1
|
Borch Jensen M, Marblestone A. In vivo Pooled Screening: A Scalable Tool to Study the Complexity of Aging and Age-Related Disease. FRONTIERS IN AGING 2021; 2:714926. [PMID: 35822038 PMCID: PMC9261400 DOI: 10.3389/fragi.2021.714926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/18/2021] [Indexed: 12/12/2022]
Abstract
Biological aging, and the diseases of aging, occur in a complex in vivo environment, driven by multiple interacting processes. A convergence of recently developed technologies has enabled in vivo pooled screening: direct administration of a library of different perturbations to a living animal, with a subsequent readout that distinguishes the identity of each perturbation and its effect on individual cells within the animal. Such screens hold promise for efficiently applying functional genomics to aging processes in the full richness of the in vivo setting. In this review, we describe the technologies behind in vivo pooled screening, including a range of options for delivery, perturbation and readout methods, and outline their potential application to aging and age-related disease. We then suggest how in vivo pooled screening, together with emerging innovations in each of its technological underpinnings, could be extended to shed light on key open questions in aging biology, including the mechanisms and limits of epigenetic reprogramming and identifying cellular mediators of systemic signals in aging.
Collapse
Affiliation(s)
| | - Adam Marblestone
- Astera Institute, San Francisco, CA, United States
- Federation of American Scientists, Washington D.C., CA, United States
| |
Collapse
|
2
|
Bonomo R, Cavaletti G, Skene DJ. Metabolomics markers in Neurology: current knowledge and future perspectives for therapeutic targeting. Expert Rev Neurother 2020; 20:725-738. [PMID: 32538242 DOI: 10.1080/14737175.2020.1782746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Metabolomics is an emerging approach providing new insights into the metabolic changes and underlying mechanisms involved in the pathogenesis of neurological disorders. AREAS COVERED Here, the authors present an overview of the current knowledge of metabolic profiling (metabolomics) to provide critical insight on the role of biochemical markers and metabolic alterations in neurological diseases. EXPERT OPINION Elucidation of characteristic metabolic alterations in neurological disorders is crucial for a better understanding of their pathogenesis, and for identifying potential biomarkers and drug targets. Nevertheless, discrepancies in diagnostic criteria, sample handling protocols, and analytical methods still affect the generalizability of current study results.
Collapse
Affiliation(s)
- Roberta Bonomo
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca , Monza, Italy.,Chronobiology, Faculty of Health and Medical Sciences, University of Surrey , Guildford, UK
| | - Guido Cavaletti
- Experimental Neurology Unit, School of Medicine and Surgery, University of Milano-Bicocca , Monza, Italy
| | - Debra J Skene
- Chronobiology, Faculty of Health and Medical Sciences, University of Surrey , Guildford, UK
| |
Collapse
|
3
|
Anti-aging Effects of Calorie Restriction (CR) and CR Mimetics based on the Senoinflammation Concept. Nutrients 2020; 12:nu12020422. [PMID: 32041168 PMCID: PMC7071238 DOI: 10.3390/nu12020422] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 12/12/2022] Open
Abstract
Chronic inflammation, a pervasive feature of the aging process, is defined by a continuous, multifarious, low-grade inflammatory response. It is a sustained and systemic phenomenon that aggravates aging and can lead to age-related chronic diseases. In recent years, our understanding of age-related chronic inflammation has advanced through a large number of investigations on aging and calorie restriction (CR). A broader view of age-related inflammation is the concept of senoinflammation, which has an outlook beyond the traditional view, as proposed in our previous work. In this review, we discuss the effects of CR on multiple phases of proinflammatory networks and inflammatory signaling pathways to elucidate the basic mechanism underlying aging. Based on studies on senoinflammation and CR, we recognized that senescence-associated secretory phenotype (SASP), which mainly comprises cytokines and chemokines, was significantly increased during aging, whereas it was suppressed during CR. Further, we recognized that cellular metabolic pathways were also dysregulated in aging; however, CR mimetics reversed these effects. These results further support and enhance our understanding of the novel concept of senoinflammation, which is related to the metabolic changes that occur in the aging process. Furthermore, a thorough elucidation of the effect of CR on senoinflammation will reveal key insights and allow possible interventions in aging mechanisms, thus contributing to the development of new therapies focused on improving health and longevity.
