , Perpignan, France
| |
Collapse
|
2
|
Rosselin M, Meyer G, Guillet P, Cheviet T, Walther G, Meister A, Hadjipavlou-Litina D, Durand G. Divalent Amino-Acid-Based Amphiphilic Antioxidants: Synthesis, Self-Assembling Properties, and Biological Evaluation. Bioconjug Chem 2016; 27:772-81. [DOI: 10.1021/acs.bioconjchem.6b00002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Marie Rosselin
- Institut des Biomolécules Max Mousseron (UMR 5247 CNRS-Université Montpellier-ENSCM) & Avignon University, Equipe Chimie Bioorganique et Systèmes Amphiphiles, 301 rue Baruch de Spinoza, F-84916 Cedex 9 Avignon, France
| | - Grégory Meyer
- Avignon University, Laboratoire de Pharm-Ecologie
Cardiovasculaire LAPEC EA4278, F-84000 Avignon, France
| | - Pierre Guillet
- Institut des Biomolécules Max Mousseron (UMR 5247 CNRS-Université Montpellier-ENSCM) & Avignon University, Equipe Chimie Bioorganique et Systèmes Amphiphiles, 301 rue Baruch de Spinoza, F-84916 Cedex 9 Avignon, France
| | - Thomas Cheviet
- Institut des Biomolécules Max Mousseron (UMR 5247 CNRS-Université Montpellier-ENSCM) & Avignon University, Equipe Chimie Bioorganique et Systèmes Amphiphiles, 301 rue Baruch de Spinoza, F-84916 Cedex 9 Avignon, France
| | - Guillaume Walther
- Avignon University, Laboratoire de Pharm-Ecologie
Cardiovasculaire LAPEC EA4278, F-84000 Avignon, France
| | - Annette Meister
- Martin Luther University Halle—Wittenberg, Institute of Chemistry and Institute of Biochemistry/Biotechnology, von-Danckelmann-Platz 4, D-06120 Halle/Saale, Germany
| | - Dimitra Hadjipavlou-Litina
- Department
of Pharmaceutical Chemistry, School of Pharmacy, Faculty of Health
Sciences, AUTh, Thessaloniki 54124, Greece
| | - Grégory Durand
- Institut des Biomolécules Max Mousseron (UMR 5247 CNRS-Université Montpellier-ENSCM) & Avignon University, Equipe Chimie Bioorganique et Systèmes Amphiphiles, 301 rue Baruch de Spinoza, F-84916 Cedex 9 Avignon, France
| |
Collapse
|
3
|
Martins LJ, Simoni DDA, Aparicio R, Coelho F. Crystal structure of 3-meth-oxy-carbonyl-2-(4-meth-oxy-phen-yl)-8-oxo-1-aza-spiro[4.5]deca-1,6,9-trien-1-ium-1-olate. Acta Crystallogr Sect E Struct Rep Online 2014; 70:o1200-o1201. [PMID: 25484828 PMCID: PMC4257292 DOI: 10.1107/s1600536814023277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 10/22/2014] [Indexed: 06/04/2023]
Abstract
The title compound, C18H17NO5, was prepared by a synthetic strategy based on the Heck reaction from Morita-Baylis-Hillman adducts. The five-membered ring adopts a slightly twisted conformation on the Ca-Cm (a = aromatic and m = methyl-ene) bond. The dihedral angle between the five-membered ring and the spiro aromatic ring is 89.35 (7)°; that between the five-membered ring and the 4-meth-oxy-benzene ring is 4.65 (7)°. Two short intra-molecular C-H⋯O contacts occur. In the crystal, mol-ecules are linked by C-H⋯O hydrogen bonds to generate a three-dimensional network.
Collapse
Affiliation(s)
- Lucimara Julio Martins
- Laboratory of Synthesis of Natural Products and Drugs, Institute of Chemistry, University of Campinas, PO Box 6154 – 13083-970, Campinas, SP, Brazil
| | - Deborah de Alencar Simoni
- Laboratory of Single Crystal X-Ray Diffraction, Institute of Chemistry, University of Campinas, PO Box 6154 – 13083-970, Campinas, SP, Brazil
| | - Ricardo Aparicio
- Laboratory of Structural Biology and Crystallography, Institute of Chemistry, University of Campinas, PO Box 6154 – 13083-970, Campinas, SP, Brazil
| | - Fernando Coelho
- Laboratory of Synthesis of Natural Products and Drugs, Institute of Chemistry, University of Campinas, PO Box 6154 – 13083-970, Campinas, SP, Brazil
| |
Collapse
|
4
|
Xu J, Li X, Wu J, Dai WM. Synthesis of 5-alkyl-5-aryl-1-pyrroline N-oxides from 1-aryl-substituted nitroalkanes and acrolein via Michael addition and nitro reductive cyclization. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.07.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Baylis–Hillman carbonates in organic synthesis: a convenient one-pot strategy for nitrone–spiro-oxindole frameworks. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.07.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Dikalov SI, Kirilyuk IA, Voinov M, Grigor’ev IA. EPR detection of cellular and mitochondrial superoxide using cyclic hydroxylamines. Free Radic Res 2011; 45:417-30. [PMID: 21128732 PMCID: PMC4210377 DOI: 10.3109/10715762.2010.540242] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Superoxide (O₂ⁱ⁻) has been implicated in the pathogenesis of many human diseases, but detection of the O(2)(•-) radicals in biological systems is limited due to inefficiency of O₂ⁱ⁻ spin trapping and lack of site-specific information. This work studied production of extracellular, intracellular and mitochondrial O₂ⁱ⁻ in neutrophils, cultured endothelial cells and isolated mitochondria using a new set of cationic, anionic and neutral hydroxylamine spin probes with various lipophilicity and cell permeability. Cyclic hydroxylamines rapidly react with O₂ⁱ⁻, producing stable nitroxides and allowing site-specific cO₂ⁱ⁻ detection in intracellular, extracellular and mitochondrial compartments. Negatively charged 1-hydroxy-4-phosphono-oxy-2,2,6,6-tetramethylpiperidine (PP-H) and positively charged 1-hydroxy-2,2,6,6-tetramethylpiperidin-4-yl-trimethylammonium (CAT1-H) detected only extramitochondrial O₂ⁱ⁻. Inhibition of EPR signal by SOD2 over-expression showed that mitochondria targeted mitoTEMPO-H detected intramitochondrial O₂ⁱ⁻ both in isolated mitochondria and intact cells. Both 1-hydroxy-3-carboxy-2,2,5,5-tetramethylpyrrolidine (CP-H) and 1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidine (CM-H) detected an increase in cytoplasm O₂ⁱ⁻ stimulated by PMA, but only CM-H and mitoTEMPO-H showed an increase in rotenone-induced mitochondrial O₂ⁱ⁻. These data show that a new set of hydroxylamine spin probes provide unique information about site-specific production of the O₂ⁱ⁻ radical in extracellular or intracellular compartments, cytoplasm or mitochondria.
