1
|
Wai KM, Paing AM, Swe T. Understanding physical aging in relation to biological aging, telomere length: A systematic review. Arch Gerontol Geriatr 2025; 134:105854. [PMID: 40252362 DOI: 10.1016/j.archger.2025.105854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 03/19/2025] [Accepted: 04/05/2025] [Indexed: 04/21/2025]
Abstract
BACKGROUND Telomere length (TL) serves as a marker for biological aging, influenced by chronological aging but distinct from it. This systematic review aims to synthesize the evidence on the associations between components of physical aging and TL in the elderly population. METHODS A comprehensive search was conducted in online databases of PubMed, Web of Science, ProQuest, and ScienceDirect to identify the eligible papers published until 1st August 2024. The authors independently extracted data using the standardized form. The quality of the included studies was evaluated for the risks of biases. RESULTS A total of 1080 records were initially identified using the predefined search strategy. A total of 40 eligible records were included in this review. When assessing physical aging, the nature and type of measurements across studies vary, including subjective, objective, and a combination of both approaches. Subjective assessments of general health or physical limitations may be linked with TL, while frailty, whether measured subjectively or objectively, shows associations with TL in less than 35 percent of total studies. In contrast, composite measures of physical performance/ability are consistently associated with TL in the elderly population. CONCLUSIONS In conclusion, we demonstrated that the associations between physical aging and TL varies depending on the type and nature of physical aging assessments. Composite measures of physical performance/ability demonstrate a strong and consistent parameter of physical aging to link with TL. Future research should prioritize standardized, multidimensional approaches to measure physical aging to understand better its association with TL to support healthy aging strategies.
Collapse
Affiliation(s)
- Kyi Mar Wai
- Department of Human Ecology, Graduate School of Medicine, the University of Tokyo, Japan; Department of Social Medicine, Graduate School of Medicine, Hirosaki University, Japan.
| | - Arkar Min Paing
- Faculty of Sciences, Engineering and Technology, University of Adelaide, Australia
| | - Thinzar Swe
- Preclinical Department, University of Medicine (2), Myanmar
| |
Collapse
|
2
|
Muñoz-Pardeza J, López-Gil JF, Huerta-Uribe N, Hormazábal-Aguayo I, Ojeda-Rodríguez A, Marti Del Moral A, Izquierdo M, García-Hermoso A. Is physical fitness associated with leucocyte telomere length in youth with type 1 diabetes? Pediatr Res 2024:10.1038/s41390-024-03732-0. [PMID: 39543404 DOI: 10.1038/s41390-024-03732-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/28/2024] [Accepted: 11/03/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND In type 1 diabetes, telomere length (TL) may predict complications and could be influenced by glycaemic control and physical activity, but its relationship with physical fitness in youths remains unexplored. The aim of the study was to assess the association between physical fitness and TL in youth with type 1 diabetes, both at baseline and one year later. METHODS Eighty-three children and adolescents (aged 6-18 years; 44.6% girls) with type 1 diabetes from the Diactive-1 Cohort Study were involved in this study. Physical fitness was assessed using spirometry on a cycloergometer (i.e., peak oxygen consumption), dynamometry, and maximal isometric strength (one-repetition maximum [1RM]), and muscle power. Leucocyte TL was assessed using multiplex monochrome real-time quantitative polymerase chain reaction. RESULTS Positive cross-sectional associations were identified between 1RM (unstandardized beta coefficient [B] = 0.042, 95% bias corrected and accelerated [BCa] confidence interval [CI] 0.012-0.069), muscle power (B = 0.056, 95% BCa CI 0.02-0.250), and overall physical fitness (B = 0.043, 95% BCa CI 0.015-0.071) with TL independent of maturation, glycated haemoglobin, and diabetes duration. However, no associations were observed one year later. CONCLUSION Higher levels of fitness, particularly muscle strength, may play a role in telomere dynamics in youth with type 1 diabetes, suggesting that strength training exercise could be beneficial. IMPACT This is the first study to examine cross-sectional and longitudinal perspectives on the correlation among muscle strength, peak oxygen consumption [VO2peak] and telomere length in youths with type 1 diabetes. Higher physical fitness levels, as assessed by measures such as one-repetition maximum, muscle power, and overall physical fitness, are positively associated with telomere length in youths with type 1 diabetes. Understanding this link could improve management strategies, prioritizing muscle strength training for better long-term health in type 1 diabetes.
