1
|
Serano M, Perni S, Pierantozzi E, Laurino A, Sorrentino V, Rossi D. Intracellular Membrane Contact Sites in Skeletal Muscle Cells. MEMBRANES 2025; 15:29. [PMID: 39852269 PMCID: PMC11767089 DOI: 10.3390/membranes15010029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/26/2025]
Abstract
Intracellular organelles are common to eukaryotic cells and provide physical support for the assembly of specialized compartments. In skeletal muscle fibers, the largest intracellular organelle is the sarcoplasmic reticulum, a specialized form of the endoplasmic reticulum primarily devoted to Ca2+ storage and release for muscle contraction. Occupying about 10% of the total cell volume, the sarcoplasmic reticulum forms multiple membrane contact sites, some of which are unique to skeletal muscle. These contact sites primarily involve the plasma membrane; among these, specialized membrane contact sites between the transverse tubules and the terminal cisternae of the sarcoplasmic reticulum form triads. Triads are skeletal muscle-specific contact sites where Ca2+ channels and regulatory proteins assemble to form the so-called calcium release complex. Additionally, the sarcoplasmic reticulum contacts mitochondria to enable a more precise regulation of Ca2+ homeostasis and energy metabolism. The sarcoplasmic reticulum and the plasma membrane also undergo dynamic remodeling to allow Ca2+ entry from the extracellular space and replenish the stores. This process involves the formation of dynamic membrane contact sites called Ca2+ Entry Units. This review explores the key processes in biogenesis and assembly of intracellular membrane contact sites as well as the membrane remodeling that occurs in response to muscle fatigue.
Collapse
Affiliation(s)
- Matteo Serano
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (M.S.); (S.P.); (E.P.); (A.L.); (V.S.)
| | - Stefano Perni
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (M.S.); (S.P.); (E.P.); (A.L.); (V.S.)
| | - Enrico Pierantozzi
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (M.S.); (S.P.); (E.P.); (A.L.); (V.S.)
| | - Annunziatina Laurino
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (M.S.); (S.P.); (E.P.); (A.L.); (V.S.)
| | - Vincenzo Sorrentino
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (M.S.); (S.P.); (E.P.); (A.L.); (V.S.)
- Program of Molecular Diagnosis of Rare Genetic Diseases, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy
| | - Daniela Rossi
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (M.S.); (S.P.); (E.P.); (A.L.); (V.S.)
- Program of Molecular Diagnosis of Rare Genetic Diseases, Azienda Ospedaliera Universitaria Senese, 53100 Siena, Italy
| |
Collapse
|
2
|
Zhao N, Michelucci A, Pietrangelo L, Malik S, Groom L, Leigh J, O'Connor TN, Takano T, Kingsley PD, Palis J, Boncompagni S, Protasi F, Dirksen RT. An Orai1 gain-of-function tubular aggregate myopathy mouse model phenocopies key features of the human disease. EMBO J 2024; 43:5941-5971. [PMID: 39420094 PMCID: PMC11612304 DOI: 10.1038/s44318-024-00273-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 09/19/2024] [Accepted: 09/27/2024] [Indexed: 10/19/2024] Open
Abstract
Tubular aggregate myopathy (TAM) is a heritable myopathy primarily characterized by progressive muscle weakness, elevated levels of creatine kinase (CK), hypocalcemia, exercise intolerance, and the presence of tubular aggregates (TAs). Here, we generated a knock-in mouse model based on a human gain-of-function mutation which results in a severe, early-onset form of TAM, by inducing a glycine-to-serine point mutation in the ORAI1 pore (Orai1G100S/+ or GS mice). By 8 months of age, GS mice exhibited significant muscle weakness, exercise intolerance, elevated CK levels, hypocalcemia, and robust TA presence. Unexpectedly, constitutive Ca2+ entry in mutant mice was observed in muscle only during early development and was abolished in adult skeletal muscle, partly due to reduced ORAI1 expression. Consistent with proteomic results, significant mitochondrial damage and dysfunction was observed in skeletal muscle of GS mice. Thus, GS mice represent a powerful model for investigation of the pathophysiological mechanisms that underlie key TAM symptoms, as well as those compensatory responses that limit the damaging effects of uncontrolled ORAI1-mediated Ca2+ influx.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Antonio Michelucci
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Perugia, Italy
| | - Laura Pietrangelo
- CAST, Center for Advanced Studies and Technology & DMSI, Department of Medicine and Aging Sciences, University Gabriele d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Sundeep Malik
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Linda Groom
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jennifer Leigh
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Thomas N O'Connor
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Takahiro Takano
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Paul D Kingsley
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - James Palis
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Simona Boncompagni
- CAST, Center for Advanced Studies and Technology & DNICS, Department of Neuroscience and Clinical Sciences, University Gabriele d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Feliciano Protasi
- CAST, Center for Advanced Studies and Technology & DMSI, Department of Medicine and Aging Sciences, University Gabriele d'Annunzio of Chieti-Pescara, Chieti, Italy
| | - Robert T Dirksen
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
3
|
de Vasconcelos FTGR, Souza BW, Souza LS, Vainzof M. Tubular Aggregates as a Marker of Aging in Skeletal Muscle. Methods Mol Biol 2024. [PMID: 39316334 DOI: 10.1007/7651_2024_567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Tubular aggregates (TA) are skeletal muscle structures that arise from the progressive accumulation of sarcoplasmic reticulum proteins, mainly with aging. Muscle regeneration plays a role in TA formation. TA quantification may aid in the evaluation of muscle aging and genetic muscle degeneration. TA form over time, appears in aging in normal murine muscles. TA reduction in injured conditions may be due to the degeneration-regeneration process in muscles, with loss of damaged muscle fibers and formation of new fibers that do not present protein aggregation. These new regenerated fibers do not improve the function capacity of the aged muscle. Here, we present a methodology for labeling and identifying tubular aggregates in muscle fibers and also the standardization of its quantification.
Collapse
Affiliation(s)
| | - Brandow Willy Souza
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Lucas Santos Souza
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, SP, Brazil
| | - Mariz Vainzof
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Biosciences Institute, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
4
|
Grepper D, Tabasso C, Zanou N, Aguettaz AK, Castro-Sepulveda M, Ziegler DV, Lagarrigue S, Arribat Y, Martinotti A, Ebrahimi A, Daraspe J, Fajas L, Amati F. BCL2L13 at endoplasmic reticulum-mitochondria contact sites regulates calcium homeostasis to maintain skeletal muscle function. iScience 2024; 27:110510. [PMID: 39175772 PMCID: PMC11340602 DOI: 10.1016/j.isci.2024.110510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/17/2024] [Accepted: 07/11/2024] [Indexed: 08/24/2024] Open
Abstract
The physical connection between mitochondria and endoplasmic reticulum (ER) is an essential signaling hub to ensure organelle and cellular functions. In skeletal muscle, ER-mitochondria calcium (Ca2+) signaling is crucial to maintain cellular homeostasis during physical activity. High expression of BCL2L13, a member of the BCL-2 family, was suggested as an adaptive response in endurance-trained human subjects. In adult zebrafish, we found that the loss of Bcl2l13 impairs skeletal muscle structure and function. Ca2+ signaling is altered in Bcl2l13 knockout animals and mitochondrial complexes activity is decreased. Organelle fractioning in mammalian cells shows BCL2L13 at mitochondria, ER, and mitochondria-associated membranes. ER-mitochondria contact sites number is not modified by BCL2L13 modulation, but knockdown of BCL2L13 in C2C12 cells changes cytosolic Ca2+ release and mitochondrial Ca2+ uptake. This suggests that BCL2L13 interaction with mitochondria and ER, and its role in Ca2+ signaling, contributes to proper skeletal muscle function.
Collapse
Affiliation(s)
- Dogan Grepper
- Aging and Muscle Metabolism Lab, Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 7, Lausanne, Vaud 1005, Switzerland
| | - Cassandra Tabasso
- Aging and Muscle Metabolism Lab, Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 7, Lausanne, Vaud 1005, Switzerland
| | - Nadège Zanou
- Institute of Sport Sciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud 1015, Switzerland
| | - Axel K.F. Aguettaz
- Aging and Muscle Metabolism Lab, Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 7, Lausanne, Vaud 1005, Switzerland
- Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Vaud 1011, Switzerland
| | - Mauricio Castro-Sepulveda
- Aging and Muscle Metabolism Lab, Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 7, Lausanne, Vaud 1005, Switzerland
| | - Dorian V. Ziegler
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud 1015, Switzerland
| | - Sylviane Lagarrigue
- Aging and Muscle Metabolism Lab, Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 7, Lausanne, Vaud 1005, Switzerland
| | - Yoan Arribat
- Aging and Muscle Metabolism Lab, Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 7, Lausanne, Vaud 1005, Switzerland
| | - Adrien Martinotti
- Aging and Muscle Metabolism Lab, Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 7, Lausanne, Vaud 1005, Switzerland
- Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Vaud 1011, Switzerland
| | - Ammar Ebrahimi
- Aging and Muscle Metabolism Lab, Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 7, Lausanne, Vaud 1005, Switzerland
- Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Vaud 1011, Switzerland
| | - Jean Daraspe
- Electron Microscopy Facility, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud 1015, Switzerland
| | - Lluis Fajas
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Vaud 1015, Switzerland
| | - Francesca Amati
- Aging and Muscle Metabolism Lab, Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 7, Lausanne, Vaud 1005, Switzerland
- Service of Endocrinology, Diabetes and Metabolism, Lausanne University Hospital and University of Lausanne, Lausanne, Vaud 1011, Switzerland
| |
Collapse
|
5
|
Di Fonso A, Serano M, He M, Leigh J, Rastelli G, Dirksen RT, Protasi F, Pietrangelo L. Constitutive, Muscle-Specific Orai1 Knockout Results in the Incomplete Assembly of Ca 2+ Entry Units and a Reduction in the Age-Dependent Formation of Tubular Aggregates. Biomedicines 2024; 12:1651. [PMID: 39200116 PMCID: PMC11351919 DOI: 10.3390/biomedicines12081651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 09/01/2024] Open
Abstract
Store-operated Ca2+ entry (SOCE) is a ubiquitous cellular mechanism that cells use to activate extracellular Ca2+ entry when intracellular Ca2+ stores are depleted. In skeletal muscle, SOCE occurs within Ca2+ entry units (CEUs), intracellular junctions between stacks of SR membranes containing STIM1 and transverse tubules (TTs) containing ORAI1. Gain-of-function mutations in STIM1 and ORAI1 are linked to tubular aggregate (TA) myopathy, a disease characterized by the atypical accumulation of tubes of SR origin. Moreover, SOCE and TAs are increased in the muscles of aged male mice. Here, we assessed the longitudinal effects (from 4-6 months to 10-14 months of age) of constitutive, muscle-specific Orai1 knockout (cOrai1 KO) on skeletal muscle structure, function, and the assembly of TAs and CEUs. The results from these studies indicate that cOrai1 KO mice exhibit a shorter lifespan, reduced body weight, exercise intolerance, decreased muscle-specific force and rate of force production, and an increased number of structurally damaged mitochondria. In addition, electron microscopy analyses revealed (i) the absence of TAs with increasing age and (ii) an increased number of SR stacks without adjacent TTs (i.e., incomplete CEUs) in cOrai1 KO mice. The absence of TAs is consistent with TAs being formed as a result of excessive ORAI1-dependent Ca2+ entry.
Collapse
Affiliation(s)
- Alessia Di Fonso
- Center for Advanced Studies and Technology (CAST), University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy; (A.D.F.); (M.S.); (G.R.); (F.P.)
| | - Matteo Serano
- Center for Advanced Studies and Technology (CAST), University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy; (A.D.F.); (M.S.); (G.R.); (F.P.)
- Department of Medicine and Aging Sciences (DMSI), University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy
| | - Miao He
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; (M.H.); (J.L.); (R.T.D.)
| | - Jennifer Leigh
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; (M.H.); (J.L.); (R.T.D.)
| | - Giorgia Rastelli
- Center for Advanced Studies and Technology (CAST), University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy; (A.D.F.); (M.S.); (G.R.); (F.P.)
- Department of Neuroscience and Clinical Sciences (DNISC), University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy
| | - Robert T. Dirksen
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA; (M.H.); (J.L.); (R.T.D.)
| | - Feliciano Protasi
- Center for Advanced Studies and Technology (CAST), University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy; (A.D.F.); (M.S.); (G.R.); (F.P.)
- Department of Medicine and Aging Sciences (DMSI), University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy
| | - Laura Pietrangelo
- Center for Advanced Studies and Technology (CAST), University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy; (A.D.F.); (M.S.); (G.R.); (F.P.)
- Department of Medicine and Aging Sciences (DMSI), University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy
| |
Collapse
|
6
|
Conte E, Mantuano P, Boccanegra B, Imbrici P, Dinoi G, Lenti R, Cappellari O, Cappetta D, De Angelis A, Berrino L, Gordish-Dressman H, Bianchini G, Aramini A, Allegretti M, Liantonio A, De Luca A. Branched-chain amino acids and L-alanine supplementation ameliorate calcium dyshomeostasis in sarcopenia: New insights for nutritional interventions. Front Pharmacol 2024; 15:1393746. [PMID: 38962308 PMCID: PMC11220240 DOI: 10.3389/fphar.2024.1393746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/24/2024] [Indexed: 07/05/2024] Open
Abstract
Introduction: During aging, sarcopenia and decline in physiological processes lead to partial loss of muscle strength, atrophy, and increased fatigability. Muscle changes may be related to a reduced intake of essential amino acids playing a role in proteostasis. We have recently shown that branched-chain amino acid (BCAA) supplements improve atrophy and weakness in models of muscle disuse and aging. Considering the key roles that the alteration of Ca2+-related homeostasis and store-operated calcium entry (SOCE) play in several muscle dysfunctions, this study has been aimed at gaining insight into the potential ability of BCAA-based dietary formulations in aged mice on various players of Ca2+ dyshomeostasis. Methods: Seventeen-month-old male C57BL/6J mice received a 12-week supplementation with BCAAs alone or boosted with two equivalents of L-alanine (2-Ala) or with dipeptide L-alanyl-L-alanine (Di-Ala) in drinking water. Outcomes were evaluated on ex vivo skeletal muscles indices vs. adult 3-month-old male C57BL/6J mice. Results: Ca2+ imaging confirmed a decrease in SOCE and an increase of resting Ca2+ concentration in aged vs. adult mice without alteration in the canonical components of SOCE. Aged muscles vs. adult muscles were characterized by a decrease in the expression of ryanodine receptor 1 (RyR1), the Sarco-Endoplasmic Reticulum Calcium ATPase (SERCA) pump, and sarcalumenin together with an alteration of the expression of mitsugumin 29 and mitsugumin 53, two recently recognized players in the SOCE mechanism. BCAAs, particularly the formulation BCAAs+2-Ala, were able to ameliorate all these alterations. Discussion: These results provide evidence that Ca2+ homeostasis dysfunction plays a role in the functional deficit observed in aged muscle and supports the interest of dietary BCAA supplementation in counteracting sarcopenia-related SOCE dysregulation.
