1
|
Wu F, Lin B, Chen J, Zheng F, Yang Y, Rasheed U, Chen G. Mechanistic Insights into the Antioxidant Potential of Sugarcane Vinegar Polyphenols: A Combined Approach of DPPH-UPLC-MS, Network Pharmacology and Molecular Docking. Foods 2024; 13:3379. [PMID: 39517163 PMCID: PMC11545288 DOI: 10.3390/foods13213379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
This study investigated the antioxidant potential of sugarcane vinegar, an emerging functional food, by analyzing its polyphenols and underlying molecular mechanisms that intervene in oxidative stress. Using a 1,1-diphenyl-2-trinitrophenylhydrazine (DPPH) assay combined with UPLC-MS analysis, six key polyphenols were identified: chlorogenic acid, caffeic acid, ferulic acid, luteolin, protocatechuic acid, and syringic acid. These compounds showed a positive correlation with antioxidant capacity. In a simulated sugarcane vinegar environment, these polyphenols exhibited synergistic antioxidant effects, while in methanol, antagonistic interactions were predominant. Network pharmacology revealed five key polyphenols targeting 10 critical proteins involved in oxidative stress, including the PI3K-Akt and IL-17 signaling pathways. Molecular docking confirmed strong binding affinities between these polyphenols and core targets like PTGS2, STAT3, and GSK3B. This study establishes a reference for the antioxidant mechanisms of sugarcane vinegar and highlights its potential for developing functional products.
Collapse
Affiliation(s)
- Feifei Wu
- Guangxi South Subtropical Agricultural Research Institute, Guangxi Academy of Agricultural Sciences, Longzhou 532400, China; (F.W.); (J.C.)
- Institute of Agro-Products Processing Science and Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (B.L.); (F.Z.); (Y.Y.)
| | - Bo Lin
- Institute of Agro-Products Processing Science and Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (B.L.); (F.Z.); (Y.Y.)
| | - Jing Chen
- Guangxi South Subtropical Agricultural Research Institute, Guangxi Academy of Agricultural Sciences, Longzhou 532400, China; (F.W.); (J.C.)
- Guangxi Subtropical Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530001, China;
| | - Fengjin Zheng
- Institute of Agro-Products Processing Science and Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (B.L.); (F.Z.); (Y.Y.)
| | - Yuxia Yang
- Institute of Agro-Products Processing Science and Technology, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; (B.L.); (F.Z.); (Y.Y.)
| | - Usman Rasheed
- Guangxi Subtropical Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530001, China;
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Nanning 530001, China
- Guangxi Key Laboratory of Quality and Safety Control for Subtropical Fruits, Nanning 530001, China
| | - Ganlin Chen
- Guangxi Subtropical Crops Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530001, China;
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Nanning 530001, China
- Guangxi Key Laboratory of Quality and Safety Control for Subtropical Fruits, Nanning 530001, China
| |
Collapse
|
2
|
Liu QQ, Wu GH, Wang XC, Xiong XW, Rui-Wang, Yao BL. The role of Foxo3a in neuron-mediated cognitive impairment. Front Mol Neurosci 2024; 17:1424561. [PMID: 38962803 PMCID: PMC11220205 DOI: 10.3389/fnmol.2024.1424561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
Cognitive impairment (COI) is a prevalent complication across a spectrum of brain disorders, underpinned by intricate mechanisms yet to be fully elucidated. Neurons, the principal cell population of the nervous system, orchestrate cognitive processes and govern cognitive balance. Extensive inquiry has spotlighted the involvement of Foxo3a in COI. The regulatory cascade of Foxo3a transactivation implicates multiple downstream signaling pathways encompassing mitochondrial function, oxidative stress, autophagy, and apoptosis, collectively affecting neuronal activity. Notably, the expression and activity profile of neuronal Foxo3a are subject to modulation via various modalities, including methylation of promoter, phosphorylation and acetylation of protein. Furthermore, upstream pathways such as PI3K/AKT, the SIRT family, and diverse micro-RNAs intricately interface with Foxo3a, engendering alterations in neuronal function. Through several downstream routes, Foxo3a regulates neuronal dynamics, thereby modulating the onset or amelioration of COI in Alzheimer's disease, stroke, ischemic brain injury, Parkinson's disease, and traumatic brain injury. Foxo3a is a potential therapeutic cognitive target, and clinical drugs or multiple small molecules have been preliminarily shown to have cognitive-enhancing effects that indirectly affect Foxo3a. Particularly noteworthy are multiple randomized, controlled, placebo clinical trials illustrating the significant cognitive enhancement achievable through autophagy modulation. Here, we discussed the role of Foxo3a in neuron-mediated COI and common cognitively impaired diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Bao-Le Yao
