1
|
Lomas-Soria C, Rodríguez-González GL, Ibáñez CA, Reyes-Castro LA, Nathanielsz PW, Zambrano E. Maternal Obesity Programs the Premature Aging of Rat Offspring Liver Mitochondrial Electron Transport Chain Genes in a Sex-Dependent Manner. BIOLOGY 2023; 12:1166. [PMID: 37759566 PMCID: PMC10526092 DOI: 10.3390/biology12091166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023]
Abstract
We investigated whether maternal obesity affects the hepatic mitochondrial electron transport chain (ETC), sirtuins, and antioxidant enzymes in young (110 postnatal days (PND)) and old (650PND) male and female offspring in a sex- and age-related manner. Female Wistar rats ate a control (C) or high-fat (MO) diet from weaning, through pregnancy and lactation. After weaning, the offspring ate the C diet and were euthanized at 110 and 650PND. The livers were collected for RNA-seq and immunohistochemistry. Male offspring livers had more differentially expressed genes (DEGs) down-regulated by both MO and natural aging than females. C-650PND vs. C-110PND and MO-110PND vs. C-110PND comparisons revealed 1477 DEGs in common for males (premature aging by MO) and 35 DEGs for females. Analysis to identify KEGG pathways enriched from genes in common showed changes in 511 and 3 KEGG pathways in the male and female livers, respectively. Mitochondrial function pathways showed ETC-related gene down-regulation. All ETC complexes, sirtuin2, sirtuin3, sod-1, and catalase, exhibited gene down-regulation and decreased protein expression at young and old ages in MO males vs. C males; meanwhile, MO females down-regulated only at 650PND. Conclusions: MO accelerates the age-associated down-regulation of ETC pathway gene expression in male offspring livers, thereby causing sex-dependent oxidative stress, premature aging, and metabolic dysfunction.
Collapse
Affiliation(s)
- Consuelo Lomas-Soria
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (C.L.-S.); (G.L.R.-G.); (C.A.I.); (L.A.R.-C.)
- CONAHCyT-Cátedras, Investigador por México, Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Guadalupe L. Rodríguez-González
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (C.L.-S.); (G.L.R.-G.); (C.A.I.); (L.A.R.-C.)
| | - Carlos A. Ibáñez
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (C.L.-S.); (G.L.R.-G.); (C.A.I.); (L.A.R.-C.)
| | - Luis A. Reyes-Castro
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (C.L.-S.); (G.L.R.-G.); (C.A.I.); (L.A.R.-C.)
| | - Peter W. Nathanielsz
- Wyoming Center for Pregnancy and Life Course Health Research, Department of Animal Science, University of Wyoming, Laramie, WY 82071, USA;
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Elena Zambrano
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; (C.L.-S.); (G.L.R.-G.); (C.A.I.); (L.A.R.-C.)
- Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
2
|
Puppala S, Chan J, Zimmerman KD, Hamid Z, Ampong I, Huber HF, Li G, Jadhav AYL, Li C, Nathanielsz PW, Olivier M, Cox LA. Multi-omics Analysis of Aging Liver Reveals Changes in Endoplasmic Stress and Degradation Pathways in Female Nonhuman Primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.21.554149. [PMID: 37662261 PMCID: PMC10473634 DOI: 10.1101/2023.08.21.554149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The liver is critical for functions that support metabolism, immunity, digestion, detoxification, and vitamin storage. Aging is associated with severity and poor prognosis of various liver diseases such as nonalcoholic fatty liver disease (NAFLD). Previous studies have used multi-omic approaches to study liver diseases or to examine the effects of aging on the liver. However, to date, no studies have used an integrated omics approach to investigate aging-associated molecular changes in the livers of healthy female nonhuman primates. The goal of this study was to identify molecular changes associated with healthy aging in the livers of female baboons ( Papio sp., n=35) by integrating multiple omics data types (transcriptomics, proteomics, metabolomics) from samples across the adult age span. To integrate omics data, we performed unbiased weighted gene co-expression network analysis (WGCNA), and the results revealed 3 modules containing 3,149 genes and 33 proteins were positively correlated with age, and 2 modules containing 37 genes and 216 proteins were negatively correlated with age. Pathway enrichment analysis showed that unfolded protein response (UPR) and endoplasmic reticulum (ER) stress were positively associated with age, whereas xenobiotic metabolism and melatonin and serotonin degradation pathways were negatively associated with age. The findings of our study suggest that UPR and a reduction in reactive oxygen species generated from serotonin degradation could protect the liver from oxidative stress during the aging process in healthy female baboons.