Collapse
Affiliation(s)
- Elena Conte
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Paola Mantuano
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Brigida Boccanegra
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Paola Imbrici
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Giorgia Dinoi
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Roberta Lenti
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Ornella Cappellari
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Donato Cappetta
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Liberato Berrino
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Heather Gordish-Dressman
- Center for Genetic Medicine Research, Children’s National Medical Center, Washington, DC, United States
| | - Gianluca Bianchini
- Research & Early Development, Dompé farmaceutici S.p.A., L’Aquila, Italy
| | - Andrea Aramini
- Research & Early Development, Dompé farmaceutici S.p.A., L’Aquila, Italy
| | | | - Antonella Liantonio
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| | - Annamaria De Luca
- Section of Pharmacology, Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, Bari, Italy
| |
Collapse
|
7
|
Kanazawa Y, Takahashi T, Nagano M, Koinuma S, Shigeyoshi Y. The Effects of Aging on Sarcoplasmic Reticulum-Related Factors in the Skeletal Muscle of Mice. Int J Mol Sci 2024; 25:2148. [PMID: 38396828 PMCID: PMC10889371 DOI: 10.3390/ijms25042148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/04/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
The pathogenesis of sarcopenia includes the dysfunction of calcium homeostasis associated with the sarcoplasmic reticulum; however, the localization in sarcoplasmic reticulum-related factors and differences by myofiber type remain unclear. Here, we investigated the effects of aging on sarcoplasmic reticulum-related factors in the soleus (slow-twitch) and gastrocnemius (fast-twitch) muscles of 3- and 24-month-old male C57BL/6J mice. There were no notable differences in the skeletal muscle weight of these 3- and 24-month-old mice. The expression of Atp2a1, Atp2a2, Sln, and Pln increased with age in the gastrocnemius muscles, but not in the soleus muscles. Subsequently, immunohistochemical analysis revealed ectopic sarcoplasmic reticulum calcium ion ATPase (SERCA) 1 and SERCA2a immunoreactivity only in the gastrocnemius muscles of old mice. Histochemical and transmission electron microscope analysis identified tubular aggregate (TA), an aggregation of the sarcoplasmic reticulum, in the gastrocnemius muscles of old mice. Dihydropyridine receptor α1, ryanodine receptor 1, junctophilin (JPH) 1, and JPH2, which contribute to sarcoplasmic reticulum function, were also localized in or around the TA. Furthermore, JPH1 and JPH2 co-localized with matrix metalloproteinase (MMP) 2 around the TA. These results suggest that sarcoplasmic reticulum-related factors are localized in or around TAs that occur in fast-twitch muscle with aging, but some of them might be degraded by MMP2.
Collapse
Affiliation(s)
- Yuji Kanazawa
- Department of Physical Therapy, Hokuriku University, Kanazawa 920-1180, Ishikawa, Japan
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kindai University, Osakasayama 589-8511, Osaka, Japan; (M.N.); (S.K.); (Y.S.)
| | - Tatsuo Takahashi
- Department of Clinical Pharmacology, Hokuriku University, Kanazawa 920-1181, Ishikawa, Japan;
| | - Mamoru Nagano
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kindai University, Osakasayama 589-8511, Osaka, Japan; (M.N.); (S.K.); (Y.S.)
| | - Satoshi Koinuma
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kindai University, Osakasayama 589-8511, Osaka, Japan; (M.N.); (S.K.); (Y.S.)
| | - Yasufumi Shigeyoshi
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kindai University, Osakasayama 589-8511, Osaka, Japan; (M.N.); (S.K.); (Y.S.)
| |
Collapse
|
8
|
Bryson V, Wang C, Zhou Z, Singh K, Volin N, Yildirim E, Rosenberg P. The D84G mutation in STIM1 causes nuclear envelope dysfunction and myopathy in mice. J Clin Invest 2024; 134:e170317. [PMID: 38300705 PMCID: PMC10977986 DOI: 10.1172/jci170317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 01/26/2024] [Indexed: 02/03/2024] Open
Abstract
Stromal interaction molecule 1 (STIM1) is a Ca2+ sensor located in the sarcoplasmic reticulum (SR) of skeletal muscle, where it is best known for its role in store-operated Ca2+ entry (SOCE). Genetic syndromes resulting from STIM1 mutations are recognized as a cause of muscle weakness and atrophy. Here, we focused on a gain-of-function mutation that occurs in humans and mice (STIM1+/D84G mice), in which muscles exhibited constitutive SOCE. Unexpectedly, this constitutive SOCE did not affect global Ca2+ transients, SR Ca2+ content, or excitation-contraction coupling (ECC) and was therefore unlikely to underlie the reduced muscle mass and weakness observed in these mice. Instead, we demonstrate that the presence of D84G STIM1 in the nuclear envelope of STIM1+/D84G muscle disrupted nuclear-cytosolic coupling, causing severe derangement in nuclear architecture, DNA damage, and altered lamina A-associated gene expression. Functionally, we found that D84G STIM1 reduced the transfer of Ca2+ from the cytosol to the nucleus in myoblasts, resulting in a reduction of [Ca2+]N. Taken together, we propose a novel role for STIM1 in the nuclear envelope that links Ca2+ signaling to nuclear stability in skeletal muscle.
Collapse
Affiliation(s)
| | - Chaojian Wang
- Department of Medicine
- Duke Cardiovascular Research Center
| | | | | | | | - Eda Yildirim
- Department of Cell Biology
- Duke Cancer Institute, Duke University Medical Center, and
| | - Paul Rosenberg
- Department of Medicine
- Duke Cardiovascular Research Center
- Duke Molecular Physiology Institute, School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
9
|
Sakai‐Takemura F, Saito F, Nogami K, Maruyama Y, Elhussieny A, Matsumura K, Takeda S, Aoki Y, Miyagoe‐Suzuki Y. Antioxidants restore store-operated Ca 2+ entry in patient-iPSC-derived myotubes with tubular aggregate myopathy-associated Ile484ArgfsX21 STIM1 mutation via upregulation of binding immunoglobulin protein. FASEB Bioadv 2023; 5:453-469. [PMID: 37936920 PMCID: PMC10626159 DOI: 10.1096/fba.2023-00069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/27/2023] [Accepted: 10/11/2023] [Indexed: 11/09/2023] Open
Abstract
Store-operated Ca2+ entry (SOCE) is indispensable for intracellular Ca2+ homeostasis in skeletal muscle, and constitutive activation of SOCE causes tubular aggregate myopathy (TAM). To understand the pathogenesis of TAM, we induced pluripotent stem cells (iPSCs) from a TAM patient with a rare mutation (c.1450_1451insGA; p. Ile484ArgfsX21) in the STIM1 gene. This frameshift mutation produces a truncated STIM1 with a disrupted C-terminal inhibitory domain (CTID) and was reported to diminish SOCE. Myotubes induced from the patient's-iPSCs (TAM myotubes) showed severely impaired SOCE, but antioxidants greatly restored SOCE partly via upregulation of an endoplasmic reticulum (ER) chaperone, BiP (GRP78), in the TAM myotubes. Our observation suggests that antioxidants are promising tools for treatment of TAM caused by reduced SOCE.
Collapse
Affiliation(s)
- Fusako Sakai‐Takemura
- Department of Molecular TherapyNational Institute of Neuroscience, National Center of Neurology and PsychiatryTokyoJapan
| | - Fumiaki Saito
- Department of Neurology, School of MedicineTeikyo UniversityTokyoJapan
| | - Ken'ichiro Nogami
- Department of Molecular TherapyNational Institute of Neuroscience, National Center of Neurology and PsychiatryTokyoJapan
- Department of Neurology, Neurological Institute, Graduate School of Medical ScienceKyushu UniversityFukuokaJapan
| | - Yusuke Maruyama
- Department of Molecular TherapyNational Institute of Neuroscience, National Center of Neurology and PsychiatryTokyoJapan
- Department of Gene Regulation, Faculty of Pharmaceutical ScienceTokyo University of ScienceChibaJapan
| | - Ahmed Elhussieny
- Department of Molecular TherapyNational Institute of Neuroscience, National Center of Neurology and PsychiatryTokyoJapan
- Department of Neurology, Faculty of MedicineMinia UniversityMiniaEgypt
| | | | - Shin'ichi Takeda
- Department of Molecular TherapyNational Institute of Neuroscience, National Center of Neurology and PsychiatryTokyoJapan
| | - Yoshitsugu Aoki
- Department of Molecular TherapyNational Institute of Neuroscience, National Center of Neurology and PsychiatryTokyoJapan
| | - Yuko Miyagoe‐Suzuki
- Department of Molecular TherapyNational Institute of Neuroscience, National Center of Neurology and PsychiatryTokyoJapan
| |
Collapse
|
10
|
O’Connor TN, Zhao N, Orciuoli HM, Brasile A, Pietrangelo L, He M, Groom L, Leigh J, Mahamed Z, Liang C, Malik S, Protasi F, Dirksen RT. Voluntary wheel running mitigates disease in an Orai1 gain-of-function mouse model of tubular aggregate myopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.559036. [PMID: 37808709 PMCID: PMC10557777 DOI: 10.1101/2023.09.29.559036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Tubular aggregate myopathy (TAM) is an inherited skeletal muscle disease associated with progressive muscle weakness, cramps, and myalgia. Tubular aggregates (TAs) are regular arrays of highly ordered and densely packed SR straight-tubes in muscle biopsies; the extensive presence of TAs represent a key histopathological hallmark of this disease in TAM patients. TAM is caused by gain-of-function mutations in proteins that coordinate store-operated Ca2+ entry (SOCE): STIM1 Ca2+ sensor proteins in the sarcoplasmic reticulum (SR) and Ca2+-permeable ORAI1 channels in the surface membrane. We have previously shown that voluntary wheel running (VWR) prevents formation of TAs in aging mice. Here, we assessed the therapeutic potential of endurance exercise (in the form of VWR) in mitigating the functional and structural alterations in a knock-in mouse model of TAM (Orai1G100S/+ or GS mice) based on a gain-of-function mutation in the ORAI1 pore. WT and GS mice were singly-housed for six months (from two to eight months of age) with either free-spinning or locked low profile wheels. Six months of VWR exercise significantly increased soleus peak tetanic specific force production, normalized FDB fiber Ca2+ store content, and markedly reduced TAs in EDL muscle from GS mice. Six months of VWR exercise normalized the expression of mitochondrial proteins found to be altered in soleus muscle of sedentary GS mice in conjunction with a signature of increased protein translation and biosynthetic processes. Parallel proteomic analyses of EDL muscles from sedentary WT and GS mice revealed changes in a tight network of pathways involved in formation of supramolecular complexes, which were also normalized following six months of VWR. In summary, sustained voluntary endurance exercise improved slow twitch muscle function, reduced the presence of TAs in fast twitch muscle, and normalized the muscle proteome of GS mice consistent with protective adaptions in proteostasis, mitochondrial structure/function, and formation of supramolecular complexes.
Collapse
Affiliation(s)
- Thomas N. O’Connor
- Department of Biomedical Genetics, Genetics and Genomics Graduate Program, University of Rochester Medical Center, Rochester, NY, USA
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Nan Zhao
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Haley M. Orciuoli
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biology, Biological Sciences, University of Rochester, Rochester, NY, USA
| | - Alice Brasile
- CAST, Center for Advanced Studies and Technology & DMSI, Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy
| | - Laura Pietrangelo
- CAST, Center for Advanced Studies and Technology & DMSI, Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy
| | - Miao He
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Linda Groom
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Jennifer Leigh
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Zahra Mahamed
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Chen Liang
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Sundeep Malik
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Feliciano Protasi
- CAST, Center for Advanced Studies and Technology & DMSI, Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy
| | - Robert T. Dirksen
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
11
|
Mukherjee A, Nongthomba U. To RNA-binding and beyond: Emerging facets of the role of Rbfox proteins in development and disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023:e1813. [PMID: 37661850 DOI: 10.1002/wrna.1813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 09/05/2023]
Abstract
The RNA-binding Fox-1 homologue (Rbfox) proteins represent an ancient family of splicing factors, conserved through evolution. All members share an RNA recognition motif (RRM), and a particular affinity for the GCAUG signature in target RNA molecules. The role of Rbfox, as a splice factor, deciding the tissue-specific inclusion/exclusion of an exon, depending on its binding position on the flanking introns, is well known. Rbfox often acts in concert with other splicing factors, and forms splicing regulatory networks. Apart from this canonical role, recent studies show that Rbfox can also function as a transcription co-factor, and affects mRNA stability and translation. The repertoire of Rbfox targets is vast, including genes involved in the development of tissue lineages, such as neurogenesis, myogenesis, and erythropoeiesis, and molecular processes, including cytoskeletal dynamics, and calcium handling. A second layer of complexity is added by the fact that Rbfox expression itself is regulated by multiple mechanisms, and, in vertebrates, exhibits tissue-specific expression. The optimum dosage of Rbfox is critical, and its misexpression is etiological to various disease conditions. In this review, we discuss the contextual roles played by Rbfox as a tissue-specific regulator for the expression of many important genes with diverse functions, through the lens of the emerging data which highlights its involvement in many human diseases. Furthermore, we explore the mechanistic details provided by studies in model organisms, with emphasis on the work with Drosophila. This article is categorized under: RNA Processing > Splicing Mechanisms RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Turnover and Surveillance > Regulation of RNA Stability RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
- Amartya Mukherjee
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, India
| | - Upendra Nongthomba
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bangalore, India
| |
Collapse
|
12
|
Bryson V, Wang C, Zhou Z, Singh K, Volin N, Yildirim E, Rosenberg P. The D84G mutation in STIM1 causes nuclear envelope dysfunction and myopathy in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.03.539279. [PMID: 37205564 PMCID: PMC10187192 DOI: 10.1101/2023.05.03.539279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Stromal interaction molecule 1 (STIM1) is a Ca 2+ sensor located in the sarcoplasmic reticulum (SR) of skeletal muscle where it is best known for its role in store operated Ca 2+ entry (SOCE). Genetic syndromes resulting from STIM1 mutations are recognized as a cause of muscle weakness and atrophy. Here, we focus on a gain of function mutation that occurs in humans and mice (STIM1 +/D84G mice) where muscles exhibit constitutive SOCE. Unexpectedly, this constitutive SOCE did not affect global Ca 2+ transients, SR Ca 2+ content or excitation contraction coupling (ECC) and was therefore unlikely to underlie the reduced muscle mass and weakness observed in these mice. Instead, we demonstrate that the presence of D84G STIM1 in the nuclear envelope of STIM1 +/D84G muscle disrupts nuclear-cytosolic coupling causing severe derangement in nuclear architecture, DNA damage, and altered lamina A associated gene expression. Functionally, we found D84G STIM1 reduced the transfer of Ca 2+ from the cytosol to the nucleus in myoblasts resulting in a reduction of [Ca 2+ ] N . Taken together, we propose a novel role for STIM1 in the nuclear envelope that links Ca 2+ signaling to nuclear stability in skeletal muscle.
Collapse
|
13
|
Protasi F, Girolami B, Roccabianca S, Rossi D. Store-operated calcium entry: From physiology to tubular aggregate myopathy. Curr Opin Pharmacol 2023; 68:102347. [PMID: 36608411 DOI: 10.1016/j.coph.2022.102347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 01/06/2023]
Abstract
Store-Operated Ca2+ entry (SOCE) is recognized as a key mechanism in muscle physiology necessary to refill intracellular Ca2+ stores during sustained muscle activity. For many years the cell structures expected to mediate SOCE in skeletal muscle fibres remained unknown. Recently, the identification of Ca2+ Entry Units (CEUs) in exercised muscle fibres opened new insights into the role of extracellular Ca2+ in muscle contraction and, more generally, in intracellular Ca2+ homeostasis. Accordingly, intracellular Ca2+ unbalance due to alterations in SOCE strictly correlates with muscle disfunction and disease. Mutations in proteins involved in SOCE (STIM1, ORAI1, and CASQ1) have been linked to tubular aggregate myopathy (TAM), a disease that causes muscle weakness and myalgia and is characterized by a typical accumulation of highly ordered and packed membrane tubules originated from the sarcoplasmic reticulum (SR). Achieving a full understanding of the molecular pathways activated by alterations in Ca2+ entry mechanisms is a necessary step to design effective therapies for human SOCE-related disorders.