Collapse
|
7
|
Durand G, Poeggeler B, Ortial S, Polidori A, Villamena FA, Böker J, Hardeland R, Pappolla MA, Pucci B. Amphiphilic Amide Nitrones: A New Class of Protective Agents Acting as Modifiers of Mitochondrial Metabolism. J Med Chem 2010; 53:4849-61. [DOI: 10.1021/jm100212x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Grégory Durand
- Laboratoire de Chimie BioOrganique et des Systèmes Moléculaires Vectoriels, Université d’Avignon et des Pays de Vaucluse, Faculté des Sciences, 33 Rue Louis Pasteur, 84000 Avignon, France
| | - Burkhard Poeggeler
- Department of Dermatology, University of Luebeck, Ratzeburger Allee 160, D-23538 Luebeck, Germany
- Abteilung fuer Stoffwechselphysiologie, Institut fuer Zoologie, Anthropologie und Entwicklungsbiologie der Georg August Universität Göttingen, Berliner Strasse 28, D-37073 Göttingen, Germany
| | - Stéphanie Ortial
- Laboratoire de Chimie BioOrganique et des Systèmes Moléculaires Vectoriels, Université d’Avignon et des Pays de Vaucluse, Faculté des Sciences, 33 Rue Louis Pasteur, 84000 Avignon, France
| | - Ange Polidori
- Laboratoire de Chimie BioOrganique et des Systèmes Moléculaires Vectoriels, Université d’Avignon et des Pays de Vaucluse, Faculté des Sciences, 33 Rue Louis Pasteur, 84000 Avignon, France
| | - Frederick A. Villamena
- Department of Pharmacology and Center for Biomedical EPR Spectroscopy and Imaging, The Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio 43210
| | - Jutta Böker
- Abteilung fuer Stoffwechselphysiologie, Institut fuer Zoologie, Anthropologie und Entwicklungsbiologie der Georg August Universität Göttingen, Berliner Strasse 28, D-37073 Göttingen, Germany
| | - Rüdiger Hardeland
- Abteilung fuer Stoffwechselphysiologie, Institut fuer Zoologie, Anthropologie und Entwicklungsbiologie der Georg August Universität Göttingen, Berliner Strasse 28, D-37073 Göttingen, Germany
| | - Miguel A. Pappolla
- Department of Neurology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Bernard Pucci
- Laboratoire de Chimie BioOrganique et des Systèmes Moléculaires Vectoriels, Université d’Avignon et des Pays de Vaucluse, Faculté des Sciences, 33 Rue Louis Pasteur, 84000 Avignon, France
| |
Collapse
|
8
|
Hardeland R. Neuroprotection by radical avoidance: search for suitable agents. Molecules 2009; 14:5054-102. [PMID: 20032877 PMCID: PMC6255388 DOI: 10.3390/molecules14125054] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Revised: 11/30/2009] [Accepted: 12/04/2009] [Indexed: 02/07/2023] Open
Abstract
Neurodegeneration is frequently associated with damage by free radicals. However, increases in reactive oxygen and nitrogen species, which may ultimately lead to neuronal cell death, do not necessarily reflect its primary cause, but can be a consequence of otherwise induced cellular dysfunction. Detrimental processes which promote free radical formation are initiated, e.g., by disturbances in calcium homeostasis, mitochondrial malfunction, and an age-related decline in the circadian oscillator system. Free radicals generated at high rates under pathophysiological conditions are insufficiently detoxified by scavengers. Interventions at the primary causes of dysfunction, which avoid secondary rises in radical formation, may be more efficient. The aim of such approaches should be to prevent calcium overload, to reduce mitochondrial electron dissipation, to support electron transport capacity, and to avoid circadian perturbations. L-theanine and several amphiphilic nitrones are capable of counteracting excitotoxicity and/or mitochondrial radical formation. Resveratrol seems to promote mitochondrial biogenesis. Mitochondrial effects of leptin include attenuation of electron leakage. Melatonin combines all the requirements mentioned, additionally regulates anti- and pro-oxidant enzymes and is, with few exceptions, very well tolerated. In this review, the perspectives, problems and limits of drugs are compared which may be suitable for reducing the formation of free radicals.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Berliner str. 28, D-37073 Göttingen, Germany.
| |
Collapse
|