Collapse
|
3
|
Fernández-Palanca P, Payo-Serafín T, Méndez-Blanco C, San-Miguel B, Tuñón MJ, González-Gallego J, Mauriz JL. Neuropilins as potential biomarkers in hepatocellular carcinoma: a systematic review of basic and clinical implications. Clin Mol Hepatol 2023; 29:293-319. [PMID: 36726054 PMCID: PMC10121286 DOI: 10.3350/cmh.2022.0425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/16/2023] [Accepted: 01/31/2023] [Indexed: 02/03/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common and deadly cancers worldwide and is characterized by complex molecular carcinogenesis. Neuropilins (NRPs) NRP1 and NRP2 are the receptors of multiple proteins involved in key signaling pathways associated with tumor progression. We aimed to systematically review all the available findings on their role in HCC. We searched the Scopus, Web of Science (WOS), PubMed, Cochrane and Embase databases for articles evaluating NRPs in preclinical or clinical HCC models. This study was registered in PROSPERO (CRD42022349774) and include 49 studies. Multiple cellular and molecular processes have been associated with one or both NRPs, indicating that they are potential diagnostic and prognostic biomarkers in HCC patients. Mainly NRP1 has been shown to promote tumor cell survival and progression by modulating several signaling pathways. NRPs mainly regulate angiogenesis, invasion and migration and have shown to induce invasion and metastasis. They also regulate the immune response and tumor microenvironment, showing a crucial interplay with the hypoxia response and microRNAs in HCC. Altogether, NRP1 and NRP2 are potential biomarkers and therapeutic targets, providing novel insight into the clinical landscape of HCC patients.
Collapse
Affiliation(s)
- Paula Fernández-Palanca
- Institute of Biomedicine (IBIOMED), Universidad de León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Tania Payo-Serafín
- Institute of Biomedicine (IBIOMED), Universidad de León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Carolina Méndez-Blanco
- Institute of Biomedicine (IBIOMED), Universidad de León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Beatriz San-Miguel
- Institute of Biomedicine (IBIOMED), Universidad de León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - María J. Tuñón
- Institute of Biomedicine (IBIOMED), Universidad de León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier González-Gallego
- Institute of Biomedicine (IBIOMED), Universidad de León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| | - José L. Mauriz
- Institute of Biomedicine (IBIOMED), Universidad de León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
4
|
Zhao Y, Yang Y, Li Q, Li J. Understanding the Unique Microenvironment in the Aging Liver. Front Med (Lausanne) 2022; 9:842024. [PMID: 35280864 PMCID: PMC8907916 DOI: 10.3389/fmed.2022.842024] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/31/2022] [Indexed: 12/21/2022] Open
Abstract
In the past decades, many studies have focused on aging because of our pursuit of longevity. With lifespans extended, the regenerative capacity of the liver gradually declines due to the existence of aging. This is partially due to the unique microenvironment in the aged liver, which affects a series of physiological processes. In this review, we summarize the related researches in the last decade and try to highlight the aging-related alterations in the aged liver.
