1
|
Félix J, Díaz-Del Cerro E, Garrido A, De La Fuente M. Characterization of a natural model of adult mice with different rate of aging. Mech Ageing Dev 2024; 222:111991. [PMID: 39278278 DOI: 10.1016/j.mad.2024.111991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/30/2024] [Accepted: 09/09/2024] [Indexed: 09/18/2024]
Abstract
Aging is a heterogeneous process, so individuals of the same age may be aging at a different rate. A natural model of premature aging in mice have been proposed based on the poor response to the T-maze. Those that take longer to cross the intersection are known as Prematurely Aging Mice (PAM), while those that show an exceptional response are known as Exceptional non-PAM (E-NPAM), being the rest non-PAM (NPAM). Although many aspects of PAM and E-NPAM have been described, some aspects of their brain aging have not been studied. Similarly, it is known that PAM, NPAM and E-NPAM show a different rate of aging and longevity, but the differences between these three groups in behavior, immune function and oxidative-inflammatory state are unknown. The present study aims to deepen the study of brain aging in PAM and E-NPAM, and to study the differences in behavior, immunity, and oxidative-inflammatory state of peritoneal leukocytes between PAM, NPAM and E-NPAM. Results show deteriorated brains in PAM. Moreover, NPAM show an oxidative state similar to E-NPAM, an anxiety similar to PAM, and an intermediate immunity and lifespan between PAM and E-NPAM. In conclusion, immune function seems to be more associated with the longevity achieved.
Collapse
Affiliation(s)
- Judith Félix
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), Faculty of Biological Sciences, Complutense University of Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), Madrid, Spain.
| | - Estefanía Díaz-Del Cerro
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), Faculty of Biological Sciences, Complutense University of Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), Madrid, Spain.
| | - Antonio Garrido
- Institute of Investigation Hospital 12 Octubre (imas12), Madrid, Spain; Department of Biosciences, School of Biomedical and Health Sciences, Universidad Europea de Madrid (UEM), Villaviciosa de Odón, Madrid, Spain.
| | - Mónica De La Fuente
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), Faculty of Biological Sciences, Complutense University of Madrid, Spain; Institute of Investigation Hospital 12 Octubre (imas12), Madrid, Spain.
| |
Collapse
|
2
|
Garrido A, De La Serna M, De La Fuente M, Marco EM, López-Gallardo M. Neuronal and glial region dependent changes in female mice from a model of premature aging. Exp Gerontol 2020; 146:111224. [PMID: 33388380 DOI: 10.1016/j.exger.2020.111224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/20/2020] [Accepted: 12/23/2020] [Indexed: 11/30/2022]
Abstract
Adult Premature Aging Mice (PAM) show premature immunosenescence, oxidative and inflammatory stress and consequently a shorter lifespan than Exceptional Non-Prematurely Aging Mice (E-NPAM) at the same age. Indeed, adult female PAM exhibit behavioral age-related declines and abnormalities in its brain neurochemistry. Nevertheless, it is not clear whether these impairments might be accompanied by previous changes related to the neuroinflammation process in their central nervous system (CNS). Therefore, the aim of the present work was to determine if adult female PAM may show brain neuroinflammation processes comparable to those observed in chronologically old female mice. Accordingly, ICR-CD1 female mice were classified in PAM, Regular Non-Prematurely Aging Mice (R-NPAM) and E-NPAM and compared to a group of chronologically old female mice (OLD) (24±1 months). Through the application of immunohistochemical techniques we evaluated changes in the expression of NeuN (a neuronal marker), Iba-1 (a microglia marker) and GFAP (an astrocyte marker) in brain areas related to the behavioral alterations previously detected in both PAM and chronologically old mice. In general, PAM showed a lower NeuN expression and a higher GFAP and Iba1 expression mainly in the Anterior Frontal Cortex and in the Medial Hippocampal Formation, when compared to E-NPAM; similar changes were observed in OLD. Other brain areas, such as the Hypothalamic Nuclei and Motor Cortex were less affected. In conclusion, adult PAM and OLD female mice share some region-dependent neuronal and glial changes that may underlie, at least in part, some of the behavioral abnormalities previously reported in these animals.