Collapse
|
4
|
Baranowska-Bik A, Bik W. Vascular Dysfunction and Insulin Resistance in Aging. Curr Vasc Pharmacol 2019; 17:465-475. [PMID: 30488797 DOI: 10.2174/1570161117666181129113611] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/10/2018] [Accepted: 11/13/2018] [Indexed: 12/17/2022]
Abstract
:
Insulin was discovered in 1922 by Banting and Best. Since that time, extensive research on
the mechanisms of insulin activity and action has continued. Currently, it is known that the role of insulin
is much greater than simply regulating carbohydrate metabolism. Insulin in physiological concentration
is also necessary to maintain normal vascular function.
:
Insulin resistance is defined as a pathological condition characterized by reduced sensitivity of skeletal
muscles, liver, and adipose tissue, to insulin and its downstream metabolic effects under normal serum
glucose concentrations. There are also selective forms of insulin resistance with unique features, including
vascular insulin resistance. Insulin resistance, both classical and vascular, contributes to vascular
impairment resulting in increased risk of cardiovascular disease. Furthermore, in the elderly population,
additional factors including redistribution of fat concentrations, low-grade inflammation, and decreased
self-repair capacity [or cell senescence] amplify the vascular abnormalities related to insulin resistance.
Collapse
Affiliation(s)
| | - Wojciech Bik
- Department of Neuroendocrinology, Centre of Postgraduate Medical Education, Warsaw, Poland
| |
Collapse
|
5
|
Chaves CF, Mazzotti DR, Cendoroglo MS, Ramos LR, Tufik S, Silva VCD, D'Almeida V. Genes related to maintenance of autophagy and successful aging. ARQUIVOS DE NEURO-PSIQUIATRIA 2019; 76:831-839. [PMID: 30698207 DOI: 10.1590/0004-282x20180142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/25/2018] [Indexed: 01/11/2023]
Abstract
Considering aging as a phenomenon in which there is a decline in essential processes for cell survival, we investigated the autophagic and proteasome pathways in three different groups: young, older and oldest old male adults. The expression profile of autophagic pathway-related genes was carried out in peripheral blood, and the proteasome quantification was performed in plasma. No significant changes were found in plasma proteasome concentrations or in correlations between proteasome concentrations and ages. However, some autophagy- and/or apoptosis-related genes were differentially expressed. In addition, the network and enrichment analysis showed an interaction between four of the five differentially expressed genes and an association of these genes with the transcriptional process. Considering that the oldest old individuals maintained both the expression of genes linked to the autophagic machinery, and the proteasome levels, when compared with the older group, we concluded that these factors could be considered crucial for successful aging.
Collapse
Affiliation(s)
| | - Diego Robles Mazzotti
- Universidade Federal de São Paulo, Departamento de Psicobiologia, São Paulo SP, Brasil
| | | | - Luiz Roberto Ramos
- Universidade Federal de São Paulo, Departamento de Medicina Preventiva, São Paulo SP, Brasil
| | - Sergio Tufik
- Universidade Federal de São Paulo, Departamento de Psicobiologia, São Paulo SP, Brasil
| | | | - Vânia D'Almeida
- Universidade Federal de São Paulo, Departamento de Psicobiologia, São Paulo SP, Brasil
| |
Collapse
|
6
|
Bang E, Lee B, Noh SG, Kim DH, Jung HJ, Ha S, Yu BP, Chung HY. Modulation of senoinflammation by calorie restriction based on biochemical and Omics big data analysis. BMB Rep 2019. [PMID: 30545444 PMCID: PMC6386225 DOI: 10.5483/bmbrep.2019.52.1.301] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Aging is a complex and progressive process characterized by physiological and functional decline with time that increases susceptibility to diseases. Aged-related functional change is accompanied by a low-grade, unresolved chronic inflammation as a major underlying mechanism. In order to explain aging in the context of chronic inflammation, a new integrative concept on age-related chronic inflammation is necessary that encompasses much broader and wider characteristics of cells, tissues, organs, systems, and interactions between immune and non-immune cells, metabolic and non-metabolic organs. We have previously proposed a novel concept of senescent (seno)-inflammation and provided its frameworks. This review summarizes senoinflammation concept and additionally elaborates modulation of senoinflammation by calorie restriction (CR). Based on aging and CR studies and systems-biological analysis of Omics big data, we observed that senescence associated secretory phenotype (SASP) primarily composed of cytokines and chemokines was notably upregulated during aging whereas CR suppressed them. This result further strengthens the novel concept of senoinflammation in aging process. Collectively, such evidence of senoinflammation and modulatory role of CR provide insights into aging mechanism and potential interventions, thereby promoting healthy longevity. [BMB Reports 2019; 52(1): 56-63].