Collapse
Affiliation(s)
- Feliciano Protasi
- CAST, Center for Advanced Studies and Technology; University G. d'Annunzio of Chieti-Pescara, I-66100, Italy; DMSI, Department of Medicine and Aging Sciences; University G. d'Annunzio of Chieti-Pescara, I-66100, Italy
| | - Barbara Girolami
- CAST, Center for Advanced Studies and Technology; University G. d'Annunzio of Chieti-Pescara, I-66100, Italy; DMSI, Department of Medicine and Aging Sciences; University G. d'Annunzio of Chieti-Pescara, I-66100, Italy
| | - Sara Roccabianca
- DMMS, Department of Molecular and Developmental Medicine; University of Siena, I-53100, Siena Italy
| | - Daniela Rossi
- DMMS, Department of Molecular and Developmental Medicine; University of Siena, I-53100, Siena Italy.
| |
Collapse
|
14
|
De Biase D, Pagano TB, Malanga D, Russo V, Piegari G, d'Aquino I, Iovane V, Scarfò M, Papparella S, Wojcik S, Paciello O. Identification of vacuolar autophagic aggregates in the skeletal muscles of inbred C57BL/6NCrl mice. Lab Anim 2023:236772221138942. [PMID: 36601775 DOI: 10.1177/00236772221138942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A comprehensive pathological analysis of inbred strains is essential to define strain-specific spontaneous lesions and to understand whether a specific phenotype results from experimental intervention or reflects a naturally occurring disease. This study aimed to report and describe a novel condition affecting the skeletal muscles of an inbred C57BL/6NCrl mouse colony characterised by large sarcoplasmic vacuoles in the muscle fibres of male mice in the subsarcolemmal spaces and the intermyofibrillary network. There was no muscle weakness, loss of ambulation or cardiac/respiratory involvement. Post-mortem evaluation and histological analysis excluded the presence of pathological accumulations or lesions in other tissues and organs. Changes were seen in fibre size, with many hypotrophic and some slightly hypertrophic fibres. Histological, immunohistochemical and molecular analyses of the vacuolar content revealed dysregulation of the autophagy machinery while ruling out a morphologically similar condition marked by the accumulation of tubular aggregates.
Collapse
Affiliation(s)
| | - Teresa Bruna Pagano
- Department of Veterinary Medicine and Animal Production University of Naples 'Federico II', Italy
| | - Donatella Malanga
- Department of Experimental and Clinical Medicine, University 'Magna Graecia' of Catanzaro Medical School, Italy
| | - Valeria Russo
- Department of Veterinary Medicine and Animal Production University of Naples 'Federico II', Italy
| | - Giuseppe Piegari
- Department of Veterinary Medicine and Animal Production University of Naples 'Federico II', Italy
| | - Ilaria d'Aquino
- Department of Veterinary Medicine and Animal Production University of Naples 'Federico II', Italy
| | - Valentina Iovane
- Department of Agricultural Sciences, University of Naples 'Federico II', Italy
| | | | - Serenella Papparella
- Department of Veterinary Medicine and Animal Production University of Naples 'Federico II', Italy
| | - Slawomir Wojcik
- Department of Anatomy and Neurobiology, Medical University of Gdansk, Poland
| | - Orlando Paciello
- Department of Veterinary Medicine and Animal Production University of Naples 'Federico II', Italy
| |
Collapse
|
15
|
Xu H, Ahn B, Van Remmen H. Impact of aging and oxidative stress on specific components of excitation contraction coupling in regulating force generation. SCIENCE ADVANCES 2022; 8:eadd7377. [PMID: 36288318 PMCID: PMC9604602 DOI: 10.1126/sciadv.add7377] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Muscle weakness associated with sarcopenia is a major contributor to reduced health span and quality of life in the elderly. However, the underlying mechanisms of muscle weakness in aging are not fully defined. We investigated the effect of oxidative stress and aging on specific molecular mechanisms involved in muscle force production in mice and skinned permeabilized single fibers in mice lacking the antioxidant enzyme CuZnSod (Sod1KO) and in aging (24-month-old) wild-type mice. Loss of muscle strength occurs in both models, potentially because of reduced membrane excitability with altered NKA signaling and RyR stability, decreased fiber Ca2+ sensitivity and suppressed SERCA activity via modification of the Cys674 residue, dysregulated SR and cytosolic Ca2+ homeostasis, and impaired mitochondrial Ca2+ buffering and respiration. Our results provide a better understanding of the specific impacts of aging and oxidative stress on mechanisms related to muscle weakness that may point to future interventions for countering muscle weakness.
Collapse
Affiliation(s)
- Hongyang Xu
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Bumsoo Ahn
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Holly Van Remmen
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Oklahoma City VA Medical Center, Oklahoma City, OK, USA
| |
Collapse
|
16
|
Protasi F, Girolami B, Serano M, Pietrangelo L, Paolini C. Ablation of Calsequestrin-1, Ca 2+ unbalance, and susceptibility to heat stroke. Front Physiol 2022; 13:1033300. [PMID: 36311237 PMCID: PMC9598425 DOI: 10.3389/fphys.2022.1033300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/20/2022] [Indexed: 12/05/2022] Open
Abstract
Introduction: Ca2+ levels in adult skeletal muscle fibers are mainly controlled by excitation-contraction (EC) coupling, a mechanism that translates action potentials in release of Ca2+ from the sarcoplasmic reticulum (SR) release channels, i.e. the ryanodine receptors type-1 (RyR1). Calsequestrin (Casq) is a protein that binds large amounts of Ca2+ in the lumen of the SR terminal cisternae, near sites of Ca2+ release. There is general agreement that Casq is not only important for the SR ability to store Ca2+, but also for modulating the opening probability of the RyR Ca2+ release channels. The initial studies: About 20 years ago we generated a mouse model lacking Casq1 (Casq1-null mice), the isoform predominantly expressed in adult fast twitch skeletal muscle. While the knockout was not lethal as expected, lack of Casq1 caused a striking remodeling of membranes of SR and of transverse tubules (TTs), and mitochondrial damage. Functionally, CASQ1-knockout resulted in reduced SR Ca2+ content, smaller Ca2+ transients, and severe SR depletion during repetitive stimulation. The myopathic phenotype of Casq1-null mice: After the initial studies, we discovered that Casq1-null mice were prone to sudden death when exposed to halogenated anaesthetics, heat and even strenuous exercise. These syndromes are similar to human malignant hyperthermia susceptibility (MHS) and environmental-exertional heat stroke (HS). We learned that mechanisms underlying these syndromes involved excessive SR Ca2+ leak and excessive production of oxidative species: indeed, mortality and mitochondrial damage were significantly prevented by administration of antioxidants and reduction of oxidative stress. Though, how Casq1-null mice could survive without the most important SR Ca2+ binding protein was a puzzling issue that was not solved. Unravelling the mystery: The mystery was finally solved in 2020, when we discovered that in Casq1-null mice the SR undergoes adaptations that result in constitutively active store-operated Ca2+ entry (SOCE). SOCE is a mechanism that allows skeletal fibers to use external Ca2+ when SR stores are depleted. The post-natal compensatory mechanism that allows Casq1-null mice to survive involves the assembly of new SR-TT junctions (named Ca2+ entry units) containing Stim1 and Orai1, the two proteins that mediate SOCE.
Collapse
Affiliation(s)
- Feliciano Protasi
- Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
- Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
| | - Barbara Girolami
- Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
- Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
| | - Matteo Serano
- Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
- Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
| | - Laura Pietrangelo
- Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
- Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
| | - Cecilia Paolini
- Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Sciences, University G. d’Annunzio of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
17
|
Davis LA, Fogarty MJ, Brown A, Sieck GC. Structure and Function of the Mammalian Neuromuscular Junction. Compr Physiol 2022; 12:3731-3766. [PMID: 35950651 PMCID: PMC10461538 DOI: 10.1002/cphy.c210022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The mammalian neuromuscular junction (NMJ) comprises a presynaptic terminal, a postsynaptic receptor region on the muscle fiber (endplate), and the perisynaptic (terminal) Schwann cell. As with any synapse, the purpose of the NMJ is to transmit signals from the nervous system to muscle fibers. This neural control of muscle fibers is organized as motor units, which display distinct structural and functional phenotypes including differences in pre- and postsynaptic elements of NMJs. Motor units vary considerably in the frequency of their activation (both motor neuron discharge rate and duration/duty cycle), force generation, and susceptibility to fatigue. For earlier and more frequently recruited motor units, the structure and function of the activated NMJs must have high fidelity to ensure consistent activation and continued contractile response to sustain vital motor behaviors (e.g., breathing and postural balance). Similarly, for higher force less frequent behaviors (e.g., coughing and jumping), the structure and function of recruited NMJs must ensure short-term reliable activation but not activation sustained for a prolonged period in which fatigue may occur. The NMJ is highly plastic, changing structurally and functionally throughout the life span from embryonic development to old age. The NMJ also changes under pathological conditions including acute and chronic disease. Such neuroplasticity often varies across motor unit types. © 2022 American Physiological Society. Compr Physiol 12:1-36, 2022.
Collapse
Affiliation(s)
- Leah A. Davis
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew J. Fogarty
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Alyssa Brown
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Gary C. Sieck
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
18
|
Gang Q, Bettencourt C, Brady S, Holton JL, Healy EG, McConville J, Morrison PJ, Ripolone M, Violano R, Sciacco M, Moggio M, Mora M, Mantegazza R, Zanotti S, Wang Z, Yuan Y, Liu WW, Beeson D, Hanna M, Houlden H. Genetic defects are common in myopathies with tubular aggregates. Ann Clin Transl Neurol 2021; 9:4-15. [PMID: 34908252 PMCID: PMC8791796 DOI: 10.1002/acn3.51477] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/12/2021] [Accepted: 10/27/2021] [Indexed: 12/17/2022] Open
Abstract
Objective A group of genes have been reported to be associated with myopathies with tubular aggregates (TAs). Many cases with TAs still lack of genetic clarification. This study aims to explore the genetic background of cases with TAs in order to improve our knowledge of the pathogenesis of these rare pathological structures. Methods Thirty‐three patients including two family members with biopsy confirmed TAs were collected. Whole‐exome sequencing was performed on 31 unrelated index patients and a candidate gene search strategy was conducted. The identified variants were confirmed by Sanger sequencing. The wild‐type and the mutant p.Ala11Thr of ALG14 were transfected into human embryonic kidney 293 cells (HEK293), and western blot analysis was performed to quantify protein expression levels. Results Eleven index cases (33%) were found to have pathogenic variant or likely pathogenic variants in STIM1, ORAI1, PGAM2, SCN4A, CASQ1 and ALG14. Among them, the c.764A>T (p.Glu255Val) in STIM1 and the c.1333G>C (p.Val445Leu) in SCN4A were novel. Western blot analysis showed that the expression of ALG14 protein was severely reduced in the mutant ALG14 HEK293 cells (p.Ala11Thr) compared with wild type. The ALG14 variants might be associated with TAs in patients with complex multisystem disorders. Interpretation This study expands the phenotypic and genotypic spectrums of myopathies with TAs. Our findings further confirm previous hypothesis that genes related with calcium signalling pathway and N‐linked glycosylation pathway are the main genetic causes of myopathies with TAs.
Collapse
Affiliation(s)
- Qiang Gang
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China.,Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, 100034, China.,Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London, UK.,MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Conceição Bettencourt
- Queen Square Brain Bank for Neurological Disorders, London, UK.,Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Stefen Brady
- Oxford Muscle Service, John Radcliffe Hospital, Oxford, UK
| | - Janice L Holton
- MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London, UK.,Queen Square Brain Bank for Neurological Disorders, London, UK
| | - Estelle G Healy
- Department of Neuropathology, Royal Victoria Hospital, Belfast, Northern Ireland
| | - John McConville
- Department of Neurology, Belfast City Hospital, Belfast, BT9 7AB, UK
| | - Patrick J Morrison
- Department of Genetic Medicine, Belfast City Hospital, Belfast, BT9 7AB, UK
| | - Michela Ripolone
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Centre, University of Milan, Milan, Italy
| | - Raffaella Violano
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Centre, University of Milan, Milan, Italy
| | - Monica Sciacco
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Centre, University of Milan, Milan, Italy
| | - Maurizio Moggio
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Centre, University of Milan, Milan, Italy
| | - Marina Mora
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Isitituto Neurologico C. Besta, Milano, Italy
| | - Renato Mantegazza
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Isitituto Neurologico C. Besta, Milano, Italy
| | - Simona Zanotti
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Isitituto Neurologico C. Besta, Milano, Italy
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China.,Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, 100034, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, 8 Xishiku Street, Xicheng District, Beijing, 100034, China.,Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, 100034, China
| | - Wei-Wei Liu
- Neurosciences Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - David Beeson
- Neurosciences Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Michael Hanna
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London, UK.,MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London, UK
| | - Henry Houlden
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London, UK.,MRC Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, Queen Square, London, UK.,Neurogenetics Laboratory, UCL Queen Square Institute of Neurology, Queen Square, WC1N 3BG, London, UK
| |
Collapse
|
19
|
Zhang H, Bryson VG, Wang C, Li T, Kerr JP, Wilson R, Muoio DM, Bloch RJ, Ward C, Rosenberg PB. Desmin interacts with STIM1 and coordinates Ca2+ signaling in skeletal muscle. JCI Insight 2021; 6:143472. [PMID: 34494555 PMCID: PMC8492340 DOI: 10.1172/jci.insight.143472] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 07/28/2021] [Indexed: 12/30/2022] Open
Abstract
Stromal interaction molecule 1 (STIM1), the sarcoplasmic reticulum (SR) transmembrane protein, activates store-operated Ca2+ entry (SOCE) in skeletal muscle and, thereby, coordinates Ca2+ homeostasis, Ca2+-dependent gene expression, and contractility. STIM1 occupies space in the junctional SR membrane of the triads and the longitudinal SR at the Z-line. How STIM1 is organized and is retained in these specific subdomains of the SR is unclear. Here, we identified desmin, the major type III intermediate filament protein in muscle, as a binding partner for STIM1 based on a yeast 2-hybrid screen. Validation of the desmin-STIM1 interaction by immunoprecipitation and immunolocalization confirmed that the CC1-SOAR domains of STIM1 interact with desmin to enhance STIM1 oligomerization yet limit SOCE. Based on our studies of desmin-KO mice, we developed a model wherein desmin connected STIM1 at the Z-line in order to regulate the efficiency of Ca2+ refilling of the SR. Taken together, these studies showed that desmin-STIM1 assembles a cytoskeletal-SR connection that is important for Ca2+ signaling in skeletal muscle.
Collapse
Affiliation(s)
- Hengtao Zhang
- Department of Medicine and
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Victoria Graham Bryson
- Department of Medicine and
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Chaojian Wang
- Department of Medicine and
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - TianYu Li
- Department of Medicine and
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Jaclyn P. Kerr
- Department of Physiology and
- Department of Orthopedic Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Rebecca Wilson
- Department of Medicine and
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Deborah M. Muoio
- Department of Medicine and
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Robert J. Bloch
- Department of Physiology and
- Department of Orthopedic Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Christopher Ward
- Department of Physiology and
- Department of Orthopedic Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Paul B. Rosenberg
- Department of Medicine and
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina, USA
| |
Collapse
|
20
|
Michelucci A, Boncompagni S, Pietrangelo L, Takano T, Protasi F, Dirksen RT. Pre-assembled Ca2+ entry units and constitutively active Ca2+ entry in skeletal muscle of calsequestrin-1 knockout mice. J Gen Physiol 2021; 152:152001. [PMID: 32761048 PMCID: PMC7537346 DOI: 10.1085/jgp.202012617] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/15/2020] [Indexed: 12/13/2022] Open
Abstract
Store-operated Ca2+ entry (SOCE) is a ubiquitous Ca2+ influx mechanism triggered by depletion of Ca2+ stores from the endoplasmic/sarcoplasmic reticulum (ER/SR). We recently reported that acute exercise in WT mice drives the formation of Ca2+ entry units (CEUs), intracellular junctions that contain STIM1 and Orai1, the two key proteins mediating SOCE. The presence of CEUs correlates with increased constitutive- and store-operated Ca2+ entry, as well as sustained Ca2+ release and force generation during repetitive stimulation. Skeletal muscle from mice lacking calsequestrin-1 (CASQ1-null), the primary Ca2+-binding protein in the lumen of SR terminal cisternae, exhibits significantly reduced total Ca2+ store content and marked SR Ca2+ depletion during high-frequency stimulation. Here, we report that CEUs are constitutively assembled in extensor digitorum longus (EDL) and flexor digitorum brevis (FDB) muscles of sedentary CASQ1-null mice. The higher density of CEUs in EDL (39.6 ± 2.1/100 µm2 versus 2.0 ± 0.3/100 µm2) and FDB (16.7 ± 1.0/100 µm2 versus 2.7 ± 0.5/100 µm2) muscles of CASQ1-null compared with WT mice correlated with enhanced constitutive- and store-operated Ca2+ entry and increased expression of STIM1, Orai1, and SERCA. The higher ability to recover Ca2+ ions via SOCE in CASQ1-null muscle served to promote enhanced maintenance of peak Ca2+ transient amplitude, increased dependence of luminal SR Ca2+ replenishment on BTP-2-sensitive SOCE, and increased maintenance of contractile force during repetitive, high-frequency stimulation. Together, these data suggest that muscles from CASQ1-null mice compensate for the lack of CASQ1 and reduction in total releasable SR Ca2+ content by assembling CEUs to promote constitutive and store-operated Ca2+ entry.