Collapse
Affiliation(s)
- Yalei Zhao
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ya Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Qian Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Jianzhou Li
- Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- *Correspondence: Jianzhou Li
| |
Collapse
|
5
|
Colak D, Al-Harazi O, Mustafa OM, Meng F, Assiri AM, Dhar DK, Broering DC. RNA-Seq transcriptome profiling in three liver regeneration models in rats: comparative analysis of partial hepatectomy, ALLPS, and PVL. Sci Rep 2020; 10:5213. [PMID: 32251301 PMCID: PMC7089998 DOI: 10.1038/s41598-020-61826-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 02/28/2020] [Indexed: 12/13/2022] Open
Abstract
The liver is a unique organ that has a phenomenal capacity to regenerate after injury. Different surgical procedures, including partial hepatectomy (PH), intraoperative portal vein ligation (PVL), and associated liver partition and portal vein ligation for staged hepatectomy (ALPPS) show clinically distinct recovery patterns and regeneration. The observable clinical differences likely mirror some underlying variations in the patterns of gene activation and regeneration pathways. In this study, we provided a comprehensive comparative transcriptomic analysis of gene regulation in regenerating rat livers temporally spaced at 24 h and 96 h after PH, PVL, and ALPPS. The time-dependent factors appear to be the most important determinant of post-injury alterations of gene expression in liver regeneration. Gene expression profile after ALPPS showed more similar expression pattern to the PH than the PVL at the early phase of the regeneration. Early transcriptomic changes and predicted upstream regulators that were found in all three procedures included cell cycle associated genes (E2F1, CCND1, FOXM1, TP53, and RB1), transcription factors (Myc, E2F1, TBX2, FOXM1), DNA replication regulators (CDKN1A, EZH2, RRM2), G1/S-transition regulators (CCNB1, CCND1, RABL6), cytokines and growth factors (CSF2, IL-6, TNF, HGF, VEGF, and EGF), ATM and p53 signaling pathways. The functional pathway, upstream, and network analyses revealed both unique and overlapping molecular mechanisms and pathways for each surgical procedure. Identification of molecular signatures and regenerative signaling pathways for each surgical procedure further our understanding of key regulators of liver regeneration as well as patient populations that are likely to benefit from each procedure.
Collapse
Affiliation(s)
- Dilek Colak
- Biostatistics, Epidemiology, and Scientific Computing Department, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
| | - Olfat Al-Harazi
- Biostatistics, Epidemiology, and Scientific Computing Department, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Osama M Mustafa
- Biostatistics, Epidemiology, and Scientific Computing Department, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Fanwei Meng
- Department of Surgery and Organ Transplantation Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Abdullah M Assiri
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
- College of Medicine, AlFaisal University, Riyadh, Saudi Arabia
| | - Dipok K Dhar
- Department of Surgery and Organ Transplantation Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
- Comparative Medicine Department, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
- Institute for Liver and Digestive Health, University College London, Royal Free Hospital, London, UK.
| | - Dieter C Broering
- Department of Surgery and Organ Transplantation Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- College of Medicine, AlFaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
6
|
Elmore MRP, Hohsfield LA, Kramár EA, Soreq L, Lee RJ, Pham ST, Najafi AR, Spangenberg EE, Wood MA, West BL, Green KN. Replacement of microglia in the aged brain reverses cognitive, synaptic, and neuronal deficits in mice. Aging Cell 2018; 17:e12832. [PMID: 30276955 PMCID: PMC6260908 DOI: 10.1111/acel.12832] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/02/2018] [Accepted: 07/21/2018] [Indexed: 12/11/2022] Open
Abstract
Microglia, the resident immune cell of the brain, can be eliminated via pharmacological inhibition of the colony-stimulating factor 1 receptor (CSF1R). Withdrawal of CSF1R inhibition then stimulates microglial repopulation, effectively replacing the microglial compartment. In the aged brain, microglia take on a "primed" phenotype and studies indicate that this coincides with age-related cognitive decline. Here, we investigated the effects of replacing the aged microglial compartment with new microglia using CSF1R inhibitor-induced microglial repopulation. With 28 days of repopulation, replacement of resident microglia in aged mice (24 months) improved spatial memory and restored physical microglial tissue characteristics (cell densities and morphologies) to those found in young adult animals (4 months). However, inflammation-related gene expression was not broadly altered with repopulation nor the response to immune challenges. Instead, microglial repopulation resulted in a reversal of age-related changes in neuronal gene expression, including expression of genes associated with actin cytoskeleton remodeling and synaptogenesis. Age-related changes in hippocampal neuronal complexity were reversed with both microglial elimination and repopulation, while microglial elimination increased both neurogenesis and dendritic spine densities. These changes were accompanied by a full rescue of age-induced deficits in long-term potentiation with microglial repopulation. Thus, several key aspects of the aged brain can be reversed by acute noninvasive replacement of microglia.