Collapse
Affiliation(s)
- EunJin Bang
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea
| | - Bonggi Lee
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu 41062, Korea
| | - Sang-Gyun Noh
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea
| | - Dae Hyun Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea
| | - Hee Jin Jung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea
| | - Sugyeong Ha
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea
| | - Byung Pal Yu
- Department of Physiology, The University of Texas Health Science Center at San Antonio, TX 78229, USA
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241, Korea
| |
Collapse
|
7
|
Bang E, Lee B, Noh SG, Kim DH, Jung HJ, Ha S, Yu BP, Chung HY. Modulation of senoinflammation by calorie restriction based on biochemical and Omics big data analysis. BMB Rep 2019; 52:56-63. [PMID: 30545444 PMCID: PMC6386225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Indexed: 10/07/2023] Open
Abstract
Aging is a complex and progressive process characterized by physiological and functional decline with time that increases susceptibility to diseases. Aged-related functional change is accompanied by a low-grade, unresolved chronic inflammation as a major underlying mechanism. In order to explain aging in the context of chronic inflammation, a new integrative concept on age-related chronic inflammation is necessary that encompasses much broader and wider characteristics of cells, tissues, organs, systems, and interactions between immune and non-immune cells, metabolic and non-metabolic organs. We have previously proposed a novel concept of senescent (seno)-inflammation and provided its frameworks. This review summarizes senoinflammation concept and additionally elaborates modulation of senoinflammation by calorie restriction (CR). Based on aging and CR studies and systems-biological analysis of Omics big data, we observed that senescence associated secretory phenotype (SASP) primarily composed of cytokines and chemokines was notably upregulated during aging whereas CR suppressed them. This result further strengthens the novel concept of senoinflammation in aging process. Collectively, such evidence of senoinflammation and modulatory role of CR provide insights into aging mechanism and potential interventions, thereby promoting healthy longevity. [BMB Reports 2019; 52(1): 56-63].
Collapse
Affiliation(s)
- EunJin Bang
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241,
Korea
| | - Bonggi Lee
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Daegu 41062,
Korea
| | - Sang-Gyun Noh
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241,
Korea
| | - Dae Hyun Kim
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241,
Korea
| | - Hee Jin Jung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241,
Korea
| | - Sugyeong Ha
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241,
Korea
| | - Byung Pal Yu
- Department of Physiology, The University of Texas Health Science Center at San Antonio, TX 78229,
USA
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy, Pusan National University, Busan 46241,
Korea
| |
Collapse
|
8
|
Age-related inflammation and insulin resistance: a review of their intricate interdependency. Arch Pharm Res 2014; 37:1507-14. [PMID: 25239110 PMCID: PMC4246128 DOI: 10.1007/s12272-014-0474-6] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 08/22/2014] [Indexed: 12/20/2022]
Abstract
Chronic inflammation is a major risk factor underlying aging and the associated diseases of aging; of particular interest is insulin resistance during aging. Chronic inflammation impairs normal lipid accumulation, adipose tissue function, mitochondrial function, and causes endoplasmic reticulum (ER) stress, which lead to insulin resistance. However, some studies show that insulin resistance itself amplifies chronic inflammation. The activity of the insulin-dependent Akt signaling pathway is highlighted because of its decrease in insulin-sensitive organs, like liver and muscle, which may underlie insulin resistance and hyperinsulinemia, and its increased levels in non-metabolic organs, such as kidney and aorta. In that the prevalence of obesity has increased substantially for all age groups in recent years, our review summarizes the data showing the involvement of chronic inflammation in obesity-induced insulin resistance, which perpetuates reciprocal interactions between the chronic inflammatory process and increased adiposity, thereby accelerating the aging process.