Collapse
Affiliation(s)
- Antonio Michelucci
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY.,Center for Advanced Studies and Technologies, University G. d'Annunzio of Chieti, Chieti, Italy
| | - Simona Boncompagni
- Center for Advanced Studies and Technologies, University G. d'Annunzio of Chieti, Chieti, Italy.,Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti, Chieti, Italy
| | - Laura Pietrangelo
- Center for Advanced Studies and Technologies, University G. d'Annunzio of Chieti, Chieti, Italy.,Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti, Chieti, Italy
| | - Takahiro Takano
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - Feliciano Protasi
- Center for Advanced Studies and Technologies, University G. d'Annunzio of Chieti, Chieti, Italy.,Department of Medicine and Ageing Sciences, University G. d'Annunzio of Chieti, Chieti, Italy
| | - Robert T Dirksen
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| |
Collapse
|
21
|
Protasi F, Pietrangelo L, Boncompagni S. Improper Remodeling of Organelles Deputed to Ca 2+ Handling and Aerobic ATP Production Underlies Muscle Dysfunction in Ageing. Int J Mol Sci 2021; 22:6195. [PMID: 34201319 PMCID: PMC8228829 DOI: 10.3390/ijms22126195] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 12/28/2022] Open
Abstract
Proper skeletal muscle function is controlled by intracellular Ca2+ concentration and by efficient production of energy (ATP), which, in turn, depend on: (a) the release and re-uptake of Ca2+ from sarcoplasmic-reticulum (SR) during excitation-contraction (EC) coupling, which controls the contraction and relaxation of sarcomeres; (b) the uptake of Ca2+ into the mitochondrial matrix, which stimulates aerobic ATP production; and finally (c) the entry of Ca2+ from the extracellular space via store-operated Ca2+ entry (SOCE), a mechanism that is important to limit/delay muscle fatigue. Abnormalities in Ca2+ handling underlie many physio-pathological conditions, including dysfunction in ageing. The specific focus of this review is to discuss the importance of the proper architecture of organelles and membrane systems involved in the mechanisms introduced above for the correct skeletal muscle function. We reviewed the existing literature about EC coupling, mitochondrial Ca2+ uptake, SOCE and about the structural membranes and organelles deputed to those functions and finally, we summarized the data collected in different, but complementary, projects studying changes caused by denervation and ageing to the structure and positioning of those organelles: a. denervation of muscle fibers-an event that contributes, to some degree, to muscle loss in ageing (known as sarcopenia)-causes misplacement and damage: (i) of membrane structures involved in EC coupling (calcium release units, CRUs) and (ii) of the mitochondrial network; b. sedentary ageing causes partial disarray/damage of CRUs and of calcium entry units (CEUs, structures involved in SOCE) and loss/misplacement of mitochondria; c. functional electrical stimulation (FES) and regular exercise promote the rescue/maintenance of the proper architecture of CRUs, CEUs, and of mitochondria in both denervation and ageing. All these structural changes were accompanied by related functional changes, i.e., loss/decay in function caused by denervation and ageing, and improved function following FES or exercise. These data suggest that the integrity and proper disposition of intracellular organelles deputed to Ca2+ handling and aerobic generation of ATP is challenged by inactivity (or reduced activity); modifications in the architecture of these intracellular membrane systems may contribute to muscle dysfunction in ageing and sarcopenia.
Collapse
Affiliation(s)
- Feliciano Protasi
- CAST, Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy; (L.P.); (S.B.)
- DMSI, Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy
| | - Laura Pietrangelo
- CAST, Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy; (L.P.); (S.B.)
- DMSI, Department of Medicine and Aging Sciences, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy
| | - Simona Boncompagni
- CAST, Center for Advanced Studies and Technology, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy; (L.P.); (S.B.)
- DNICS, Department of Neuroscience and Clinical Sciences, University G. d’Annunzio of Chieti-Pescara, I-66100 Chieti, Italy
| |
Collapse
|
22
|
Salvi A, Maues De Paula A, Lévy N, Attarian S, Bartoli M. Commentary: Long-Term Exercise Reduces Formation of Tubular Aggregates and Promotes Maintenance of Ca 2+ Entry Units in Aged Muscle. Front Physiol 2021; 12:663677. [PMID: 33868028 PMCID: PMC8047298 DOI: 10.3389/fphys.2021.663677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/09/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Alexandra Salvi
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France
| | - André Maues De Paula
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France.,Department of Anatomopathology, CHU La Timone, Marseille, France
| | - Nicolas Lévy
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France.,Department of Medical Genetics, La Timone Children's Hospital, Marseille, France
| | - Shahram Attarian
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France.,Reference Center for Neuromuscular Disease and ALS, Marseille, France
| | - Marc Bartoli
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, Marseille, France
| |
Collapse
|
23
|
Maintenance of type 2 glycolytic myofibers with age by Mib1-Actn3 axis. Nat Commun 2021; 12:1294. [PMID: 33637766 PMCID: PMC7910585 DOI: 10.1038/s41467-021-21621-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 02/03/2021] [Indexed: 01/31/2023] Open
Abstract
Age-associated muscle atrophy is a debilitating condition associated with loss of muscle mass and function with age that contributes to limitation of mobility and locomotion. However, the underlying mechanisms of how intrinsic muscle changes with age are largely unknown. Here we report that, with age, Mind bomb-1 (Mib1) plays important role in skeletal muscle maintenance via proteasomal degradation-dependent regulation of α-actinin 3 (Actn3). The disruption of Mib1 in myofibers (Mib1ΔMF) results in alteration of type 2 glycolytic myofibers, muscle atrophy, impaired muscle function, and Actn3 accumulation. After chronic exercise, Mib1ΔMF mice show muscle atrophy even at young age. However, when Actn3 level is downregulated, chronic exercise-induced muscle atrophy is ameliorated. Importantly, the Mib1 and Actn3 levels show clinical relevance in human skeletal muscles accompanied by decrease in skeletal muscle function with age. Together, these findings reveal the significance of the Mib1-Actn3 axis in skeletal muscle maintenance with age and suggest the therapeutic potential for the treatment or amelioration of age-related muscle atrophy.
Collapse
|
24
|
Boncompagni S, Pecorai C, Michelucci A, Pietrangelo L, Protasi F. Long-Term Exercise Reduces Formation of Tubular Aggregates and Promotes Maintenance of Ca 2+ Entry Units in Aged Muscle. Front Physiol 2021; 11:601057. [PMID: 33469430 PMCID: PMC7813885 DOI: 10.3389/fphys.2020.601057] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/16/2020] [Indexed: 12/16/2022] Open
Abstract
Tubular aggregates (TAs) in skeletal muscle fibers are unusual accumulation of sarcoplasmic reticulum (SR) tubes that are found in different disorders including TA myopathy (TAM). TAM is a muscular disease characterized by muscle pain, cramping, and weakness that has been recently linked to mutations in STIM1 and ORAI1. STIM1 and ORAI1 are the two main proteins mediating store-operated Ca2+ entry (SOCE), a mechanism activated by depletion of intracellular Ca2+ stores (e.g., SR) that allows recovery of Ca2+ from the extracellular space during repetitive muscle activity. We have recently shown that exercise triggers the formation of unique intracellular junctions between SR and transverse tubules named Ca 2+ entry units (CEUs). CEUs promote colocalization of STIM1 with ORAI1 and improve muscle function in presence of external Ca2+. TAs virtually identical to those of TAM patients are also found in fast-twitch fibers of aging male mice. Here, we used a combination of electron and confocal microscopy, Western blotting, and ex vivo stimulation protocols (in presence or absence of external Ca2+) to evaluate the presence of TAs, STIM1-ORAI1 localization and expression and fatigue resistance of intact extensor digitorum longus (EDL) muscles in wild-type male adult (4-month-old) and aged (24-month-old) mice and in mice trained in wheel cages for 15 months (from 9 to 24 months of age). The results collected indicate that (i) aging causes STIM1 and ORAI1 to accumulate in TAs and (ii) long-term exercise significantly reduced formation of TAs. In addition, (iii) EDL muscles from aged mice exhibited a faster decay of contractile force than adult muscles, likely caused by their inability to refill intracellular Ca2+ stores, and (iv) exercise in wheel cages restored the capability of aged EDL muscles to use external Ca2+ by promoting maintenance of CEUs. In conclusion, exercise prevented improper accumulation of STIM1 and ORAI1 in TAs during aging, maintaining the capability of aged muscle to refill intracellular Ca2+ stores via SOCE.
Collapse
Affiliation(s)
- Simona Boncompagni
- Center for Advanced Studies and Technology (CAST), University G. d’Annunzio (Ud’A) of Chieti-Pescara, Chieti, Italy
- Department of Neuroscience, Imaging and Clinical Sciences (DNICS), University G. d’Annunzio (Ud’A) of Chieti-Pescara, Chieti, Italy
| | - Claudia Pecorai
- Center for Advanced Studies and Technology (CAST), University G. d’Annunzio (Ud’A) of Chieti-Pescara, Chieti, Italy
- Department of Medicine and Aging Sciences (DMSI), University G. d’Annunzio (Ud’A) of Chieti-Pescara, Chieti, Italy
| | - Antonio Michelucci
- Center for Advanced Studies and Technology (CAST), University G. d’Annunzio (Ud’A) of Chieti-Pescara, Chieti, Italy
- Department of Medicine and Aging Sciences (DMSI), University G. d’Annunzio (Ud’A) of Chieti-Pescara, Chieti, Italy
| | - Laura Pietrangelo
- Center for Advanced Studies and Technology (CAST), University G. d’Annunzio (Ud’A) of Chieti-Pescara, Chieti, Italy
- Department of Medicine and Aging Sciences (DMSI), University G. d’Annunzio (Ud’A) of Chieti-Pescara, Chieti, Italy
| | - Feliciano Protasi
- Center for Advanced Studies and Technology (CAST), University G. d’Annunzio (Ud’A) of Chieti-Pescara, Chieti, Italy
- Department of Medicine and Aging Sciences (DMSI), University G. d’Annunzio (Ud’A) of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
25
|
Peche GA, Spiegelhalter C, Silva-Rojas R, Laporte J, Böhm J. Functional analyses of STIM1 mutations reveal a common pathomechanism for tubular aggregate myopathy and Stormorken syndrome. Neuropathology 2020; 40:559-569. [PMID: 33073872 DOI: 10.1111/neup.12692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 05/01/2020] [Accepted: 05/18/2020] [Indexed: 11/30/2022]
Abstract
Tubular aggregate myopathy (TAM) is a progressive disorder characterized by muscle weakness, cramps, and myalgia. TAM clinically overlaps with Stormorken syndrome (STRMK), combining TAM with miosis, thrombocytopenia, hyposplenism, ichthyosis, short stature, and dyslexia. TAM and STRMK arise from gain-of-function mutations in STIM1 (stromal interaction molecule 1) or ORAI1, both encoding key regulators of Ca2+ homeostasis, and mutations in either gene result in excessive extracellular Ca2+ entry. The pathomechanistic similarities and differences between TAM and STRMK are only partially understood. Here we provide functional in vitro experiments demonstrating that STIM1 harboring the TAM D84G or the STRMK R304W mutation similarly cluster and exert a dominant effect on the wild-type protein. Both mutants recruit ORAI1 to the clusters, increase cytosolic Ca2+ levels, promote major nuclear import of the Ca2+ -dependent transcription factor NFAT (nuclear factor of activated T cells), and trigger the formation of circular membrane stacks. In conclusion, the analyzed TAM and STRMK mutations have a comparable impact on STIM1 protein function and downstream effects of excessive Ca2+ entry, highlighting that TAM and STRMK involve a common pathomechanism.
Collapse
Affiliation(s)
- Georges Arielle Peche
- Department of Translational Medicine and Neurogenetics, Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France.,INSERM U1258, Illkirch, France.,CNRS UMR7104, Illkirch, France.,University of Strasbourg, Illkirch, France
| | - Coralie Spiegelhalter
- Department of Translational Medicine and Neurogenetics, Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France.,INSERM U1258, Illkirch, France.,CNRS UMR7104, Illkirch, France.,University of Strasbourg, Illkirch, France
| | - Roberto Silva-Rojas
- Department of Translational Medicine and Neurogenetics, Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France.,INSERM U1258, Illkirch, France.,CNRS UMR7104, Illkirch, France.,University of Strasbourg, Illkirch, France
| | - Jocelyn Laporte
- Department of Translational Medicine and Neurogenetics, Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France.,INSERM U1258, Illkirch, France.,CNRS UMR7104, Illkirch, France.,University of Strasbourg, Illkirch, France
| | - Johann Böhm
- Department of Translational Medicine and Neurogenetics, Institute of Genetics and Molecular and Cellular Biology (IGBMC), Illkirch, France.,INSERM U1258, Illkirch, France.,CNRS UMR7104, Illkirch, France.,University of Strasbourg, Illkirch, France
| |
Collapse
|
26
|
Protasi F, Pietrangelo L, Boncompagni S. Calcium entry units (CEUs): perspectives in skeletal muscle function and disease. J Muscle Res Cell Motil 2020; 42:233-249. [PMID: 32812118 PMCID: PMC8332569 DOI: 10.1007/s10974-020-09586-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/03/2020] [Indexed: 12/28/2022]
Abstract
In the last decades the term Store-operated Ca2+ entry (SOCE) has been used in the scientific literature to describe an ubiquitous cellular mechanism that allows recovery of calcium (Ca2+) from the extracellular space. SOCE is triggered by a reduction of Ca2+ content (i.e. depletion) in intracellular stores, i.e. endoplasmic or sarcoplasmic reticulum (ER and SR). In skeletal muscle the mechanism is primarily mediated by a physical interaction between stromal interaction molecule-1 (STIM1), a Ca2+ sensor located in the SR membrane, and ORAI1, a Ca2+-permeable channel of external membranes, located in transverse tubules (TTs), the invaginations of the plasma membrane (PM) deputed to propagation of action potentials. It is generally accepted that in skeletal muscle SOCE is important to limit muscle fatigue during repetitive stimulation. We recently discovered that exercise promotes the assembly of new intracellular junctions that contains colocalized STIM1 and ORAI1, and that the presence of these new junctions increases Ca2+ entry via ORAI1, while improving fatigue resistance during repetitive stimulation. Based on these findings we named these new junctions Ca2+ Entry Units (CEUs). CEUs are dynamic organelles that assemble during muscle activity and disassemble during recovery thanks to the plasticity of the SR (containing STIM1) and the elongation/retraction of TTs (bearing ORAI1). Interestingly, similar structures described as SR stacks were previously reported in different mouse models carrying mutations in proteins involved in Ca2+ handling (calsequestrin-null mice; triadin and junctin null mice, etc.) or associated to microtubules (MAP6 knockout mice). Mutations in Stim1 and Orai1 (and calsequestrin-1) genes have been associated to tubular aggregate myopathy (TAM), a muscular disease characterized by: (a) muscle pain, cramping, or weakness that begins in childhood and worsens over time, and (b) the presence of large accumulations of ordered SR tubes (tubular aggregates, TAs) that do not contain myofibrils, mitochondria, nor TTs. Interestingly, TAs are also present in fast twitch muscle fibers of ageing mice. Several important issues remain un-answered: (a) the molecular mechanisms and signals that trigger the remodeling of membranes and the functional activation of SOCE during exercise are unclear; and (b) how dysfunctional SOCE and/or mutations in Stim1, Orai1 and calsequestrin (Casq1) genes lead to the formation of tubular aggregates (TAs) in aging and disease deserve investigation.