- Department of Rehabilitation Medicine, Ganzhou People’s Hospital, Ganzhou, China
| |
Collapse
|
3
|
Li Y, Sair AT, Zhao W, Li T, Liu RH. Ferulic Acid Mediates Metabolic Syndrome via the Regulation of Hepatic Glucose and Lipid Metabolisms and the Insulin/IGF-1 Receptor/PI3K/AKT Pathway in Palmitate-Treated HepG2 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:14706-14717. [PMID: 36367981 DOI: 10.1021/acs.jafc.2c05676] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ferulic acid (FA) is one of the most abundant bound phenolics in whole grains, partly contributing to its preventive effects on metabolic syndrome (MetS). The study aims to investigate if FA mediates MetS through the regulation of hepatic metabolisms and the insulin receptor related pathways in the palmitate-treated HepG2 cells (MetS model). We found that FA (50, 100, and 200 μM) dramatically ameliorated the lipid accumulation in the MetS model. FA significantly decreased the activities of the gluconeogenic enzymes, G6Pase and PEPCK, downregulated the lipogenic enzyme FAS-1, and upregulated the lipolytic enzyme CPT-1 by regulating a series of transcriptional factors including HNF4α, FOXO-1, SREBP-1c, and PPAR-γ. Notably, we found that FA's ability to alleviate MetS is achieved by activating the insulin receptor/PI3K/AKT pathway. Our results validated the effects of FA on mediating the metabolic disorders of lipid and glucose pathways and unveiled its potential intracellular mechanisms for the prevention of MetS.
Collapse
Affiliation(s)
- Yitong Li
- Department of Food Science, YanGuFang Company Laboratory, 245 Stocking Hall, Cornell University, Ithaca, New York 14853, United States
| | - Ali Tahir Sair
- Department of Food Science, YanGuFang Company Laboratory, 245 Stocking Hall, Cornell University, Ithaca, New York 14853, United States
| | - Weiyang Zhao
- Department of Food Science, YanGuFang Company Laboratory, 245 Stocking Hall, Cornell University, Ithaca, New York 14853, United States
| | - Tong Li
- Department of Food Science, YanGuFang Company Laboratory, 245 Stocking Hall, Cornell University, Ithaca, New York 14853, United States
| | - Rui Hai Liu
- Department of Food Science, YanGuFang Company Laboratory, 245 Stocking Hall, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
4
|
Cacao powder supplementation attenuates oxidative stress, cholinergic impairment, and apoptosis in D-galactose-induced aging rat brain. Sci Rep 2021; 11:17914. [PMID: 34504131 PMCID: PMC8429651 DOI: 10.1038/s41598-021-96800-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 08/11/2021] [Indexed: 12/31/2022] Open
Abstract
Aging, a critical risk factor of several diseases, including neurodegenerative disorders, affects an ever-growing number of people. Cacao supplementation has been suggested to improve age-related neuronal deficits. Therefore, this study investigated the protective effects of raw cacao powder on oxidative stress-induced aging. Male Sprague-Dawley rats were divided into 4 groups: Control (C), D-galactose-induced aging (G), D-galactose injection with 10% (LC), and 16% (HC) cacao powder mixed diet. D-galactose (300 mg/3 mL/kg) was intraperitoneally injected into all but the control group for 12 weeks. Cacao supplemented diets were provided for 8 weeks. The levels of serum Malondialdehyde (MDA), Advanced Glycation End-products (AGEs), brain and liver MDA, the indicators of the D-galactose induced oxidative stress were significantly decreased in LC and HC but increased in G. The Acetylcholinesterase (AChE) activity of brain showed that the cholinergic impairment was significantly lower in LC, and HC than G. Furthermore, the expression levels of catalase (CAT), phospho-Akt/Akt, and procaspase-3 were significantly increased in LC and HC. In conclusion, cacao consumption attenuated the effects of oxidative stress, cholinergic impairment and apoptosis, indicating its potential in future clinical studies.