Collapse
|
9
|
Park D, Lee EK, Jang EJ, Jeong HO, Kim BC, Ha YM, Hong SE, Yu BP, Chung HY. Identification of the dichotomous role of age-related LCK in calorie restriction revealed by integrative analysis of cDNA microarray and interactome. AGE (DORDRECHT, NETHERLANDS) 2013; 35:1045-60. [PMID: 22828953 PMCID: PMC3705109 DOI: 10.1007/s11357-012-9426-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 05/02/2012] [Indexed: 05/15/2023]
Abstract
Among the many experimental paradigms used for the investigation of aging, the calorie restriction (CR) model has been proven to be the most useful in gerontological research. Exploration of the mechanisms underlying CR has produced a wealth of data. To identify key molecules controlled by aging and CR, we integrated data from 84 mouse and rat cDNA microarrays with a protein-protein interaction network. On the basis of this integrative analysis, we selected three genes that are upregulated in aging but downregulated by CR and two genes that are downregulated in aging but upregulated by CR. One of these key molecules is lymphocyte-specific protein tyrosine kinase (LCK). To further confirm this result on LCK, we performed a series of experiments in vitro and in vivo using kidneys obtained from aged ad libitum-fed and CR rats. Our major significant findings are as follows: (1) identification of LCK as a key molecule using integrative analysis; (2) confirmation that the age-related increase in LCK was modulated by CR and that protein tyrosine kinase activity was decreased using a LCK-specific inhibitor; and (3) upregulation of LCK leads to NF-κB activation in a ONOO(-) generation-dependent manner, which is modulated by CR. These results indicate that LCK could be considered a target attenuated by the anti-aging effects of CR. Integrative analysis of cDNA microarray and interactome data are powerful tools for identifying target molecules that are involved in the aging process and modulated by CR.
Collapse
Affiliation(s)
- Daeui Park
- />Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan, 609-735 Republic of Korea
- />Interdisciplinary Research Program of Bioinformatics and Longevity Science, Pusan National University, Busan, 609-735 Republic of Korea
| | - Eun Kyeong Lee
- />Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan, 609-735 Republic of Korea
- />Research Center, Dongnam Institute of Radiological and Medical Sciences, Busan, 619-953 Republic of Korea
| | - Eun Jee Jang
- />Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan, 609-735 Republic of Korea
| | - Hyoung Oh Jeong
- />Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan, 609-735 Republic of Korea
- />Interdisciplinary Research Program of Bioinformatics and Longevity Science, Pusan National University, Busan, 609-735 Republic of Korea
| | - Byoung-Chul Kim
- />Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan, 609-735 Republic of Korea
- />Interdisciplinary Research Program of Bioinformatics and Longevity Science, Pusan National University, Busan, 609-735 Republic of Korea
| | - Young Mi Ha
- />Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan, 609-735 Republic of Korea
| | - Seong Eui Hong
- />System Biology Research Center, Gwangju Institute of Science and Technology, Gwangju, 500-712 Republic of Korea
| | - Byung Pal Yu
- />Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900 USA
| | - Hae Young Chung
- />Molecular Inflammation Research Center for Aging Intervention, Pusan National University, Busan, 609-735 Republic of Korea
- />Department of Pharmacy, College of Pharmacy, Pusan National University, San 30, Jangjun-dong, Gumjung-gu, Busan, 609-735 South Korea
| |
Collapse
|
10
|
Chishti MA, Kaya N, BinBakheet AB, Al-Mohanna F, Goyns MH, Colak D. Induction of cell proliferation in old rat liver can reset certain gene expression levels characteristic of old liver to those associated with young liver. AGE (DORDRECHT, NETHERLANDS) 2013; 35:719-732. [PMID: 22477361 PMCID: PMC3636416 DOI: 10.1007/s11357-012-9404-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2011] [Accepted: 03/14/2012] [Indexed: 05/31/2023]
Abstract
During the past decade, it has become increasingly clear that consistent changes in the levels of expression of a small cohort of genes accompany the aging of mammalian tissues. In many cases, these changes have been shown to generate features that are characteristic of the senescent phenotype. Previously, a small pilot study indicated that some of these changes might be reversed in rat liver, if the liver cells became malignant and were proliferating. The present study has tested the hypothesis that inducing proliferation in old rat liver can reset the levels of expression of these age-related genes to that observed in young tissue. A microarray approach was used to identify genes that exhibited the greatest changes in their expression during aging. The levels of expression of these markers were then examined in transcriptomes of both proliferating hepatomas from old animals and old rat liver lobes that had regenerated after partial hepatectomy but were again quiescent. We have found evidence that over 20 % of the aging-related genes had their levels of expression reset to young levels by stimulating proliferation, even in cells that had undergone a limited number of cell cycles and then become quiescent again. Moreover, our network analysis indicated alterations in MAPK/ERK and Jun-N-terminal kinase pathways and the potential important role of PAX3, VCAN, ARRB2, NR1H2, and ITGA5 that may provide insights into mechanisms involved in longevity and regeneration that are distinct from cancer.