Collapse
Affiliation(s)
- Antonio Garrido
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), School of Biology, Complutense University of Madrid, Madrid, Spain; Institute of Investigation of Hospital 12 de Octubre (i+12), Madrid, Spain
| | - Mariano De La Serna
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), School of Biology, Complutense University of Madrid, Madrid, Spain; Department of Physiology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - Mónica De La Fuente
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), School of Biology, Complutense University of Madrid, Madrid, Spain; Institute of Investigation of Hospital 12 de Octubre (i+12), Madrid, Spain.
| | - Eva María Marco
- Department of Genetics, Physiology and Microbiology (Animal Physiology Unit), School of Biology, Complutense University of Madrid, Madrid, Spain; Department of Physiology, School of Medicine, Complutense University of Madrid, Madrid, Spain.
| | | |
Collapse
|
3
|
Martinez de Toda I, Garrido A, Vida C, Gomez-Cabrera MC, Viña J, De la Fuente M. Frailty Quantified by the "Valencia Score" as a Potential Predictor of Lifespan in Mice. J Gerontol A Biol Sci Med Sci 2019; 73:1323-1329. [PMID: 29718119 DOI: 10.1093/gerona/gly064] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Indexed: 11/12/2022] Open
Abstract
The development of frailty scores suitable for mice and which resemble those used in the clinical scenario is of great importance to understand human frailty. The aim of the study was to determine an individual frailty score for each mouse at different ages and analyze the association between the frailty score and its lifespan. For this purpose, the "Valencia Score" for frailty was used. Thus, a longitudinal study in mice was performed analyzing weight loss, running time and speed, grip strength and motor coordination at the late-adult, mature and old ages (40, 56 and 80 weeks old, respectively). These parameters are equivalent to unintentional weight loss, poor endurance, slowness, weakness, and low activity level, respectively, in humans. A cut-off point was used to identify frail mice for each criterion. All the measurements were also performed on chronologically adult prematurely aging mice. The results show that by using the "Valencia Score" for frailty a prematurely aged phenotype can be identified even during the adulthood of animals. This opens up the possibility of carrying out preventive long-term interventions. Moreover, the individual frailty score of a given mouse at the late-adult, mature and old ages is shown to be a relevant predictor of its lifespan.
Collapse
Affiliation(s)
- Irene Martinez de Toda
- Department of Genetics, Physiology and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain.,Institute of Investigation Hospital 12 Octubre, Madrid, Spain
| | - Antonio Garrido
- Department of Genetics, Physiology and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain.,Institute of Investigation Hospital 12 Octubre, Madrid, Spain
| | - Carmen Vida
- Department of Genetics, Physiology and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain.,Institute of Investigation Hospital 12 Octubre, Madrid, Spain
| | - Mari Carmen Gomez-Cabrera
- Department of Physiology, Freshage Research Group, University of Valencia, CIBERFES, INCLIVA, Valencia, Spain
| | - Jose Viña
- Department of Physiology, Freshage Research Group, University of Valencia, CIBERFES, INCLIVA, Valencia, Spain
| | - Monica De la Fuente
- Department of Genetics, Physiology and Microbiology (Unit of Animal Physiology), Faculty of Biology, Complutense University, Madrid, Spain.,Institute of Investigation Hospital 12 Octubre, Madrid, Spain
| |
Collapse
|
4
|
Adverse Effects of Diabetes Mellitus on the Skeleton of Aging Mice. J Gerontol A Biol Sci Med Sci 2015; 71:290-9. [DOI: 10.1093/gerona/glv160] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 08/19/2015] [Indexed: 01/15/2023] Open
|
5
|
Baboolal TG, Boxall SA, El-Sherbiny YM, Moseley TA, Cuthbert RJ, Giannoudis PV, McGonagle D, Jones E. Multipotential stromal cell abundance in cellular bone allograft: comparison with fresh age-matched iliac crest bone and bone marrow aspirate. Regen Med 2014; 9:593-607. [PMID: 24617969 PMCID: PMC4077757 DOI: 10.2217/rme.14.17] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
AIM To enumerate and characterize multipotential stromal cells (MSCs) in a cellular bone allograft and compare with fresh age-matched iliac crest bone and bone marrow (BM) aspirate. MATERIALS & METHODS MSC characterization used functional assays, confocal/scanning electron microscopy and whole-genome microarrays. Resident MSCs were enumerated by flow cytometry following enzymatic extraction. RESULTS Allograft material contained live osteocytes and proliferative bone-lining cells defined as MSCs by phenotypic and functional capacities. Without cultivation/expansion, the allograft displayed an 'osteoinductive' molecular signature and the presence of CD45(-)CD271(+)CD73(+)CD90(+)CD105(+) MSCs; with a purity over 100-fold that of iliac crest bone. In comparison with BM, MSC numbers enzymatically released from 1 g of cellular allograft were equivalent to approximately 45 ml of BM aspirate. CONCLUSION Cellular allograft bone represents a unique nonimmune material rich in MSCs and osteocytes. This osteoinductive graft represents an attractive alternative to autograft bone or composite/synthetic grafts in orthopedics and broader regenerative medicine settings.