Collapse
|
5
|
Martínez-Gutiérrez A, Fernández-Duran I, Marazuela-Duque A, Simonet NG, Yousef I, Martínez-Rovira I, Martínez-Hoyos J, Vaquero A. Shikimic acid protects skin cells from UV-induced senescence through activation of the NAD+-dependent deacetylase SIRT1. Aging (Albany NY) 2021; 13:12308-12333. [PMID: 33901008 PMCID: PMC8148468 DOI: 10.18632/aging.203010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/31/2021] [Indexed: 01/10/2023]
Abstract
UV radiation is one of the main contributors to skin photoaging by promoting the accumulation of cellular senescence, which in turn induces a proinflammatory and tissue-degrading state that favors skin aging. The members of the sirtuin family of NAD+-dependent enzymes play an anti-senescence role and their activation suggests a promising approach for preventing UV-induced senescence in the treatment of skin aging. A two-step screening designed to identify compounds able to protect cells from UV-induced senescence through sirtuin activation identified shikimic acid (SA), a metabolic intermediate in many organisms, as a bona-fide candidate. The protective effects of SA against senescence were dependent on specific activation of SIRT1 as the effect was abrogated by the SIRT1 inhibitor EX-527. Upon UV irradiation SA induced S-phase accumulation and a decrease in p16INK4A expression but did not protect against DNA damage or increased polyploidies. In contrast, SA reverted misfolded protein accumulation upon senescence, an effect that was abrogated by EX-527. Consistently, SA induced an increase in the levels of the chaperone BiP, resulting in a downregulation of unfolded protein response (UPR) signaling and UPR-dependent autophagy, avoiding their abnormal hyperactivation during senescence. SA did not directly activate SIRT1 in vitro, suggesting that SIRT1 is a downstream effector of SA signaling specifically in the response to cellular senescence. Our study not only uncovers a shikimic acid/SIRT1 signaling pathway that prevents cellular senescence, but also reinforces the role of sirtuins as key regulators of cell proteostasis.
Collapse
Affiliation(s)
- Alfredo Martínez-Gutiérrez
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Barcelona 08916, Badalona, Spain.,Chromatin Biology Laboratory, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona 08908, Spain.,Mesostetic Pharma Group, Barcelona 08840, Viladecans, Spain
| | - Irene Fernández-Duran
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Barcelona 08916, Badalona, Spain
| | - Anna Marazuela-Duque
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Barcelona 08916, Badalona, Spain.,Chromatin Biology Laboratory, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona 08908, Spain
| | - Nicolás G Simonet
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Barcelona 08916, Badalona, Spain.,Chromatin Biology Laboratory, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona 08908, Spain
| | - Ibraheem Yousef
- MIRAS Beamline, ALBA-CELLS Synchrotron, Barcelona 08290, Cerdanyola del Vallès, Spain
| | - Immaculada Martínez-Rovira
- MIRAS Beamline, ALBA-CELLS Synchrotron, Barcelona 08290, Cerdanyola del Vallès, Spain.,Ionizing Radiation Research Group, Physics Department, Universitat Autònoma de Barcelona (UAB), Barcelona 08193, Cerdanyola del Vallès, Spain
| | | | - Alejandro Vaquero
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute (IJC), Barcelona 08916, Badalona, Spain.,Chromatin Biology Laboratory, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona 08908, Spain
| |
Collapse
|
6
|
Chang Z, Xia J, Wu H, Peng W, Jiang F, Li J, Liang C, Zhao H, Park K, Song G, Kim S, Huang R, Zheng L, Cai D, Qi X. Forkhead box O3 protects the heart against paraquat-induced aging-associated phenotypes by upregulating the expression of antioxidant enzymes. Aging Cell 2019; 18:e12990. [PMID: 31264342 PMCID: PMC6718552 DOI: 10.1111/acel.12990] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 05/10/2019] [Accepted: 05/23/2019] [Indexed: 11/30/2022] Open
Abstract
Paraquat (PQ) promotes cell senescence in brain tissue, which contributes to Parkinson's disease. Furthermore, PQ induces heart failure and oxidative damage, but it remains unknown whether and how PQ induces cardiac aging. Here, we demonstrate that PQ induces phenotypes associated with senescence of cardiomyocyte cell lines and results in cardiac aging‐associated phenotypes including cardiac remodeling and dysfunction in vivo. Moreover, PQ inhibits the activation of Forkhead box O3 (FoxO3), an important longevity factor, both in vitro and in vivo. We found that PQ‐induced senescence phenotypes, including proliferation inhibition, apoptosis, senescence‐associated β‐galactosidase activity, and p16INK4a expression, were significantly enhanced by FoxO3 