Collapse
MESH Headings
- Aging/genetics
- Aging/metabolism
- Aging/pathology
- Animals
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/surgery
- Cell Cycle
- Cell Proliferation
- Gene Expression Regulation, Neoplastic
- Genes, Neoplasm/genetics
- Hepatectomy
- Hepatocytes
- Liver/metabolism
- Liver/pathology
- Liver Neoplasms, Experimental/genetics
- Liver Neoplasms, Experimental/metabolism
- Liver Neoplasms, Experimental/surgery
- Liver Regeneration/genetics
- Longevity/genetics
- Male
- Pilot Projects
- RNA, Neoplasm/genetics
- Rats
- Rats, Sprague-Dawley
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Muhammad A. Chishti
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia 11211
- Present Address: Department of Pathology, Clinical Biochemistry Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia 11461
| | - Namik Kaya
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia 11211
| | - Al-Bandary BinBakheet
- Department of Genetics, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia 11211
| | - Falah Al-Mohanna
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia 11211
| | - Malcolm H. Goyns
- Children’s Cancer Center, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia 11211
- Present Address: Immorgene Concepts Ltd., Stockton-on-Tees, TS22 5YA UK
| | - Dilek Colak
- Department of Biostatistics, Epidemiology and Scientific Computing, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia 11211
| |
Collapse
|
11
|
Yashin AI, Wu D, Arbeev KG, Ukraintseva SV. Polygenic effects of common single-nucleotide polymorphisms on life span: when association meets causality. Rejuvenation Res 2012; 15:381-94. [PMID: 22533364 DOI: 10.1089/rej.2011.1257] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
Recently we have shown that the human life span is influenced jointly by many common single-nucleotide polymorphisms (SNPs), each with a small individual effect. Here we investigate further the polygenic influence on life span and discuss its possible biological mechanisms. First we identified six sets of prolongevity SNP alleles in the Framingham Heart Study 550K SNPs data, using six different statistical procedures (normal linear, Cox, and logistic regressions; generalized estimation equation; mixed model; gene frequency method). We then estimated joint effects of these SNPs on human survival. We found that alleles in each set show significant additive influence on life span. Twenty-seven SNPs comprised the overlapping set of SNPs that influenced life span, regardless of the statistical procedure. The majority of these SNPs (74%) were within genes, compared to 40% of SNPs in the original 550K set. We then performed a review of current literature on functions of genes closest to these 27 SNPs. The review showed that the respective genes are largely involved in aging, cancer, and brain disorders. We concluded that polygenic effects can explain a substantial portion of genetic influence on life span. Composition of the set of prolongevity alleles depends on the statistical procedure used for the allele selection. At the same time, there is a core set of longevity alleles that are selected with all statistical procedures. Functional relevance of respective genes to aging and major diseases supports causal relationships between the identified SNPs and life span. The fact that genes found in our and other genetic association studies of aging/longevity have similar functions indicates high chances of true positive associations for corresponding genetic variants.
Collapse
Affiliation(s)
- Anatoliy I Yashin
- Center for Population Health and Aging, Duke University, Durham, NC 27708-0408, USA.
| | | | | | | |
Collapse
|
12
|
Plank M, Wuttke D, van Dam S, Clarke SA, de Magalhães JP. A meta-analysis of caloric restriction gene expression profiles to infer common signatures and regulatory mechanisms. MOLECULAR BIOSYSTEMS 2012; 8:1339-49. [PMID: 22327899 DOI: 10.1039/c2mb05255e] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Caloric restriction, a reduction in calorie intake without malnutrition, retards age-related degeneration and extends lifespan in several organisms. CR induces multiple changes, yet its underlying mechanisms remain poorly understood. In this work, we first performed a meta-analysis of microarray CR studies in mammals and identified genes and processes robustly altered due to CR. Our results reveal a complex array of CR-induced changes and we re-identified several genes and processes previously associated with CR, such as growth hormone signalling, lipid metabolism and immune response. Moreover, our results highlight novel associations with CR, such as retinol metabolism and copper ion detoxification, as well as hint of a strong effect of CR on circadian rhythms that in turn may contribute to metabolic changes. Analyses of our signatures by integrating co-expression data, information on genetic mutants, and transcription factor binding site analysis revealed candidate regulators of transcriptional modules in CR. Our results hint at a transcriptional module involved in sterol metabolism regulated by Srebf1. A putative regulatory role of Ppara was also identified. Overall, our conserved molecular signatures of CR provide a comprehensive picture of CR-induced changes and help understand its regulatory mechanisms.