Collapse
Affiliation(s)
- Thomas G Baboolal
- Leeds Institute of Rheumatic & Musculoskeletal Medicine, Room 5.24, Clinical Sciences Building, University of Leeds, Leeds, LS9 7TF, UK
| | - Sally A Boxall
- Leeds Institute of Rheumatic & Musculoskeletal Medicine, Room 5.24, Clinical Sciences Building, University of Leeds, Leeds, LS9 7TF, UK
| | - Yasser M El-Sherbiny
- Leeds Institute of Rheumatic & Musculoskeletal Medicine, Room 5.24, Clinical Sciences Building, University of Leeds, Leeds, LS9 7TF, UK
| | | | - Richard J Cuthbert
- Leeds Institute of Rheumatic & Musculoskeletal Medicine, Room 5.24, Clinical Sciences Building, University of Leeds, Leeds, LS9 7TF, UK
| | - Peter V Giannoudis
- Leeds Institute of Rheumatic & Musculoskeletal Medicine, Room 5.24, Clinical Sciences Building, University of Leeds, Leeds, LS9 7TF, UK
| | - Dennis McGonagle
- Leeds Institute of Rheumatic & Musculoskeletal Medicine, Room 5.24, Clinical Sciences Building, University of Leeds, Leeds, LS9 7TF, UK
| | - Elena Jones
- Leeds Institute of Rheumatic & Musculoskeletal Medicine, Room 5.24, Clinical Sciences Building, University of Leeds, Leeds, LS9 7TF, UK
| |
Collapse
|
6
|
Rodríguez-de la Rosa L, López-Herradón A, Portal-Núñez S, Murillo-Cuesta S, Lozano D, Cediel R, Varela-Nieto I, Esbrit P. Treatment with N- and C-terminal peptides of parathyroid hormone-related protein partly compensate the skeletal abnormalities in IGF-I deficient mice. PLoS One 2014; 9:e87536. [PMID: 24503961 PMCID: PMC3913635 DOI: 10.1371/journal.pone.0087536] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 12/31/2013] [Indexed: 11/18/2022] Open
Abstract
Insulin-like growth factor-I (IGF-I) deficiency causes growth delay, and IGF-I has been shown to partially mediate bone anabolism by parathyroid hormone (PTH). PTH-related protein (PTHrP) is abundant in bone, and has osteogenic features by poorly defined mechanisms. We here examined the capacity of PTHrP (1-36) and PTHrP (107-111) (osteostatin) to reverse the skeletal alterations associated with IGF-I deficiency. Igf1-null mice and their wild type littermates were treated with each PTHrP peptide (80 µg/Kg/every other day/2 weeks; 2 males and 4 females for each genotype) or saline vehicle (3 males and 3 females for each genotype). We found that treatment with either PTHrP peptide ameliorated trabecular structure in the femur in both genotypes. However, these peptides were ineffective in normalizing the altered cortical structure at this bone site in Igf1-null mice. An aberrant gene expression of factors associated with osteoblast differentiation and function, namely runx2, osteoprotegerin/receptor activator of NF-κB ligand ratio, Wnt3a , cyclin D1, connexin 43, catalase and Gadd45, as well as in osteocyte sclerostin, was found in the long bones of Igf1-null mice. These mice also displayed a lower amount of trabecular osteoblasts and osteoclasts in the tibial metaphysis than those in wild type mice. These alterations in Igf1-null mice were only partially corrected by each PTHrP peptide treatment. The skeletal expression of Igf2, Igf1 receptor and Irs2 was increased in Igf1-null mice, and this compensatory profile was further improved by treatment with each PTHrP peptide related to ERK1/2 and FoxM1 activation. In vitro, PTHrP (1-36) and osteostatin were effective in promoting bone marrow stromal cell mineralization in normal mice but not in IGF-I-deficient mice. Collectively, these findings indicate that PTHrP (1-36) and osteostatin can exert several osteogenic actions even in the absence of IGF-I in the mouse bone.