Collapse
Affiliation(s)
- Feliciano Protasi
- CAST, Center for Advanced Studies and Technology, University G. d'Annunzio of Chieti-Pescara, 66100, Chieti, Italy.
- DMSI, Department of Medicine and Aging Sciences, University G. d'Annunzio of Chieti-Pescara, 66100, Chieti, Italy.
| | - Laura Pietrangelo
- CAST, Center for Advanced Studies and Technology, University G. d'Annunzio of Chieti-Pescara, 66100, Chieti, Italy
- DMSI, Department of Medicine and Aging Sciences, University G. d'Annunzio of Chieti-Pescara, 66100, Chieti, Italy
| | - Simona Boncompagni
- CAST, Center for Advanced Studies and Technology, University G. d'Annunzio of Chieti-Pescara, 66100, Chieti, Italy
- DNICS, Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, 66100, Chieti, Italy
| |
Collapse
|
27
|
Igura S, Nagatani M, Kasahara K, Andoh R, Fukunaga Y, Hashiguchi O, Okazaki S, Yamaguchi Y. Pathological study of tubular aggregates occurring spontaneously in the skeletal muscles of non-obese diabetic/Cg -PrkdcscidIl2rgtm1sug /ShiJic (NOG) mice. J Toxicol Pathol 2020; 33:115-119. [PMID: 32425344 PMCID: PMC7218234 DOI: 10.1293/tox.2019-0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/26/2019] [Indexed: 11/19/2022] Open
Abstract
To examine the biological and morphological features of tubular aggregates (TAs) in the
skeletal muscles of non-obese
diabetic/Cg-PrkdcscidIl2rgtm1Sug/ShiJic (NOG)
mice, 73 male and 72 female specific-pathogen-free NOG mice were examined at 7, 18, 22,
26, and 52 weeks of age. TAs were observed as intracytoplasmic eosinophilic materials of
the femoral muscles in males at 18, 22, 26, and 52 weeks of age and in females at 52 weeks
of age; gender-related differences were noted in the onset time and lesion degree.
Intracytoplasmic materials were positive for Gomori’s trichrome stain. Electron microscopy
revealed that TAs were composed of an accumulation of dilated sarcoplasmic reticulum. In
addition, TAs were observed in the femoral and gastrocnemius muscles, but not in the
soleus and diaphragm muscles, suggesting that TAs are present in fast muscle fibers. The
morphology of TAs and the type of myofibers involved, as well as the gender difference in
NOG mice were essentially the same as those of TAs observed in C57BL/6J and MRL+/+
mice.
Collapse
Affiliation(s)
- Saori Igura
- Gotemba Laboratory, BoZo Research Center Inc., 1284 Kamado, Gotemba, Shizuoka 412-0039, Japan
| | - Mariko Nagatani
- Gotemba Laboratory, BoZo Research Center Inc., 1284 Kamado, Gotemba, Shizuoka 412-0039, Japan
| | - Kenichiro Kasahara
- Tsukuba Research Institute, BoZo Research Center Inc., 8 Okubo, Tsukuba, Ibaraki 300-2611, Japan
| | - Rie Andoh
- Gotemba Laboratory, BoZo Research Center Inc., 1284 Kamado, Gotemba, Shizuoka 412-0039, Japan
| | - Yachiyo Fukunaga
- Tsukuba Research Institute, BoZo Research Center Inc., 8 Okubo, Tsukuba, Ibaraki 300-2611, Japan
| | - Osamu Hashiguchi
- Gotemba Laboratory, BoZo Research Center Inc., 1284 Kamado, Gotemba, Shizuoka 412-0039, Japan
| | - Shuzo Okazaki
- Gotemba Laboratory, BoZo Research Center Inc., 1284 Kamado, Gotemba, Shizuoka 412-0039, Japan
| | - Yuko Yamaguchi
- Gotemba Laboratory, BoZo Research Center Inc., 1284 Kamado, Gotemba, Shizuoka 412-0039, Japan
| |
Collapse
|
28
|
Sun X, Wang W, Dong Y, Wang Y, Zhang M, Wang Z, Yu X, Huang J, Cai H. Relationship between calcium circulation-related factors and muscle strength in rat sciatic nerve injury model. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:654-662. [PMID: 32742604 PMCID: PMC7375001 DOI: 10.22038/ijbms.2020.40915.9695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES The purpose of this study is to investigate the indication function of the calcium circulation-related factors on the damage to muscle strength and contraction function after nerve injury. The target factors include ryanodine receptor (RyR), inositol-1,4,5-triphosphate receptor (IP3R), phospholamban (PLN), cryptocalcitonin (CASQ), ATPase and troponin C (TNNC). MATERIALS AND METHODS Sprague-Dawley (SD) rats were randomly divided into sham-operated group (SO), sciatic nerve injury group (SNI) and sciatic nerve disconnection group (SNT). Sciatic nerve function index and stretching test were used to examine the changes to muscle strength; bilateral gastrocnemius muscles were extracted after execution for gastrocnemius wet weight ratio test. HE staining slides and average cross-sectional area of muscle fibers were acquired to analyze the muscle atrophy. The transcription level of the factors was also measured. RESULTS Sciatic nerve damage in SNI group was significantly higher than that in SO group in the 6 weeks, but there was no significant difference between SNT and SO groups fallowing sciatic nerve damage. Sciatic nerve function in SNT group was worse than that in SNI group. The average cross-sectional area of gastrocnemius muscle fibers in SNI and SNT groups was significantly reduced compared to that in SO group. The transcriptional levels of RyR, PLN, CASQ, ATPase and TNNC in SNI and SNT groups were significantly different from those in SO group. CONCLUSION Calcium circulation-related factors could be used as potential indicators for assessment of damages to muscle strength.
Collapse
Affiliation(s)
- Xiaoming Sun
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, P. R. China
| | - Wei Wang
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, P. R. China
| | - Yangyi Dong
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, P. R. China
| | - Yue Wang
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, P. R. China
| | - Meixiang Zhang
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, P. R. China
| | - Zhao Wang
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, P. R. China
| | - Xiaowei Yu
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, P. R. China
| | - Jiao Huang
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, P. R. China
| | - Hongxing Cai
- Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, P. R. China,Corresponding author: Hongxing Cai. Department of Forensic Medicine, Xuzhou Medical University, Xuzhou, Jiangsu, P. R. China. Tel: 0516-85748442
| |
Collapse
|
29
|
Michelucci A, Boncompagni S, Pietrangelo L, García-Castañeda M, Takano T, Malik S, Dirksen RT, Protasi F. Transverse tubule remodeling enhances Orai1-dependent Ca 2+ entry in skeletal muscle. eLife 2019; 8:47576. [PMID: 31657717 PMCID: PMC6837846 DOI: 10.7554/elife.47576] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 10/24/2019] [Indexed: 12/18/2022] Open
Abstract
Exercise promotes the formation of intracellular junctions in skeletal muscle between stacks of sarcoplasmic reticulum (SR) cisternae and extensions of transverse-tubules (TT) that increase co-localization of proteins required for store-operated Ca2+ entry (SOCE). Here, we report that SOCE, peak Ca2+ transient amplitude and muscle force production during repetitive stimulation are increased after exercise in parallel with the time course of TT association with SR-stacks. Unexpectedly, exercise also activated constitutive Ca2+ entry coincident with a modest decrease in total releasable Ca2+ store content. Importantly, this decrease in releasable Ca2+ store content observed after exercise was reversed by repetitive high-frequency stimulation, consistent with enhanced SOCE. The functional benefits of exercise on SOCE, constitutive Ca2+ entry and muscle force production were lost in mice with muscle-specific loss of Orai1 function. These results indicate that TT association with SR-stacks enhances Orai1-dependent SOCE to optimize Ca2+ dynamics and muscle contractile function during acute exercise.
Collapse
Affiliation(s)
- Antonio Michelucci
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, United States.,Center for Research on Ageing and Translational Medicine (CeSI-MeT), University Gabriele d'Annunzio, Chieti, Italy
| | - Simona Boncompagni
- Center for Research on Ageing and Translational Medicine (CeSI-MeT), University Gabriele d'Annunzio, Chieti, Italy.,Department of Neuroscience, Imaging and Clinical Sciences (DNICS), University Gabriele d'Annunzio, Chieti, Italy
| | - Laura Pietrangelo
- Center for Research on Ageing and Translational Medicine (CeSI-MeT), University Gabriele d'Annunzio, Chieti, Italy.,Department of Neuroscience, Imaging and Clinical Sciences (DNICS), University Gabriele d'Annunzio, Chieti, Italy
| | - Maricela García-Castañeda
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, United States
| | - Takahiro Takano
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, United States
| | - Sundeep Malik
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, United States
| | - Robert T Dirksen
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, United States
| | - Feliciano Protasi
- Center for Research on Ageing and Translational Medicine (CeSI-MeT), University Gabriele d'Annunzio, Chieti, Italy.,Department of Medicine and Ageing Sciences (DMSI), University Gabriele d'Annunzio, Chieti, Italy
| |
Collapse
|
30
|
Morin G, Biancalana V, Echaniz-Laguna A, Noury JB, Lornage X, Moggio M, Ripolone M, Violano R, Marcorelles P, Maréchal D, Renaud F, Maurage CA, Tard C, Cuisset JM, Laporte J, Böhm J. Tubular aggregate myopathy and Stormorken syndrome: Mutation spectrum and genotype/phenotype correlation. Hum Mutat 2019; 41:17-37. [PMID: 31448844 DOI: 10.1002/humu.23899] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/29/2019] [Accepted: 08/21/2019] [Indexed: 11/06/2022]
Abstract
Calcium (Ca2+ ) acts as a ubiquitous second messenger, and normal cell and tissue physiology strictly depends on the precise regulation of Ca2+ entry, storage, and release. Store-operated Ca2+ entry (SOCE) is a major mechanism controlling extracellular Ca2+ entry, and mainly relies on the accurate interplay between the Ca2+ sensor STIM1 and the Ca2+ channel ORAI1. Mutations in STIM1 or ORAI1 result in abnormal Ca2+ homeostasis and are associated with severe human disorders. Recessive loss-of-function mutations impair SOCE and cause combined immunodeficiency, while dominant gain-of-function mutations induce excessive extracellular Ca2+ entry and cause tubular aggregate myopathy (TAM) and Stormorken syndrome (STRMK). TAM and STRMK are spectra of the same multisystemic disease characterized by muscle weakness, miosis, thrombocytopenia, hyposplenism, ichthyosis, dyslexia, and short stature. To date, 42 TAM/STRMK families have been described, and here we report five additional families for which we provide clinical, histological, ultrastructural, and genetic data. In this study, we list and review all new and previously reported STIM1 and ORAI1 cases, discuss the pathomechanisms of the mutations based on the known functions and the protein structure of STIM1 and ORAI1, draw a genotype/phenotype correlation, and delineate an efficient screening strategy for the molecular diagnosis of TAM/STRMK.
Collapse
Affiliation(s)
- Gilles Morin
- Clinical Genetics, Amiens University Hospital, Amiens, France.,University of Picardy Jules Verne, EA 4666, Amiens, France.,Department of translational medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France
| | - Valérie Biancalana
- Department of translational medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Inserm U1258, Illkirch, France.,CNRS UMR7104, Illkirch, France.,Strasbourg University, Illkirch, France.,Laboratoire Diagnostic Génétique, CHRU, Strasbourg, France
| | - Andoni Echaniz-Laguna
- Department of Neurology, APHP, CHU de Bicêtre, Le Kremlin Bicêtre, France.,French National Reference Center for Rare Neuropathies (NNERF), Le Kremlin Bicêtre, France.,Inserm U1195 & Paris-Sud University, Le Kremlin Bicêtre, France
| | | | - Xavière Lornage
- Department of translational medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Inserm U1258, Illkirch, France.,CNRS UMR7104, Illkirch, France.,Strasbourg University, Illkirch, France
| | - Maurizio Moggio
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Michela Ripolone
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Raffaella Violano
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | | | - Denis Maréchal
- Department of Neurology, CHRU Cavale Blanche, Brest, France
| | - Florence Renaud
- Department of Pathology, Lille University Hospital, Lille, France
| | | | - Céline Tard
- CHU Lille, Inserm U1171, Service de neurologie, Centre de Référence des Maladies Neuromusculaires Nord Est Ile-de-France, Lille University, Lille, France
| | | | - Jocelyn Laporte
- Department of translational medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Inserm U1258, Illkirch, France.,CNRS UMR7104, Illkirch, France.,Strasbourg University, Illkirch, France
| | - Johann Böhm
- Department of translational medicine and Neurogenetics, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,Inserm U1258, Illkirch, France.,CNRS UMR7104, Illkirch, France.,Strasbourg University, Illkirch, France
| |
Collapse
|
31
|
Changes in Redox Signaling in the Skeletal Muscle with Aging. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4617801. [PMID: 30800208 PMCID: PMC6360032 DOI: 10.1155/2019/4617801] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 11/05/2018] [Accepted: 11/22/2018] [Indexed: 01/01/2023]
Abstract
Reduction in muscle strength with aging is due to both loss of muscle mass (quantity) and intrinsic force production (quality). Along with decreased functional capacity of the muscle, age-related muscle loss is associated with corresponding comorbidities and healthcare costs. Mitochondrial dysfunction and increased oxidative stress are the central driving forces for age-related skeletal muscle abnormalities. The increased oxidative stress in the aged muscle can lead to altered excitation-contraction coupling and calcium homeostasis. Furthermore, apoptosis-mediated fiber loss, atrophy of the remaining fibers, dysfunction of the satellite cells (muscle stem cells), and concomitant impaired muscle regeneration are also the consequences of increased oxidative stress, leading to a decrease in muscle mass, strength, and function of the aged muscle. Here we summarize the possible effects of oxidative stress in the aged muscle and the benefits of physical activity and antioxidant therapy.
Collapse
|
32
|
Carraro U. Collection of the Abstracts of the 2019Sp PMD: Translational Myology and Mobility Medicine. Eur J Transl Myol 2019; 29:8155. [PMID: 31019666 PMCID: PMC6460219 DOI: 10.4081/ejtm.2019.8155] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The Interdepartmental Research Centre of Myology (CIR-Myo), Department of Biomedical Sciences, University of Padova, Italy and the A&C M-C Foundation for Translational Myology, Padova, Italy organized with the scientific support of Helmut Kern, Jonathan C. Jarvis, Viviana Moresi, Marco Narici, Feliciano Protasi, Marco Sandri and Ugo Carraro, the 2019SpringPaduaMuscleDays: Translational Myology and Mobility Medicine, an International Conference held March 28-30, 2019 in Euganei Hills and Padova (Italy). Presentations and discussions of the Three Physiology Lectures and of the seven Sessions (I: Spinal Cord Neuromodulation and h-bFES in SC; II: Muscle epigenetics in aging and myopathies; III: Experimental approaches in animal models; IV: Face and Voice Rejuvenation; V: Muscle Imaging; VI: Official Meeting of the EU Center of Active Aging; VII: Early Rehabilitation after knee and hip replacement) were at very high levels. This was true in the past and will be true in future events thanks to researchers and clinicians who were and are eager to attend the PaduaMuscleDays.
Collapse
Affiliation(s)
- Ugo Carraro
- Interdepartmental Research Centre of Myology (CIR-Myo), Department of Biomedical Sciences, University of Padova, Italy
- A&C M-C Foundation for Translational Myology, Padova, Italy
| |
Collapse
|
33
|
Loro E, Bisetto S, Khurana TS. Mitochondrial ultrastructural adaptations in fast muscles of mice lacking IL15RA. J Cell Sci 2018; 131:jcs218313. [PMID: 30301784 PMCID: PMC6240298 DOI: 10.1242/jcs.218313] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 10/01/2018] [Indexed: 12/18/2022] Open
Abstract
The pro-inflammatory cytokine interleukin-15 (IL15) and its receptor α (IL15RA) participate in the regulation of musculoskeletal function and metabolism. Deletion of the Il15ra gene in mice increases spontaneous activity, improves fatigue resistance in the glycolytic extensor digitorum longus (EDL) and protects from diet-induced obesity. In humans, IL15RA single-nucleotide polymorphisms (SNPs) have been linked to muscle strength, metabolism and performance in elite endurance athletes. Taken together, these features suggest a possible role for IL15RA in muscle mitochondrial structure and function. Here, we have investigated the consequences of loss of IL15RA on skeletal muscle fiber-type properties and mitochondrial ultrastructure. Immunostaining of the EDL for myosin heavy chain (MyHC) isoforms revealed no significant changes in fiber type. Electron microscopy (EM) analysis of the EDL indicated an overall higher mitochondria content, and increased cristae density in subsarcolemmal and A-band mitochondrial subpopulations. The higher cristae density in Il15ra-/- mitochondria was associated with higher OPA1 and cardiolipin levels. Overall, these data extend our understanding of the role of IL15RA signaling in muscle oxidative metabolism and adaptation to exercise.