Collapse
Affiliation(s)
- Michael Plank
- Integrative Genomics of Ageing Group, Institute of Integrative Biology, University of Liverpool, Liverpool L69 7ZB, UK
| | | | | | | | | |
Collapse
|
13
|
de Magalhães JP, Wuttke D, Wood SH, Plank M, Vora C. Genome-environment interactions that modulate aging: powerful targets for drug discovery. Pharmacol Rev 2012; 64:88-101. [PMID: 22090473 PMCID: PMC3250080 DOI: 10.1124/pr.110.004499] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aging is the major biomedical challenge of this century. The percentage of elderly people, and consequently the incidence of age-related diseases such as heart disease, cancer, and neurodegenerative diseases, is projected to increase considerably in the coming decades. Findings from model organisms have revealed that aging is a surprisingly plastic process that can be manipulated by both genetic and environmental factors. Here we review a broad range of findings in model organisms, from environmental to genetic manipulations of aging, with a focus on those with underlying gene-environment interactions with potential for drug discovery and development. One well-studied dietary manipulation of aging is caloric restriction, which consists of restricting the food intake of organisms without triggering malnutrition and has been shown to retard aging in model organisms. Caloric restriction is already being used as a paradigm for developing compounds that mimic its life-extension effects and might therefore have therapeutic value. The potential for further advances in this field is immense; hundreds of genes in several pathways have recently emerged as regulators of aging and caloric restriction in model organisms. Some of these genes, such as IGF1R and FOXO3, have also been associated with human longevity in genetic association studies. The parallel emergence of network approaches offers prospects to develop multitarget drugs and combinatorial therapies. Understanding how the environment modulates aging-related genes may lead to human applications and disease therapies through diet, lifestyle, or pharmacological interventions. Unlocking the capacity to manipulate human aging would result in unprecedented health benefits.
Collapse
Affiliation(s)
- João Pedro de Magalhães
- Integrative Genomics of Ageing Group, Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom.
| | | | | | | | | |
Collapse
|
14
|
Moore JB, Weeks ME. Proteomics and systems biology: current and future applications in the nutritional sciences. Adv Nutr 2011; 2:355-64. [PMID: 22332076 PMCID: PMC3125684 DOI: 10.3945/an.111.000554] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In the last decade, advances in genomics, proteomics, and metabolomics have yielded large-scale datasets that have driven an interest in global analyses, with the objective of understanding biological systems as a whole. Systems biology integrates computational modeling and experimental biology to predict and characterize the dynamic properties of biological systems, which are viewed as complex signaling networks. Whereas the systems analysis of disease-perturbed networks holds promise for identification of drug targets for therapy, equally the identified critical network nodes may be targeted through nutritional intervention in either a preventative or therapeutic fashion. As such, in the context of the nutritional sciences, it is envisioned that systems analysis of normal and nutrient-perturbed signaling networks in combination with knowledge of underlying genetic polymorphisms will lead to a future in which the health of individuals will be improved through predictive and preventative nutrition. Although high-throughput transcriptomic microarray data were initially most readily available and amenable to systems analysis, recent technological and methodological advances in MS have contributed to a linear increase in proteomic investigations. It is now commonplace for combined proteomic technologies to generate complex, multi-faceted datasets, and these will be the keystone of future systems biology research. This review will define systems biology, outline current proteomic methodologies, highlight successful applications of proteomics in nutrition research, and discuss the challenges for future applications of systems biology approaches in the nutritional sciences.
Collapse
Affiliation(s)
- J. Bernadette Moore
- Nutritional Sciences Division, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK,To whom correspondence should be addressed. E-mail:
| | - Mark E. Weeks
- Veterinary Laboratories Agency, New Haw, KT15 3NB, UK
| |
Collapse
|
15
|
Understanding the biology of aging with interaction networks. Maturitas 2011; 69:126-30. [DOI: 10.1016/j.maturitas.2011.03.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Accepted: 03/10/2011] [Indexed: 11/22/2022]
|