deficiency in cardiomyocytes. Notably, PQ‐induced cardiac remolding, apoptosis, oxidative damage, and p16INK4a expression in hearts were exacerbated by FoxO3 deficiency. In addition, both in vitro deficiency and in vivo deficiency of FoxO3 greatly suppressed the activation of antioxidant enzymes including catalase (CAT) and superoxide dismutase 2 (SOD2) in the presence of PQ, which was accompanied by attenuation in cardiac function. The direct in vivo binding of FoxO3 to the promoters of the Cat and Sod2 genes in the heart was verified by chromatin immunoprecipitation (ChIP). Functionally, overexpression of Cat or Sod2 alleviated the PQ‐induced senescence phenotypes in FoxO3‐deficient cardiomyocyte cell lines. Overexpression of FoxO3 and CAT in hearts greatly suppressed the PQ‐induced heart injury and phenotypes associated with aging. Collectively, these results suggest that FoxO3 protects the heart against an aging‐associated decline in cardiac function in mice exposed to PQ, at least in part by upregulating the expression of antioxidant enzymes and suppressing oxidative stress.
Collapse
Affiliation(s)
- Zao‐Shang Chang
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology Jinan University Guangzhou China
| | - Jing‐Bo Xia
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology Jinan University Guangzhou China
| | - Hai‐Yan Wu
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology Jinan University Guangzhou China
| | - Wen‐Tao Peng
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology Jinan University Guangzhou China
| | - Fu‐Qing Jiang
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology Jinan University Guangzhou China
| | - Jing Li
- Department of Surgery, Union Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Chi‐Qian Liang
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology Jinan University Guangzhou China
| | - Hui Zhao
- Key Laboratory of Regenerative Medicine of Ministry of Education, School of Biomedical Sciences, Faculty of Medicine The Chinese University of Hong Kong Hong Kong SAR China
| | - Kyu‐Sang Park
- Department of Physiology, Wonju College of Medicine Yonsei University Wonju Korea
| | - Guo‐Hua Song
- Institute of Atherosclerosis TaiShan Medical University Tai'an China
| | - Soo‐Ki Kim
- Department of Microbiology Wonju College of Medicine, Yonsei University Wonju Korea
| | - Ruijin Huang
- Institute of Anatomy, Department of Neuroanatomy, Medical Faculty Bonn Rheinische Friedrich-Wilhelms-University of Bonn Bonn Germany
| | - Li Zheng
- School of Environmental Science and Engineering Guangdong University of Technology Guangzhou China
| | - Dong‐Qing Cai
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology Jinan University Guangzhou China
| | - Xu‐Feng Qi
- Key Laboratory of Regenerative Medicine of Ministry of Education, Department of Developmental & Regenerative Biology Jinan University Guangzhou China
| |
Collapse
|
7
|
Chen Y, Yu K, Hu Y, Chang Y. Ginkgo biloba Extract Protects Mesenteric Arterioles of Old Rats via Improving Vessel Elasticity through Akt/FoxO3a Signaling Pathway. Ann Vasc Surg 2019; 57:220-228. [PMID: 30684626 DOI: 10.1016/j.avsg.2019.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 02/01/2023]
Abstract
BACKGROUND Previous studies have shown that Ginkgo biloba extract (GBE) dietary diminished salt-related elevation of blood pressure and ameliorated ischemic diseases. However, whether GBE could improve vascular elasticity to protect mesenteric arterioles of old rats is still elusive. In this study, we aimed to investigate the effects of GBE on vascular elasticity of old rats and its possible underlying mechanism. METHODS Morphological changes of mesenteric arterioles were observed using hematoxylin and eosin and Verhoeff-Van Gieson staining, and diameters of mesenteric arterioles under various pressure were detected after GBE administration. In addition, phosphorylation level of Akt and FoxO3a proteins from mesenteric arterioles were detected. RESULTS The results implicated that GBE treatment narrowed endothelial cell gap and increased the curvature of inner elastic membrane with reduced middle layer collagen fiber. Meanwhile, compared with young rats, old rats appeared to have lower vascular elasticity while GBE treatment at 50, 100, and 200 mg/kg dosage through intragastric administration per day for 3 weeks could effectively improve the vascular elasticity under different pressures in a dose-dependent manner. Furthermore, phosphorylation level of Akt and FoxO3a was also reduced in GBE-treated rats. CONCLUSIONS This is the first report to indicate that GBE might exert protective effect on mesenteric arterioles of old rats via improving vascular elasticity and Akt/FoxO3a signaling pathway might be involved in this action.