Collapse
Affiliation(s)
- Lourdes Rodríguez-de la Rosa
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Centro Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Unidad 761, Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Hospital Universitario La Paz, Madrid, Spain
| | - Ana López-Herradón
- Laboratorio de Metabolismo Mineral y Óseo, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Madrid, Spain
- Red Temática de Investigación Cooperativa en Envejecimiento y Fragilidad, Instituto de Salud Carlos III, Madrid, Spain
| | - Sergio Portal-Núñez
- Laboratorio de Metabolismo Mineral y Óseo, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Madrid, Spain
- Red Temática de Investigación Cooperativa en Envejecimiento y Fragilidad, Instituto de Salud Carlos III, Madrid, Spain
| | - Silvia Murillo-Cuesta
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Centro Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Unidad 761, Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Hospital Universitario La Paz, Madrid, Spain
| | - Daniel Lozano
- Instituto de Investigación Hospital Universitario La Paz, Madrid, Spain
- Laboratorio de Metabolismo Mineral y Óseo, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Madrid, Spain
- Red Temática de Investigación Cooperativa en Envejecimiento y Fragilidad, Instituto de Salud Carlos III, Madrid, Spain
| | - Rafael Cediel
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Centro Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Unidad 761, Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Isabel Varela-Nieto
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Centro Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, Spain
- Unidad 761, Centro de Investigación Biomédica en Red de Enfermedades Raras, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación Hospital Universitario La Paz, Madrid, Spain
| | - Pedro Esbrit
- Laboratorio de Metabolismo Mineral y Óseo, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Madrid, Spain
- Red Temática de Investigación Cooperativa en Envejecimiento y Fragilidad, Instituto de Salud Carlos III, Madrid, Spain
- * E-mail:
| |
Collapse
|
7
|
Esbrit P, Alcaraz MJ. Current perspectives on parathyroid hormone (PTH) and PTH-related protein (PTHrP) as bone anabolic therapies. Biochem Pharmacol 2013; 85:1417-23. [PMID: 23500550 DOI: 10.1016/j.bcp.2013.03.002] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 03/01/2013] [Accepted: 03/01/2013] [Indexed: 12/19/2022]
Abstract
Osteoporosis is characterized by low bone mineral density and/or poor bone microarchitecture leading to an increased risk of fractures. The skeletal alterations in osteoporosis are a consequence of a relative deficit of bone formation compared to bone resorption. Osteoporosis therapies have mostly relied on antiresorptive drugs. An alternative therapeutic approach for osteoporosis is currently available, based on the intermittent administration of parathyroid hormone (PTH). Bone anabolism caused by PTH therapy is mainly accounted for by the ability of PTH to increase osteoblastogenesis and osteoblast survival. PTH and PTH-related protein (PTHrP)-an abundant local factor in bone- interact with the common PTH type 1 receptor with similar affinities in osteoblasts. Studies mainly in osteoporosis rodent models and limited data in postmenopausal women suggest that N-terminal PTHrP peptides might be considered a promising bone anabolic therapy. In addition, putative osteogenic actions of PTHrP might be ascribed not only to its N-terminal domain but also to its PTH-unrelated C-terminal region. In this review, we discuss the underlying cellular and molecular mechanisms of the anabolic actions of PTH and the similar potential of PTH-related protein (PTHrP) to increase bone mass and improve bone regeneration.
Collapse
Affiliation(s)
- Pedro Esbrit
- Laboratorio de Metabolismo Mineral y Óseo, Instituto de Investigación Sanitaria-IIS-Fundación Jiménez Díaz, 28040 Madrid, Spain.
| | | |
Collapse
|