Collapse
MESH Headings
- AMP-Activated Protein Kinase Kinases
- Animals
- Cardiolipins/metabolism
- GTP Phosphohydrolases/metabolism
- Male
- Mice
- Mitochondria, Muscle/metabolism
- Mitochondria, Muscle/ultrastructure
- Muscle Fibers, Fast-Twitch/metabolism
- Muscle Fibers, Fast-Twitch/ultrastructure
- Muscle Fibers, Slow-Twitch/metabolism
- Muscle Fibers, Slow-Twitch/ultrastructure
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/ultrastructure
- Myosin Heavy Chains/metabolism
- Oxidation-Reduction
- Protein Kinases/metabolism
- Receptors, Interleukin-15/deficiency
- Receptors, Interleukin-15/metabolism
Collapse
Affiliation(s)
- Emanuele Loro
- Department of Physiology and Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sara Bisetto
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Tejvir S Khurana
- Department of Physiology and Pennsylvania Muscle Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
34
|
Role of STIM1/ORAI1-mediated store-operated Ca 2+ entry in skeletal muscle physiology and disease. Cell Calcium 2018; 76:101-115. [PMID: 30414508 DOI: 10.1016/j.ceca.2018.10.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 11/23/2022]
Abstract
Store-operated Ca2+ entry (SOCE) is a Ca2+ entry mechanism activated by depletion of intracellular Ca2+ stores. In skeletal muscle, SOCE is mediated by an interaction between stromal-interacting molecule-1 (STIM1), the Ca2+ sensor of the sarcoplasmic reticulum, and ORAI1, the Ca2+-release-activated-Ca2+ (CRAC) channel located in the transverse tubule membrane. This review focuses on the molecular mechanisms and physiological role of SOCE in skeletal muscle, as well as how alterations in STIM1/ORAI1-mediated SOCE contribute to muscle disease. Recent evidence indicates that SOCE plays an important role in both muscle development/growth and fatigue. The importance of SOCE in muscle is further underscored by the discovery that loss- and gain-of-function mutations in STIM1 and ORAI1 result in an eclectic array of disorders with clinical myopathy as central defining component. Despite differences in clinical phenotype, all STIM1/ORAI1 gain-of-function mutations-linked myopathies are characterized by the abnormal accumulation of intracellular membranes, known as tubular aggregates. Finally, dysfunctional STIM1/ORAI1-mediated SOCE also contributes to the pathogenesis of muscular dystrophy, malignant hyperthermia, and sarcopenia. The picture to emerge is that tight regulation of STIM1/ORAI1-dependent Ca2+ signaling is critical for optimal skeletal muscle development/function such that either aberrant increases or decreases in SOCE activity result in muscle dysfunction.
Collapse
|
35
|
Sébastien M, Giannesini B, Aubin P, Brocard J, Chivet M, Pietrangelo L, Boncompagni S, Bosc C, Brocard J, Rendu J, Gory-Fauré S, Andrieux A, Fourest-Lieuvin A, Fauré J, Marty I. Deletion of the microtubule-associated protein 6 (MAP6) results in skeletal muscle dysfunction. Skelet Muscle 2018; 8:30. [PMID: 30231928 PMCID: PMC6147105 DOI: 10.1186/s13395-018-0176-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/12/2018] [Indexed: 01/23/2023] Open
Abstract
Background The skeletal muscle fiber has a specific and precise intracellular organization which is at the basis of an efficient muscle contraction. Microtubules are long known to play a major role in the function and organization of many cells, but in skeletal muscle, the contribution of the microtubule cytoskeleton to the efficiency of contraction has only recently been studied. The microtubule network is dynamic and is regulated by many microtubule-associated proteins (MAPs). In the present study, the role of the MAP6 protein in skeletal muscle organization and function has been studied using the MAP6 knockout mouse line. Methods The presence of MAP6 transcripts and proteins was shown in mouse muscle homogenates and primary culture using RT-PCR and western blot. The in vivo evaluation of muscle force of MAP6 knockout (KO) mice was performed on anesthetized animals using electrostimulation coupled to mechanical measurement and multimodal magnetic resonance. The impact of MAP6 deletion on microtubule organization and intracellular structures was studied using immunofluorescent labeling and electron microscopy, and on calcium release for muscle contraction using Fluo-4 calcium imaging on cultured myotubes. Statistical analysis was performed using Student’s t test or the Mann-Whitney test. Results We demonstrate the presence of MAP6 transcripts and proteins in skeletal muscle. Deletion of MAP6 results in a large number of muscle modifications: muscle weakness associated with slight muscle atrophy, alterations of microtubule network and sarcoplasmic reticulum organization, and reduction in calcium release. Conclusion Altogether, our results demonstrate that MAP6 is involved in skeletal muscle function. Its deletion results in alterations in skeletal muscle contraction which contribute to the global deleterious phenotype of the MAP6 KO mice. As MAP6 KO mouse line is a model for schizophrenia, our work points to a possible muscle weakness associated to some forms of schizophrenia. Electronic supplementary material The online version of this article (10.1186/s13395-018-0176-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Muriel Sébastien
- INSERM 1216, Grenoble Institute of Neurosciences, F-38000, Grenoble, France.,University Grenoble Alpes, F-38000, Grenoble, France
| | | | - Perrine Aubin
- INSERM 1216, Grenoble Institute of Neurosciences, F-38000, Grenoble, France.,University Grenoble Alpes, F-38000, Grenoble, France
| | - Julie Brocard
- INSERM 1216, Grenoble Institute of Neurosciences, F-38000, Grenoble, France.,University Grenoble Alpes, F-38000, Grenoble, France
| | - Mathilde Chivet
- INSERM 1216, Grenoble Institute of Neurosciences, F-38000, Grenoble, France.,University Grenoble Alpes, F-38000, Grenoble, France
| | - Laura Pietrangelo
- CeSI-Met & DNICS, University G. d' Annunzio of Chieti, I-66100, Chieti, Italy
| | - Simona Boncompagni
- CeSI-Met & DNICS, University G. d' Annunzio of Chieti, I-66100, Chieti, Italy
| | - Christophe Bosc
- INSERM 1216, Grenoble Institute of Neurosciences, F-38000, Grenoble, France.,University Grenoble Alpes, F-38000, Grenoble, France
| | - Jacques Brocard
- INSERM 1216, Grenoble Institute of Neurosciences, F-38000, Grenoble, France.,University Grenoble Alpes, F-38000, Grenoble, France
| | - John Rendu
- INSERM 1216, Grenoble Institute of Neurosciences, F-38000, Grenoble, France.,University Grenoble Alpes, F-38000, Grenoble, France.,CHU Grenoble, Biochimie et Génétique Moléculaire, F-38000, Grenoble, France
| | - Sylvie Gory-Fauré
- INSERM 1216, Grenoble Institute of Neurosciences, F-38000, Grenoble, France.,University Grenoble Alpes, F-38000, Grenoble, France
| | - Annie Andrieux
- INSERM 1216, Grenoble Institute of Neurosciences, F-38000, Grenoble, France.,University Grenoble Alpes, F-38000, Grenoble, France.,CEA-Grenoble, BIG, F-38000, Grenoble, France
| | - Anne Fourest-Lieuvin
- INSERM 1216, Grenoble Institute of Neurosciences, F-38000, Grenoble, France.,University Grenoble Alpes, F-38000, Grenoble, France.,CEA-Grenoble, BIG, F-38000, Grenoble, France
| | - Julien Fauré
- INSERM 1216, Grenoble Institute of Neurosciences, F-38000, Grenoble, France.,University Grenoble Alpes, F-38000, Grenoble, France.,CHU Grenoble, Biochimie et Génétique Moléculaire, F-38000, Grenoble, France
| | - Isabelle Marty
- INSERM 1216, Grenoble Institute of Neurosciences, F-38000, Grenoble, France. .,University Grenoble Alpes, F-38000, Grenoble, France. .,GIN- Inserm U1216 - Bat EJ Safra, Chemin Fortuné Ferrini, 38700, La Tronche, France.
| |
Collapse
|
36
|
Witherick J, Brady S. Update on muscle disease. J Neurol 2018; 265:1717-1725. [DOI: 10.1007/s00415-018-8856-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 03/30/2018] [Indexed: 12/24/2022]
|
37
|
Kasahara K, Fukunaga Y, Igura S, Andoh R, Saito T, Suzuki I, Kanemitsu H, Suzuki D, Goto K, Nakamura D, Mochizuki M, Yasuda M, Inoue R, Tamura K, Nagatani M. Background data on NOD/Shi-scid IL-2Rγ null mice (NOG mice). J Toxicol Sci 2018; 42:689-705. [PMID: 29142168 DOI: 10.2131/jts.42.689] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
To obtain background data of NOD/Shi-scid IL-2Rγnull (NOG) mice, severely immunedeficient mice, a total of 120 animals were examined at 7, 26 and 52 weeks-old (20 mice/sex/group). The survival rate at 52 weeks-old was 95% (19/20) in both sexes. Clinically, circling behavior in one direction along the cage wall was observed in males after 8 weeks and females after 47 weeks-old, and hunchback position was found in males after 32 weeks-old. Hematologically, lymphocyte count markedly decreased at all ages, while white blood cell count increased in several mice at 52 weeks-old. Blood chemistry results revealed high values of aspartate aminotransferase, lactate dehydrogenase and creatine phosphokinase in some females at 26 weeks-old, without any related histological change. Histologically, lymphoid hypoplasia characterized by severe lymphocyte depletion with poorly developed tissue architectures was observed. In addition, spongiotic change in the nerve tissue was observed in both sexes at 7 and 26 weeks-old, and intracytoplasmic materials known as tubular aggregates in the skeletal muscles were found in males terminated at 26 and 52 weeks-old and in females at 52 weeks-old. Malignant lymphoma was found in one female euthanized at 20 weeks-old. Further, small intestinal adenoma, hepatocellular adenoma, leukemia, cerebral lipomatous hamartoma, Harderian gland adenoma and uterine polyp were also observed, and their incidences were low except for that of uterine polyp. This study provided detailed background data on NOG mice up to 52 weeks-old and provided information on appropriate use of NOG mice in the various research fields.
Collapse
Affiliation(s)
| | | | - Saori Igura
- BoZo Research Center Inc., Tsukuba Research Institute
| | - Rie Andoh
- BoZo Research Center Inc., Gotemba Research Institute
| | - Tsubasa Saito
- BoZo Research Center Inc., Gotemba Research Institute
| | - Isamu Suzuki
- BoZo Research Center Inc., Gotemba Research Institute
| | | | | | - Ken Goto
- BoZo Research Center Inc., Gotemba Research Institute
| | | | | | | | - Ryo Inoue
- Central Institute for Experimental Animals
| | | | | |
Collapse
|
38
|
Huang YL, Shen ZQ, Wu CY, Teng YC, Liao CC, Kao CH, Chen LK, Lin CH, Tsai TF. Comparative proteomic profiling reveals a role for Cisd2 in skeletal muscle aging. Aging Cell 2018; 17. [PMID: 29168286 PMCID: PMC5770874 DOI: 10.1111/acel.12705] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2017] [Indexed: 12/02/2022] Open
Abstract
Skeletal muscle has emerged as one of the most important tissues involved in regulating systemic metabolism. The gastrocnemius is a powerful skeletal muscle composed of predominantly glycolytic fast‐twitch fibers that are preferentially lost among old age. This decrease in gastrocnemius muscle mass is remarkable during aging; however, the underlying molecular mechanism is not fully understood. Strikingly, there is a ~70% decrease in Cisd2 protein, a key regulator of lifespan in mice and the disease gene for Wolfram syndrome 2 in humans, within the gastrocnemius after middle age among mice. A proteomics approach was used to investigate the gastrocnemius of naturally aged mice, and this was compared to the autonomous effect of Cisd2 on gastrocnemius aging using muscle‐specific Cisd2 knockout (mKO) mice as a premature aging model. Intriguingly, dysregulation of calcium signaling and activation of UPR/ER stress stand out as the top two pathways. Additionally, the activity of Serca1 was significantly impaired and this impairment is mainly attributable to irreversibly oxidative modifications of Serca. Our results reveal that the overall characteristics of the gastrocnemius are very similar when naturally aged mice and the Cisd2 mKO mice are compared in terms of pathological alterations, ultrastructural abnormalities, and proteomics profiling. This suggests that Cisd2 mKO mouse is a unique model for understanding the aging mechanism of skeletal muscle. Furthermore, this work substantiates the hypothesis that Cisd2 is crucial to the gastrocnemius muscle and suggests that Cisd2 is a potential therapeutic target for muscle aging.
Collapse
Affiliation(s)
- Yi-Long Huang
- Department of Life Sciences and Institute of Genome Sciences; National Yang-Ming University; Taipei Taiwan
| | - Zhao-Qing Shen
- Department of Life Sciences and Institute of Genome Sciences; National Yang-Ming University; Taipei Taiwan
| | - Chia-Yu Wu
- Department of Life Sciences and Institute of Genome Sciences; National Yang-Ming University; Taipei Taiwan
| | - Yuan-Chi Teng
- Program in Molecular Medicine; School of Life Sciences; National Yang-Ming University and Academia Sinica; Taipei Taiwan
| | - Chen-Chung Liao
- Proteomics Research Center; National Yang Ming University; Taipei Taiwan
| | - Cheng-Heng Kao
- Center of General Education; Chang Gung University; Taoyuan Taiwan
| | - Liang-Kung Chen
- Center for Geriatrics and Gerontology; Taipei Veterans General Hospital; Taipei Taiwan
- Aging and Health Research Center; National Yang-Ming University; Taipei Taiwan
| | - Chao-Hsiung Lin
- Department of Life Sciences and Institute of Genome Sciences; National Yang-Ming University; Taipei Taiwan
- Program in Molecular Medicine; School of Life Sciences; National Yang-Ming University and Academia Sinica; Taipei Taiwan
- Proteomics Research Center; National Yang Ming University; Taipei Taiwan
- Aging and Health Research Center; National Yang-Ming University; Taipei Taiwan
| | - Ting-Fen Tsai
- Department of Life Sciences and Institute of Genome Sciences; National Yang-Ming University; Taipei Taiwan
- Program in Molecular Medicine; School of Life Sciences; National Yang-Ming University and Academia Sinica; Taipei Taiwan
- Aging and Health Research Center; National Yang-Ming University; Taipei Taiwan
- Genome Research Center; National Yang-Ming University; Taipei Taiwan
- Institute of Molecular and Genomic Medicine; National Health Research Institutes; Zhunan Taiwan
| |
Collapse
|
39
|
Boncompagni S, Michelucci A, Pietrangelo L, Dirksen RT, Protasi F. Exercise-dependent formation of new junctions that promote STIM1-Orai1 assembly in skeletal muscle. Sci Rep 2017; 7:14286. [PMID: 29079778 PMCID: PMC5660245 DOI: 10.1038/s41598-017-14134-0] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 10/09/2017] [Indexed: 12/14/2022] Open
Abstract
Store-operated Ca2+ entry (SOCE), a ubiquitous mechanism that allows recovery of Ca2+ ions from the extracellular space, has been proposed to limit fatigue during repetitive skeletal muscle activity. However, the subcellular location for SOCE in muscle fibers has not been unequivocally identified. Here we show that exercise drives a significant remodeling of the sarcotubular system to form previously unidentified junctions between the sarcoplasmic reticulum (SR) and transverse-tubules (TTs). We also demonstrate that these new SR-TT junctions contain the molecular machinery that mediate SOCE: stromal interaction molecule-1 (STIM1), which functions as the SR Ca2+ sensor, and Orai1, the Ca2+-permeable channel in the TT. In addition, EDL muscles isolated from exercised mice exhibit an increased capability of maintaining contractile force during repetitive stimulation in the presence of 2.5 mM extracellular Ca2+, compared to muscles from control mice. This functional difference is significantly reduced by either replacement of extracellular Ca2+ with Mg2+ or the addition of SOCE inhibitors (BTP-2 and 2-APB). We propose that the new SR-TT junctions formed during exercise, and that contain STIM1 and Orai1, function as Ca2+Entry Units (CEUs), structures that provide a pathway to rapidly recover Ca2+ ions from the extracellular space during repetitive muscle activity.