Collapse
Affiliation(s)
- Yong Chen
- Department of Nephrology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, People's Republic of China
| | - Kaikai Yu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yudong Hu
- Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yanhua Chang
- Department of Pathology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi, Jiangsu, People's Republic of China.
| |
Collapse
|
8
|
Chang YM, Chang HH, Kuo WW, Lin HJ, Yeh YL, Padma Viswanadha V, Tsai CC, Chen RJ, Chang HN, Huang CY. Anti-Apoptotic and Pro-Survival Effect of Alpinate Oxyphyllae Fructus (AOF) in a d-Galactose-Induced Aging Heart. Int J Mol Sci 2016; 17:466. [PMID: 27043531 PMCID: PMC4848922 DOI: 10.3390/ijms17040466] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 03/21/2016] [Accepted: 03/21/2016] [Indexed: 12/16/2022] Open
Abstract
Aging, a natural biological/physiological phenomenon, is accelerated by reactive oxygen species (ROS) accumulation and identified by a progressive decrease in physiological function. Several studies have shown a positive relationship between aging and chronic heart failure (HF). Cardiac apoptosis was found in age-related diseases. We used a traditional Chinese medicine, Alpinate Oxyphyllae Fructus (AOF), to evaluate its effect on cardiac anti-apoptosis and pro-survival. Male eight-week-old Sprague–Dawley (SD) rats were segregated into five groups: normal control group (NC), d-Galactose-Induced aging group (Aging), and AOF of 50 (AL (AOF low)), 100 (AM (AOF medium)), 150 (AH (AOF high)) mg/kg/day. After eight weeks, hearts were measured by an Hematoxylin–Eosin (H&E) stain, Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-assays and Western blotting. The experimental results show that the cardiomyocyte apoptotic pathway protein expression increased in the d-Galactose-Induced aging groups, with dose-dependent inhibition in the AOF treatment group (AL, AM, and AH). Moreover, the expression of the pro-survival p-Akt (protein kinase B (Akt)), Bcl-2 (B-cell lymphoma 2), anti-apoptotic protein (Bcl-xL) protein decreased significantly in the d-Galactose-induced aging group, with increased performance in the AOF treatment group with levels of p-IGFIR and p-PI3K (Phosphatidylinositol-3′ kinase (PI3K)) to increase by dosage and compensatory performance. On the other hand, the protein of the Sirtuin 1 (SIRT1) pathway expression decreased in the aging groups and showed improvement in the AOF treatment group. Our results suggest that AOF strongly works against ROS-induced aging heart problems.
Collapse
Affiliation(s)
- Yung-Ming Chang
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 84001, Taiwan.
- Chinese Medicine Department, E-DA Hospital, Kaohsiung 82445, Taiwan.
- 1PT Biotechnology Co., Ltd., Taichung 433, Taiwan.
| | - Hen-Hong Chang
- Research Center for Chinese Medicine & Acupuncture, China Medical University, Taichung 40402, Taiwan.
- Departments of Chinese Medicine, China Medical University Hospital, Taichung 40447, Taiwan.