Collapse
Affiliation(s)
- Monica R. P. Elmore
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCalifornia
- Institute for Memory Impairments and Neurological Disorders (UCI MIND)IrvineCalifornia
| | - Lindsay A. Hohsfield
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCalifornia
- Institute for Memory Impairments and Neurological Disorders (UCI MIND)IrvineCalifornia
| | - Enikö A. Kramár
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCalifornia
| | - Lilach Soreq
- University College LondonLondonUK
- The Francis Crick InstituteLondonUK
| | - Rafael J. Lee
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCalifornia
- Institute for Memory Impairments and Neurological Disorders (UCI MIND)IrvineCalifornia
| | - Stephanie T. Pham
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCalifornia
- Institute for Memory Impairments and Neurological Disorders (UCI MIND)IrvineCalifornia
| | - Allison R. Najafi
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCalifornia
- Institute for Memory Impairments and Neurological Disorders (UCI MIND)IrvineCalifornia
| | - Elizabeth E. Spangenberg
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCalifornia
- Institute for Memory Impairments and Neurological Disorders (UCI MIND)IrvineCalifornia
| | - Marcelo A. Wood
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCalifornia
| | | | - Kim N. Green
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCalifornia
- Institute for Memory Impairments and Neurological Disorders (UCI MIND)IrvineCalifornia
| |
Collapse
|
7
|
Yang YM, Li P, Cui DC, Dang RJ, Zhang L, Wen N, Jiang XX. Effect of aged bone marrow microenvironment on mesenchymal stem cell migration. AGE (DORDRECHT, NETHERLANDS) 2015; 37:16. [PMID: 25693923 PMCID: PMC4332889 DOI: 10.1007/s11357-014-9743-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 12/26/2014] [Indexed: 06/04/2023]
Abstract
Mesenchymal stem cells (MSCs) are known to have many notable features, especially their multiple differentiation ability and immunoregulatory capacity. MSCs are important stem cells in the bone marrow (BM), and their characteristics are affected by the BM microenvironment. However, effects of the BM microenvironment on the properties of MSCs are not well understood. In this study, we found that BM from aged mice decreased MSC colony formation. Flow cytometry data showed that the proportion of B220(+) cells in BM from aged mice was significantly lower than that in BM from young mice, while the proportion of CD11b(+), CD3(+), Gr-1(+), or F4/80(+) cells are on the contrary. CD11b(+), B220(+), and Ter119(+) cells from aged mice were not the subsets that decreased MSC colony formation. We further demonstrated that both BM from aged mice and young mice exhibited similar effects on the proliferation of murine MSC cell line C3H10T1/2. However, when cocultured with BM from aged mice, C3H10T1/2 showed slower migration ability. In addition, we found that phosphorylation of JNK (c-Jun N-terminal kinases) in C3H10T1/2 cocultured with BM from aged mice was lower than that in C3H10T1/2 cocultured with BM from young mice. Collectively, our data revealed that BM from aged mice could decrease the migration of MSCs from their niche through regulating the JNK pathway.
Collapse
Affiliation(s)
- Yan-Mei Yang
- Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100850 People’s Republic of China
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Science, 27 Taiping Road, Haidian District, Beijing, 100850 People’s Republic of China
| | - Ping Li
- Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100850 People’s Republic of China
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Science, 27 Taiping Road, Haidian District, Beijing, 100850 People’s Republic of China
| | - Dian-Chao Cui
- Beijing Aiyuhua Hospital for Children and Women, 2 South Street, Beijing Economic and Technological Development Zone, Beijing, 100176, People’s Republic of China
| | - Rui-Jie Dang
- Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100850 People’s Republic of China
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Science, 27 Taiping Road, Haidian District, Beijing, 100850 People’s Republic of China
| | - Lei Zhang
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Science, 27 Taiping Road, Haidian District, Beijing, 100850 People’s Republic of China
| | - Ning Wen
- Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing, 100850 People’s Republic of China
| | - Xiao-Xia Jiang
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Science, 27 Taiping Road, Haidian District, Beijing, 100850 People’s Republic of China
| |
Collapse
|