Collapse
Affiliation(s)
- Simona Boncompagni
- CeSI-Met - Center for Research on Ageing and Translational Medicine, University G. d'Annunzio, Chieti, I-66100, Italy.,DNICS - Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio, Chieti, I-66100, Italy
| | - Antonio Michelucci
- CeSI-Met - Center for Research on Ageing and Translational Medicine, University G. d'Annunzio, Chieti, I-66100, Italy.,DNICS - Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio, Chieti, I-66100, Italy
| | - Laura Pietrangelo
- CeSI-Met - Center for Research on Ageing and Translational Medicine, University G. d'Annunzio, Chieti, I-66100, Italy.,DNICS - Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio, Chieti, I-66100, Italy
| | - Robert T Dirksen
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Feliciano Protasi
- CeSI-Met - Center for Research on Ageing and Translational Medicine, University G. d'Annunzio, Chieti, I-66100, Italy. .,DMSI - Department of Medicine and Aging Science, University G. d'Annunzio, Chieti, I-66100, Italy.
| |
Collapse
|
40
|
Barone V, Del Re V, Gamberucci A, Polverino V, Galli L, Rossi D, Costanzi E, Toniolo L, Berti G, Malandrini A, Ricci G, Siciliano G, Vattemi G, Tomelleri G, Pierantozzi E, Spinozzi S, Volpi N, Fulceri R, Battistutta R, Reggiani C, Sorrentino V. Identification and characterization of three novel mutations in the CASQ1 gene in four patients with tubular aggregate myopathy. Hum Mutat 2017; 38:1761-1773. [PMID: 28895244 DOI: 10.1002/humu.23338] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 08/14/2017] [Accepted: 09/04/2017] [Indexed: 12/22/2022]
Abstract
Here, we report the identification of three novel missense mutations in the calsequestrin-1 (CASQ1) gene in four patients with tubular aggregate myopathy. These CASQ1 mutations affect conserved amino acids in position 44 (p.(Asp44Asn)), 103 (p.(Gly103Asp)), and 385 (p.(Ile385Thr)). Functional studies, based on turbidity and dynamic light scattering measurements at increasing Ca2+ concentrations, showed a reduced Ca2+ -dependent aggregation for the CASQ1 protein containing p.Asp44Asn and p.Gly103Asp mutations and a slight increase in Ca2+ -dependent aggregation for the p.Ile385Thr. Accordingly, limited trypsin proteolysis assay showed that p.Asp44Asn and p.Gly103Asp were more susceptible to trypsin cleavage in the presence of Ca2+ in comparison with WT and p.Ile385Thr. Analysis of single muscle fibers of a patient carrying the p.Gly103Asp mutation showed a significant reduction in response to caffeine stimulation, compared with normal control fibers. Expression of CASQ1 mutations in eukaryotic cells revealed a reduced ability of all these CASQ1 mutants to store Ca2+ and a reduced inhibitory effect of p.Ile385Thr and p.Asp44Asn on store operated Ca2+ entry. These results widen the spectrum of skeletal muscle diseases associated with CASQ1 and indicate that these mutations affect properties critical for correct Ca2+ handling in skeletal muscle fibers.
Collapse
Affiliation(s)
- Virginia Barone
- Department of Molecular and Developmental Medicine, Molecular Medicine Section, University of Siena, Siena, Italy
| | - Valeria Del Re
- Department of Molecular and Developmental Medicine, Molecular Medicine Section, University of Siena, Siena, Italy
| | - Alessandra Gamberucci
- Department of Molecular and Developmental Medicine, Molecular Medicine Section, University of Siena, Siena, Italy
| | - Valentina Polverino
- Department of Molecular and Developmental Medicine, Molecular Medicine Section, University of Siena, Siena, Italy
| | - Lucia Galli
- Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Daniela Rossi
- Department of Molecular and Developmental Medicine, Molecular Medicine Section, University of Siena, Siena, Italy.,Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Elisa Costanzi
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Luana Toniolo
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,CNR, Institute of Neuroscience, Padova, Italy
| | - Gianna Berti
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - Alessandro Malandrini
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - Giulia Ricci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gaetano Vattemi
- Department of Neurological Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, Verona, Italy
| | - Giuliano Tomelleri
- Department of Neurological Neurosciences, Biomedicine and Movement Sciences, Section of Clinical Neurology, University of Verona, Verona, Italy
| | - Enrico Pierantozzi
- Department of Molecular and Developmental Medicine, Molecular Medicine Section, University of Siena, Siena, Italy
| | - Simone Spinozzi
- Department of Molecular and Developmental Medicine, Molecular Medicine Section, University of Siena, Siena, Italy
| | - Nila Volpi
- Department of Medical, Surgical and Neurological Sciences, University of Siena, Siena, Italy
| | - Rosella Fulceri
- Department of Molecular and Developmental Medicine, Molecular Medicine Section, University of Siena, Siena, Italy
| | | | - Carlo Reggiani
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,CNR, Institute of Neuroscience, Padova, Italy
| | - Vincenzo Sorrentino
- Department of Molecular and Developmental Medicine, Molecular Medicine Section, University of Siena, Siena, Italy.,Azienda Ospedaliera Universitaria Senese, Siena, Italy
| |
Collapse
|
41
|
Pette D. What Can be Learned from the Time Course of Changes in Low-Frequency Stimulated Muscle? Eur J Transl Myol 2017; 27:6723. [PMID: 28713537 PMCID: PMC5505094 DOI: 10.4081/ejtm.2017.6723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Not available.
Collapse
Affiliation(s)
- Dirk Pette
- Department of Biology, University of Konstanz, Germany
| |
Collapse
|
42
|
Dex S, Alberton P, Willkomm L, Söllradl T, Bago S, Milz S, Shakibaei M, Ignatius A, Bloch W, Clausen-Schaumann H, Shukunami C, Schieker M, Docheva D. Tenomodulin is Required for Tendon Endurance Running and Collagen I Fibril Adaptation to Mechanical Load. EBioMedicine 2017; 20:240-254. [PMID: 28566251 PMCID: PMC5478207 DOI: 10.1016/j.ebiom.2017.05.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 05/03/2017] [Accepted: 05/03/2017] [Indexed: 01/13/2023] Open
Abstract
Tendons are dense connective tissues that attach muscles to bone with an indispensable role in locomotion because of their intrinsic properties of storing and releasing muscle- generated elastic energy. Tenomodulin (Tnmd) is a well-accepted gene marker for the mature tendon/ligament lineage and its loss-of -function in mice leads to a phenotype with distinct signs of premature aging on tissue and stem/progenitor cell levels. Based on these findings, we hypothesized that Tnmd might be an important factor in the functional performance of tendons. Firstly, we revealed that Tnmd is a mechanosensitive gene and that the C-terminus of the protein co-localize with collagen I-type fibers in the extracellular matrix. Secondly, using an endurance training protocol, we compared Tnmd knockout mice with wild types and showed that Tnmd deficiency leads to significantly inferior running performance that further worsens with training. In these mice, endurance running was hindered due to abnormal response of collagen I cross-linking and proteoglycan genes leading to an inadequate collagen I fiber thickness and elasticity. In sum, our study demonstrates that Tnmd is required for proper tendon tissue adaptation to endurance running and aids in better understanding of the structural-functional relationships of tendon tissues. Tnmd is a mechanosensitive gene and its protein is co-localized with collagen I fibers in the ECM of tendons. Tnmd knockout mice fail in endurance running tests, a phenotype that worsens with training. Tnmd knockout tendons had significantly thicker and stiffer collagen I fibers and altered crosslinking gene expression.
We performed a multidisciplinary approach to decipher the role of tenomodulin, a gene marker for the mature tendon lineage, in tendon functional performance. Loss-of-function in mice led to significantly inferior endurance running and detailed analyses revealed that tenomodulin is involved in the regulation of collagen I fiber structural and biomechanical properties in response to exercise. Our study expands the current view on the complex structural-functional relationships of tendon tissues, and tenomodulin expression levels may indicate whether an individual is suitable for a certain sport.
Collapse
Affiliation(s)
- Sarah Dex
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig-Maximilians-University (LMU), 80336 Munich, Germany
| | - Paolo Alberton
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig-Maximilians-University (LMU), 80336 Munich, Germany
| | - Lena Willkomm
- Department of Molecular and Cellular Sports Medicine, German Sport University, 50933 Cologne, Germany
| | - Thomas Söllradl
- Center for Applied Tissue Engineering and Regenerative Medicine - CANTER, University of Applied Sciences, 80335 Munich, Germany
| | - Sandra Bago
- Center for Applied Tissue Engineering and Regenerative Medicine - CANTER, University of Applied Sciences, 80335 Munich, Germany
| | - Stefan Milz
- Department of Anatomy, Ludwig-Maximilian University (LMU), 80336 Munich, Germany
| | - Mehdi Shakibaei
- Department of Anatomy, Ludwig-Maximilian University (LMU), 80336 Munich, Germany
| | - Anita Ignatius
- Institute of Orthopaedic Research and Biomechanics, University of Ulm, 89081 Ulm, Germany
| | - Wilhelm Bloch
- Department of Molecular and Cellular Sports Medicine, German Sport University, 50933 Cologne, Germany
| | - Hauke Clausen-Schaumann
- Center for Applied Tissue Engineering and Regenerative Medicine - CANTER, University of Applied Sciences, 80335 Munich, Germany
| | - Chisa Shukunami
- Department of Molecular Biology and Biochemistry, Division of Basic Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, 734-8553 Hiroshima, Japan
| | - Matthias Schieker
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig-Maximilians-University (LMU), 80336 Munich, Germany; Novartis Institute for Biomedical Research (NIBR), Translational Medicine Musculoskeletal Disease, 4056 Basel, Switzerland
| | - Denitsa Docheva
- Experimental Surgery and Regenerative Medicine, Department of Surgery, Ludwig-Maximilians-University (LMU), 80336 Munich, Germany; Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, 93053 Regensburg, Germany.
| |
Collapse
|
43
|
Böhm J, Bulla M, Urquhart JE, Malfatti E, Williams SG, O'Sullivan J, Szlauer A, Koch C, Baranello G, Mora M, Ripolone M, Violano R, Moggio M, Kingston H, Dawson T, DeGoede CG, Nixon J, Boland A, Deleuze JF, Romero N, Newman WG, Demaurex N, Laporte J. ORAI1 Mutations with Distinct Channel Gating Defects in Tubular Aggregate Myopathy. Hum Mutat 2017; 38:426-438. [PMID: 28058752 DOI: 10.1002/humu.23172] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 01/02/2017] [Indexed: 01/07/2023]
Abstract
Calcium (Ca2+ ) is a physiological key factor, and the precise modulation of free cytosolic Ca2+ levels regulates multiple cellular functions. Store-operated Ca2+ entry (SOCE) is a major mechanism controlling Ca2+ homeostasis, and is mediated by the concerted activity of the Ca2+ sensor STIM1 and the Ca2+ channel ORAI1. Dominant gain-of-function mutations in STIM1 or ORAI1 cause tubular aggregate myopathy (TAM) or Stormorken syndrome, whereas recessive loss-of-function mutations are associated with immunodeficiency. Here, we report the identification and functional characterization of novel ORAI1 mutations in TAM patients. We assess basal activity and SOCE of the mutant ORAI1 channels, and we demonstrate that the G98S and V107M mutations generate constitutively permeable ORAI1 channels, whereas T184M alters the channel permeability only in the presence of STIM1. These data indicate a mutation-dependent pathomechanism and a genotype/phenotype correlation, as the ORAI1 mutations associated with the most severe symptoms induce the strongest functional cellular effect. Examination of the non-muscle features of our patients strongly suggests that TAM and Stormorken syndrome are spectra of the same disease. Overall, our results emphasize the importance of SOCE in skeletal muscle physiology, and provide new insights in the pathomechanisms involving aberrant Ca2+ homeostasis and leading to muscle dysfunction.
Collapse
Affiliation(s)
- Johann Böhm
- Departement of Translational Medicine and Neurogenetics, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Illkirch, France.,Inserm, U964, Illkirch, France.,CNRS, UMR7104, Illkirch, France.,Fédération de Médecine Translationnelle, University of Strasbourg, Illkirch, France.,Collège de France, Chaire de Génétique Humaine, Illkirch, France
| | - Monica Bulla
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Jill E Urquhart
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester, UK.,Manchester Centre for Genomic Medicine, University of Manchester, Manchester, UK
| | - Edoardo Malfatti
- Centre de Référence de Pathologie Neuromusculaire Paris-Est, Groupe Hospitalier Pitié-Salpêtrière, Paris, France.,Institut de Myologie, GHU La Pitie-Salpetriere, Paris, France
| | - Simon G Williams
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester, UK
| | - James O'Sullivan
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester, UK.,Manchester Centre for Genomic Medicine, University of Manchester, Manchester, UK
| | - Anastazja Szlauer
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Catherine Koch
- Departement of Translational Medicine and Neurogenetics, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Illkirch, France.,Inserm, U964, Illkirch, France.,CNRS, UMR7104, Illkirch, France.,Fédération de Médecine Translationnelle, University of Strasbourg, Illkirch, France.,Collège de France, Chaire de Génétique Humaine, Illkirch, France
| | - Giovanni Baranello
- Developmental Neurology Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milano, Italy
| | - Marina Mora
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico C. Besta, Milano, Italy
| | - Michela Ripolone
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Raffaella Violano
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Maurizio Moggio
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Helen Kingston
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester, UK
| | - Timothy Dawson
- Department of Pathology, Royal Preston Hospital, Preston, UK
| | | | - John Nixon
- Department of Neurology, Royal Preston Hospital, Preston, UK
| | - Anne Boland
- Centre National de Génotypage, Institut de Génomique, CEA, Evry, France
| | | | - Norma Romero
- Centre de Référence de Pathologie Neuromusculaire Paris-Est, Groupe Hospitalier Pitié-Salpêtrière, Paris, France.,Institut de Myologie, GHU La Pitie-Salpetriere, Paris, France
| | - William G Newman
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Manchester, UK.,Manchester Centre for Genomic Medicine, University of Manchester, Manchester, UK
| | - Nicolas Demaurex
- Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Jocelyn Laporte
- Departement of Translational Medicine and Neurogenetics, IGBMC (Institut de Génétique et de Biologie Moléculaire et Cellulaire), Illkirch, France.,Inserm, U964, Illkirch, France.,CNRS, UMR7104, Illkirch, France.,Fédération de Médecine Translationnelle, University of Strasbourg, Illkirch, France.,Collège de France, Chaire de Génétique Humaine, Illkirch, France
| |
Collapse
|
44
|
Tang K, Pasqua T, Biswas A, Mahata S, Tang J, Tang A, Bandyopadhyay GK, Sinha-Hikim AP, Chi NW, Webster NJG, Corti A, Mahata SK. Muscle injury, impaired muscle function and insulin resistance in Chromogranin A-knockout mice. J Endocrinol 2017; 232:137-153. [PMID: 27799464 PMCID: PMC5287349 DOI: 10.1530/joe-16-0370] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 10/31/2016] [Indexed: 12/22/2022]
Abstract
Chromogranin A (CgA) is widely expressed in endocrine and neuroendocrine tissues as well as in the central nervous system. We observed CgA expression (mRNA and protein) in the gastrocnemius (GAS) muscle and found that performance of CgA-deficient Chga-KO mice in treadmill exercise was impaired. Supplementation with CgA in Chga-KO mice restored exercise ability suggesting a novel role for endogenous CgA in skeletal muscle function. Chga-KO mice display (i) lack of exercise-induced stimulation of pAKT, pTBC1D1 and phospho-p38 kinase signaling, (ii) loss of GAS muscle mass, (iii) extensive formation of tubular aggregates (TA), (iv) disorganized cristae architecture in mitochondria, (v) increased expression of the inflammatory cytokines Tnfα, Il6 and Ifnγ, and fibrosis. The impaired maximum running speed and endurance in the treadmill exercise in Chga-KO mice correlated with decreased glucose uptake and glycolysis, defects in glucose oxidation and decreased mitochondrial cytochrome C oxidase activity. The lack of adaptation to endurance training correlated with the lack of stimulation of p38MAPK that is known to mediate the response to tissue damage. As CgA sorts proteins to the regulated secretory pathway, we speculate that lack of CgA could cause misfolding of membrane proteins inducing aggregation of sarcoplasmic reticulum (SR) membranes and formation of tubular aggregates that is observed in Chga-KO mice. In conclusion, CgA deficiency renders the muscle energy deficient, impairs performance in treadmill exercise and prevents regeneration after exercise-induced tissue damage.