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan.
| | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung 40447, Taiwan.
| | - Hung-Jen Lin
- Departments of Chinese Medicine, China Medical University Hospital, Taichung 40447, Taiwan.
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan.
| | - Yu-Lan Yeh
- Department of pathology, Changhua Christian Hospital, Changhua 50506, Taiwan.
- Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 35665, Taiwan.
| | | | - Chin-Chuan Tsai
- The School of Chinese Medicine for Post-Baccalaureate, I-Shou University, Kaohsiung 84001, Taiwan.
- Chinese Medicine Department, E-DA Hospital, Kaohsiung 82445, Taiwan.
| | - Ray-Jade Chen
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11042, Taiwan.
| | - Hsin-Nung Chang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan.
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung 40402, Taiwan.
- School of Chinese Medicine, China Medical University, Taichung 40447, Taiwan.
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan.
| |
Collapse
|
9
|
FoxO3a suppresses the senescence of cardiac microvascular endothelial cells by regulating the ROS-mediated cell cycle. J Mol Cell Cardiol 2015; 81:114-26. [PMID: 25655933 DOI: 10.1016/j.yjmcc.2015.01.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/24/2014] [Accepted: 01/21/2015] [Indexed: 02/07/2023]
|
10
|
Jiang HK, Miao Y, Wang YH, Zhao M, Feng ZH, Yu XJ, Liu JK, Zang WJ. Aerobic interval training protects against myocardial infarction-induced oxidative injury by enhancing antioxidase system and mitochondrial biosynthesis. Clin Exp Pharmacol Physiol 2014; 41:192-201. [PMID: 24471974 DOI: 10.1111/1440-1681.12211] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 01/02/2014] [Accepted: 01/03/2014] [Indexed: 12/16/2022]
Abstract
1. Aerobic interval training (AIT) exerts beneficial effects on cardiovascular disease. However, its cardioprotective mechanisms are not fully understood. The aim of the present study was to evaluate AIT-mediated anti-oxidation by focusing on anti-oxidase and mitochondrial biogenesis in rats after myocardial infarction (MI). 2. Sprague-Dawley rats were divided into three groups: (i) a sham-operated control (CON); (ii) an MI group; and (iii) an MI + AIT group. Myocardial microstructure and function, markers of oxidative stress, mitochondrial anti-oxidase, Phase II enzymes and mitochondrial biogenesis were assessed. In addition, levels of nuclear factor-erythroid 2-related factor (Nrf2) and phosphorylated (p-) AMP-activated protein kinase (AMPK) were determined. The anti-oxidative gene sirtuin 3 (SIRT3) and the prosurvival phosphatidylinositol-3 kinase (PI3-K)-protein kinase B (Akt) signalling cascade were also evaluated. 3. Compared with CON, there was noticeable microstructure injury, cardiac dysfunction and oxidative damage in rats after MI. In addition, decreased mitochondrial anti-oxidase content, Phase II enzyme (except heme oxygenase-1) expression and mitochondrial biogenesis were observed in the post-MI rats as well as reduced protein levels of the regulators Nrf2 and p-AMPK and suppression of SIRT3 levels and PI3-K/Akt signalling. These detrimental modifications were considerably ameliorated by AIT, as evidenced by increases in anti-oxidase, mitochondrial biogenesis, Nrf2 and AMPK phosphorylation, as well as SIRT3 upregulation and PI3-K/Akt signalling activation. Moreover, PI3-K inhibitor-LY294002 (20 mg/kg) treatment partly attenuated AIT-elicited increases in Nrf2 levels and AMPK phosphorylation. 4. Based on these results, we conclude that AIT effectively alleviates MI-induced oxidative injury, which may be closely correlated with activation of the anti-oxidase system and mitochondrial biosynthesis. Increased SIRT3 expression and activation of PI3-K/Akt signalling may play key roles in AIT-mediated anti-oxidation. These results open up new avenues for exercise intervention therapies for MI patients.
Collapse
Affiliation(s)
- Hong-Ke Jiang
- Department of Pharmacology, College of Medicine, Xi'an Jiaotong University, Xi'an, China; Department of Physical Education, Nan Yang Institute of Technology, Nan Yang, China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Saponins from Aralia taibaiensis attenuate D-galactose-induced aging in rats by activating FOXO3a and Nrf2 pathways. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:320513. [PMID: 24669284 PMCID: PMC3942195 DOI: 10.1155/2014/320513] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 11/12/2013] [Accepted: 12/01/2013] [Indexed: 11/17/2022]
Abstract
Reactive oxygen species (ROS) are closely related to the aging process. In our previous studies, we found that the saponins from Aralia taibaiensis have potent antioxidant activity, suggesting the potential protective activity on the aging. However, the protective effect of the saponins and the possible underlying molecular mechanism remain unknown. In the present study, we employed a D-galactose-induced aging rat model to investigate the protective effect of the saponins. We found that D-galactose treatment induced obvious aging-related changes such as the decreased thymus and spleen coefficients, the increased advanced glycation end products (AGEs) level, senescence-associated β-galactosidase (SAβ-gal) activity, and malondialdehyde (MDA) level. Further results showed that Forkhead box O3a (FOXO3a), nuclear factor-erythroid 2-related factor 2 (Nrf2), and their targeted antioxidants such as superoxide dismutase 2 (SOD2), catalase (CAT), glutathione reductase (GR), glutathione (GSH), glutamate-cysteine ligase (GCL), and heme oxygenase 1 (HO-1) were all inhibited in the aging rats induced by D-galactose treatment. Saponins supplementation showed effective protection on these changes. These results demonstrate that saponins from Aralia taibaiensis attenuate the D-galactose-induced rat aging. By activating FOXO3a and Nrf2 pathways, saponins increase their downstream multiple antioxidants expression and function, at least in part contributing to the protection on the D-galactose-induced aging in rats.
Collapse
|
12
|
Choi YJ, Uehara Y, Park JY, Chung KW, Ha YM, Kim JM, Song YM, Chun P, Park JW, Moon HR, Chung HY. Suppression of melanogenesis by a newly synthesized compound, MHY966 via the nitric oxide/protein kinase G signaling pathway in murine skin. J Dermatol Sci 2012; 68:164-71. [PMID: 23088959 DOI: 10.1016/j.jdermsci.2012.09.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Revised: 09/22/2012] [Accepted: 09/27/2012] [Indexed: 10/27/2022]
Abstract
BACKGROUND Ultraviolet B (UVB) radiation is the main physiological stimulus for skin pigmentation. Nitric oxide (NO) and the NO/PKG signaling pathway play an important role in UVB-induced melanogenesis, which is related to the induction of expression of tyrosinase. In an attempt to find a novel anti-melanogenic agent, we synthesized a new compound, 2-bromo-4-(5-chloro-benzo[d]thiazol-2-yl) phenol (MHY966). OBJECTIVE The purpose of this study was to investigate the action of MHY966 on NO and the NO-mediated signaling pathway using in vitro and in vivo models of melanogenesis. METHODS NO generation, melanin synthesis, and the expression of tyrosinase and PKG were measured in B16F10 melanoma cells to verify the anti-melanogenic effect of MHY966 in vitro. Next, melanin-possessing hairless mice were pre-treated with MHY966 and then irradiated with UVB repeatedly. Morphological, histological, and biochemical analyses including the expressions of PKG, tryosinase and nuclear MITF, and productions of nitric oxide, peroxynitrite and ROS were conducted. RESULTS MHY966 effectively inhibited NO generation and subsequent melanin synthesis induced by sodium nitroprusside, an NO donor, and suppressed the expression of tyrosinase and PKG. Topical application of MHY966 dose-dependently attenuated UVB-induced pigmentation in a mouse model. This hypopigmentation effect induced by MHY966 treatment was mediated by the down-regulation of tyrosinase, PKG, and nuclear MITF, which was accompanied by decreased NO and NO-related oxidative stress. CONCLUSION The novel compound, MHY966 had an inhibitory effect on NO generation and the NO-mediated signaling pathway leading to the down-regulation of tyrosinase. The significance of the present study is the finding of a promising anti-melanogenic agent targeting the NO/PKG signaling pathway.
Collapse
Affiliation(s)
- Yeon Ja Choi
- Molecular Inflammation Research Center for Aging Intervention, College of Pharmacy, Pusan National University, Busan 609-735, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|