Collapse
Affiliation(s)
- Kechun Tang
- Department of MedicineUniversity of California, San Diego, La Jolla, California, USA
| | - Teresa Pasqua
- Department of MedicineUniversity of California, San Diego, La Jolla, California, USA
| | - Angshuman Biswas
- Department of MedicineUniversity of California, San Diego, La Jolla, California, USA
| | - Sumana Mahata
- Division of Biology & Biological EngineeringCalifornia Institute of Technology, Pasadena, California, USA
| | - Jennifer Tang
- Department of MedicineUniversity of California, San Diego, La Jolla, California, USA
| | - Alisa Tang
- Department of MedicineUniversity of California, San Diego, La Jolla, California, USA
| | | | - Amiya P Sinha-Hikim
- Charles Drew University of Medicine and ScienceLos Angeles, California, USA
- David Geffen School of MedicineUniversity of California-Los Angeles, Los Angeles, California, USA
| | - Nai-Wen Chi
- Department of MedicineUniversity of California, San Diego, La Jolla, California, USA
- VA San Diego Healthcare SystemSan Diego, California, USA
| | - Nicholas J G Webster
- Department of MedicineUniversity of California, San Diego, La Jolla, California, USA
- VA San Diego Healthcare SystemSan Diego, California, USA
| | - Angelo Corti
- IRCCS San Raffaele Scientific InstituteSan Raffaele Vita-Salute University, Milan, Italy
| | - Sushil K Mahata
- Department of MedicineUniversity of California, San Diego, La Jolla, California, USA
- VA San Diego Healthcare SystemSan Diego, California, USA
| |
Collapse
|
45
|
Pietrangelo L, D'Incecco A, Ainbinder A, Michelucci A, Kern H, Dirksen RT, Boncompagni S, Protasi F. Age-dependent uncoupling of mitochondria from Ca2⁺ release units in skeletal muscle. Oncotarget 2016; 6:35358-71. [PMID: 26485763 PMCID: PMC4742110 DOI: 10.18632/oncotarget.6139] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 09/22/2015] [Indexed: 12/03/2022] Open
Abstract
Calcium release units (CRUs) and mitochondria control myoplasmic [Ca2+] levels and ATP production in muscle, respectively. We recently reported that these two organelles are structurally connected by tethers, which promote proximity and proper Ca2+ signaling. Here we show that disposition, ultrastructure, and density of CRUs and mitochondria and their reciprocal association are compromised in muscle from aged mice. Specifically, the density of CRUs and mitochondria is decreased in muscle fibers from aged (>24 months) vs. adult (3-12 months), with an increased percentage of mitochondria being damaged and misplaced from their normal triadic position. A significant reduction in tether (13.8±0.4 vs. 5.5±0.3 tethers/100μm2) and CRU-mitochondrial pair density (37.4±0.8 vs. 27.0±0.7 pairs/100μm2) was also observed in aged mice. In addition, myoplasmic Ca2+ transient (1.68±0.08 vs 1.37±0.03) and mitochondrial Ca2+ uptake (9.6±0.050 vs 6.58±0.54) during repetitive high frequency tetanic stimulation were significantly decreased. Finally oxidative stress, assessed from levels of 3-nitrotyrosine (3-NT), Cu/Zn superoxide-dismutase (SOD1) and Mn superoxide dismutase (SOD2) expression, were significantly increased in aged mice. The reduced association between CRUs and mitochondria with aging may contribute to impaired cross-talk between the two organelles, possibly resulting in reduced efficiency in activity-dependent ATP production and, thus, to age-dependent decline of skeletal muscle performance.
Collapse
Affiliation(s)
- Laura Pietrangelo
- CeSI - Center for Research on Aging & DNICS, Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio, Chieti, Italy
| | - Alessandra D'Incecco
- CeSI - Center for Research on Aging & DNICS, Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio, Chieti, Italy
| | - Alina Ainbinder
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Antonio Michelucci
- CeSI - Center for Research on Aging & DNICS, Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio, Chieti, Italy
| | - Helmut Kern
- Ludwig Boltzmann Institute of Electrical Stimulation and Physical Rehabilitation & Institute of Physical Medicine and Rehabilitation, Wilhelminenspital, Vienna, Austria
| | - Robert T Dirksen
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Simona Boncompagni
- CeSI - Center for Research on Aging & DNICS, Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio, Chieti, Italy
| | - Feliciano Protasi
- CeSI - Center for Research on Aging & DNICS, Department of Neuroscience, Imaging and Clinical Sciences, University G. d'Annunzio, Chieti, Italy
| |
Collapse
|
46
|
Schisler JC, Patterson C, Willis MS. SKELETAL MUSCLE MITOCHONDRIAL ALTERATIONS IN CARBOXYL TERMINUS OF HSC70 INTERACTING PROTEIN (CHIP) -/- MICE. AFRICAN JOURNAL OF CELLULAR PATHOLOGY 2016; 6:28-36. [PMID: 28593200 PMCID: PMC5459302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
AIM Hereditary ataxias are characterized by a slowly progressive loss of gait, hand, speech, and eye coordination and cerebellar atrophy. A subset of these, including hypogonadism, are inherited as autosomal recessive traits involving coding mutations of genes involved in ubiquitination including RNF216, OTUD4, and STUB1. Cerebellar CHIPopathy (MIM 615768) is a form of autosomal recessive spinocerebellar ataxia (SCAR16) and when accompanied with hypogonadism, clinically resembles the Gordon Holmes Syndrome (GHS). A causal missense mutation in the gene that encodes the carboxy terminus of HSP-70 interacting protein (CHIP) protein was reported for the first time in 2014. CHIP-/- mice were found to phenocopy the motor deficiencies and some aspects of the hypogonadism observed in patients with STUB1 mutations. However, mechanisms responsible for these deficits are not known. METHODS In a survey of skeletal muscle by transmission electron microscopy. RESULTS CHIP-/- mice at 6 months of age were found to have morphological changes consistent with increased sarcoplasmic reticulum compartments in quadriceps muscle and gastrocnemius (toxic oligomers and tubular aggregates), but not in soleus. CONCLUSION Since CHIP has been implicated in ER stress in non-muscle cells, these findings illustrate potential parallel roles of CHIP in the muscle sarcoplasmic reticulum, a hypothesis that may be clinically relevant in a variety of common muscular and cardiac diseases.
Collapse
Affiliation(s)
- Jonathan C. Schisler
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC USA
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC USA
| | - Cam Patterson
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC USA
- Presbyterian Hospital/Weill-Cornell Medical Center, New York, New York, USA
| | - Monte S. Willis
- McAllister Heart Institute, University of North Carolina, Chapel Hill, NC USA
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC USA
- Department of Pathology & Laboratory Medicine, University of North Carolina, Chapel Hill, NC USA
| |
Collapse
|
47
|
Perni S, Close M, Franzini-Armstrong C. Design Principles of Reptilian Muscles: Calcium Cycling Strategies. Anat Rec (Hoboken) 2015; 299:352-60. [PMID: 26663776 DOI: 10.1002/ar.23302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 10/08/2015] [Accepted: 10/29/2015] [Indexed: 11/07/2022]
Abstract
The ultrastructure of the sarcoplasmic reticulum (SR) in skeletal muscles was compared among different reptile species (watersnake, boa constrictor, lizard, and turtle) and a mammal (mouse). Morphometric analysis demonstrates a pattern of increasing calsequestrin (CASQ) content in the lumen of SR from turtle to lizard, watersnake, and boa constrictor, and this content is in all cases higher than in mouse. In all reptiles sampled except turtle, CASQ is not confined to the junctional sarcoplasmic reticulum (jSR) cisternae as it is in other species. It instead fills the entire longitudinal (free) SR (fSR) regions, and in the extreme case of snakes, the shape of the SR is modified around the extra CASQ. We suggest that high CASQ content may represent an ATP-saving adaptation that permits relatively low metabolic rates during prolonged periods of fasting and inactivity, particularly in watersnake and boa constrictor.
Collapse
Affiliation(s)
- Stefano Perni
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Matthew Close
- Department of Biological Sciences, Williams Annex., Lehigh University, Bethlehem, Pennsylvania
| | - Clara Franzini-Armstrong
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
48
|
Van B, Nishi M, Komazaki S, Ichimura A, Kakizawa S, Nakanaga K, Aoki J, Park KH, Ma J, Ueyama T, Ogata T, Maruyama N, Takeshima H. Mitsugumin 56 (hedgehog acyltransferase-like) is a sarcoplasmic reticulum-resident protein essential for postnatal muscle maturation. FEBS Lett 2015; 589:1095-104. [DOI: 10.1016/j.febslet.2015.03.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 03/24/2015] [Accepted: 03/26/2015] [Indexed: 02/02/2023]
|
49
|
Pedrotti S, Giudice J, Dagnino-Acosta A, Knoblauch M, Singh RK, Hanna A, Mo Q, Hicks J, Hamilton S, Cooper TA. The RNA-binding protein Rbfox1 regulates splicing required for skeletal muscle structure and function. Hum Mol Genet 2015; 24:2360-74. [PMID: 25575511 DOI: 10.1093/hmg/ddv003] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The Rbfox family of RNA-binding proteins is highly conserved with established roles in alternative splicing (AS) regulation. High-throughput studies aimed at understanding transcriptome remodeling have revealed skeletal muscle as displaying one of the largest number of AS events. This finding is consistent with requirements for tissue-specific protein isoforms needed to sustain muscle-specific functions. Rbfox1 is abundant in vertebrate brain, heart and skeletal muscle. Genome-wide genetic approaches have linked the Rbfox1 gene to autism, and a brain-specific knockout mouse revealed a critical role for this splicing regulator in neuronal function. Moreover, a Caenorhabditis elegans Rbfox1 homolog regulates muscle-specific splicing. To determine the role of Rbfox1 in muscle function, we developed a conditional knockout mouse model to specifically delete Rbfox1 in adult tissue. We show that Rbfox1 is required for muscle function but a >70% loss of Rbfox1 in satellite cells does not disrupt muscle regeneration. Deep sequencing identified aberrant splicing of multiple genes including those encoding myofibrillar and cytoskeletal proteins, and proteins that regulate calcium handling. Ultrastructure analysis of Rbfox1(-/-) muscle by electron microscopy revealed abundant tubular aggregates. Immunostaining showed mislocalization of the sarcoplasmic reticulum proteins Serca1 and Ryr1 in a pattern indicative of colocalization with the tubular aggregates. Consistent with mislocalization of Serca1 and Ryr1, calcium handling was drastically altered in Rbfox1(-/-) muscle. Moreover, muscle function was significantly impaired in Rbfox1(-/-) muscle as indicated by decreased force generation. These results demonstrate that Rbfox1 regulates a network of AS events required to maintain multiple aspects of muscle physiology.
Collapse
Affiliation(s)
| | | | | | | | | | - Amy Hanna
- Department of Molecular Physiology and Biophysics
| | - Qianxing Mo
- Dan L. Duncan Cancer Center, Department of Medicine
| | - John Hicks
- Department of Pathology and Immunology, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA and Texas Children's Hospital, Houston, TX 77030, USA
| | | | - Thomas A Cooper
- Department of Pathology and Immunology, Department of Molecular and Cellular Biology, Department of Molecular Physiology and Biophysics,
| |
Collapse
|
50
|
Giacomello E, Quarta M, Paolini C, Squecco R, Fusco P, Toniolo L, Blaauw B, Formoso L, Rossi D, Birkenmeier C, Peters LL, Francini F, Protasi F, Reggiani C, Sorrentino V. Deletion of small ankyrin 1 (sAnk1) isoforms results in structural and functional alterations in aging skeletal muscle fibers. Am J Physiol Cell Physiol 2014; 308:C123-38. [PMID: 25354526 DOI: 10.1152/ajpcell.00090.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Muscle-specific ankyrins 1 (sAnk1) are a group of small ankyrin 1 isoforms, of which sAnk1.5 is the most abundant. sAnk1 are localized in the sarcoplasmic reticulum (SR) membrane from where they interact with obscurin, a myofibrillar protein. This interaction appears to contribute to stabilize the SR close to the myofibrils. Here we report the structural and functional characterization of skeletal muscles from sAnk1 knockout mice (KO). Deletion of sAnk1 did not change the expression and localization of SR proteins in 4- to 6-mo-old sAnk1 KO mice. Structurally, the main modification observed in skeletal muscles of adult sAnk1 KO mice (4-6 mo of age) was the reduction of SR volume at the sarcomere A band level. With increasing age (at 12-15 mo of age) extensor digitorum longus (EDL) skeletal muscles of sAnk1 KO mice develop prematurely large tubular aggregates, whereas diaphragm undergoes significant structural damage. Parallel functional studies revealed specific changes in the contractile performance of muscles from sAnk1 KO mice and a reduced exercise tolerance in an endurance test on treadmill compared with control mice. Moreover, reduced Qγ charge and L-type Ca(2+) current, which are indexes of affected excitation-contraction coupling, were observed in diaphragm fibers from 12- to 15-mo-old mice, but not in other skeletal muscles from sAnk1 KO mice. Altogether, these findings show that the ablation of sAnk1, by altering the organization of the SR, renders skeletal muscles susceptible to undergo structural and functional alterations more evident with age, and point to an important contribution of sAnk1 to the maintenance of the longitudinal SR architecture.
Collapse
Affiliation(s)
- E Giacomello
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy; IIM-Interuniversity Institute of Myology
| | - M Quarta
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - C Paolini
- Ce.S.I., Center for Research on Ageing and Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio, Chieti, Italy; IIM-Interuniversity Institute of Myology
| | - R Squecco
- Department of Experimental and Clinical Medicine, University of Florence, Florence Italy; IIM-Interuniversity Institute of Myology
| | - P Fusco
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - L Toniolo
- Department of Biomedical Sciences, University of Padova, Padua, Italy; IIM-Interuniversity Institute of Myology
| | - B Blaauw
- Department of Biomedical Sciences, University of Padova, Padua, Italy; IIM-Interuniversity Institute of Myology; Venetian Institute of Molecular Medicine, Padua, Italy
| | - L Formoso
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - D Rossi
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy; IIM-Interuniversity Institute of Myology
| | | | | | - F Francini
- Department of Experimental and Clinical Medicine, University of Florence, Florence Italy; IIM-Interuniversity Institute of Myology
| | - F Protasi
- Ce.S.I., Center for Research on Ageing and Department of Neuroscience, Imaging, and Clinical Sciences, University G. d'Annunzio, Chieti, Italy; IIM-Interuniversity Institute of Myology
| | - C Reggiani
- Department of Biomedical Sciences, University of Padova, Padua, Italy; IIM-Interuniversity Institute of Myology; CNR-Neuroscience Institute, Padua, Italy; and
| | - V Sorrentino
- Molecular Medicine Section, Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy; IIM-Interuniversity Institute of Myology;
| |
Collapse
|