Collapse
Affiliation(s)
- Jacinto Muñoz-Pardeza
- Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
| | | | - Nidia Huerta-Uribe
- Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
| | - Ignacio Hormazábal-Aguayo
- Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
| | - Ana Ojeda-Rodríguez
- Lipids and Atherosclerosis Unit, Unidad de Gestión Clinica Medicina Interna, Maimonides Institute for Biomedical Research in Córdoba (IMIBIC), Reina Sofia University Hospital, University of Córdoba, Córdoba, Spain
- CIBER of Obesity Physiology and Nutrition (CIBERobn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Amelia Marti Del Moral
- CIBER of Obesity Physiology and Nutrition (CIBERobn), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Departament of Nutrition, Food Sciences and Physiology, Universidad de Navarra (UNAV), IdiSNA, Pamplona, Spain
| | - Mikel Izquierdo
- Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
- CIBER of Frailty and Healthy Aging (CIBERFES), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Antonio García-Hermoso
- Navarrabiomed, Hospital Universitario de Navarra, Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain.
| |
Collapse
|
3
|
Reljic D, Koller A, Herrmann HJ, Ekici AB, Neurath MF, Zopf Y. Differential Effects of Very-Low-Volume Exercise Modalities on Telomere Length, Inflammation, and Cardiometabolic Health in Obese Metabolic Syndrome Patients: A Subanalysis from Two Randomized Controlled Trials. Antioxidants (Basel) 2023; 12:1847. [PMID: 37891926 PMCID: PMC10603979 DOI: 10.3390/antiox12101847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Oxidative stress (OS) and inflammation are features of metabolic syndrome (MetS) that can contribute to the shortening of telomere length (TL), a marker of cellular ageing. Research indicates that exercise can positively influence MetS-associated conditions and TL. However, the effects of low-volume exercise types on TL are still unknown. We investigated the impact of very-low-volume high-intensity interval training (LV-HIIT), one-set resistance training (1-RT), and whole-body electromyostimulation (WB-EMS) on TL, inflammation, and cardiometabolic indices in 167 MetS patients. Data were derived from two randomized controlled trials where patients were allocated to an exercise group (2 sessions/week, for 12 weeks) or a control group. All groups received standard-care nutritional weight loss counselling. TL was determined as the T/S ratio (telomere to single-copy gene amount). All groups significantly reduced body weight (p < 0.05), but the T/S-ratio (p < 0.001) only increased with LV-HIIT. OS-related inflammatory markers (C-reactive protein, interleukin-6, and lipopolysaccharide-binding protein) only decreased (p < 0.05) following LV-HIIT. The MetS severity z-score improved with LV-HIIT (p < 0.001) and 1-RT (p = 0.014) but not with WB-EMS. In conclusion, very-low-volume exercise modalities have differential effects on telomeres, inflammation, and cardiometabolic health. Only LV-HIIT but not strength-based low-volume exercise increased TL in MetS patients, presumably due to superior effects on OS-related inflammatory markers.
Collapse
Affiliation(s)
- Dejan Reljic
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (H.J.H.); (M.F.N.); (Y.Z.)
- Hector-Center for Nutrition, Exercise and Sports, Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
- German Center Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Adriana Koller
- Institute of Genetic Epidemiology, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| | - Hans J. Herrmann
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (H.J.H.); (M.F.N.); (Y.Z.)
- Hector-Center for Nutrition, Exercise and Sports, Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
- German Center Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Arif B. Ekici
- Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Markus F. Neurath
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (H.J.H.); (M.F.N.); (Y.Z.)
- German Center Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Yurdagül Zopf
- Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany; (H.J.H.); (M.F.N.); (Y.Z.)
- Hector-Center for Nutrition, Exercise and Sports, Department of Medicine 1, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
- German Center Immunotherapy (DZI), University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
4
|
Schellnegger M, Lin AC, Hammer N, Kamolz LP. Physical Activity on Telomere Length as a Biomarker for Aging: A Systematic Review. SPORTS MEDICINE - OPEN 2022; 8:111. [PMID: 36057868 PMCID: PMC9441412 DOI: 10.1186/s40798-022-00503-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 08/07/2022] [Indexed: 11/25/2022]
Abstract
Background Overall life expectancy continues to rise, approaching 80 years of age in several developed countries. However, healthy life expectancy lags far behind, which has, in turn, contributed to increasing costs in healthcare. One way to improve health and attenuate the socio-economic impact of an aging population is to increase overall fitness through physical activity. Telomere attrition or shortening is a well-known molecular marker in aging. As such, several studies have focused on whether exercise influences health and aging through telomere biology. This systematic review examines the recent literature on the effect of physical activity on telomere length (TL) and/or telomerase activity as molecular markers of aging. Methods A focused search was performed in the databases PubMed and Web of Science for retrieving relevant articles over the past ten years. The search contained the following keywords: exercise, sport, physical activity, fitness, sedentary, physical inactivity, telomere, telomere length, t/s ratio, and telomerase. PRISMA guidelines for systematic reviews were observed. Results A total of 43 articles were identified and categorized into randomized controlled trials (RCT), observational or interventional studies. RCTs (n = 8) showed inconsistent findings of increased TL length with physical activity in, e.g. obese, post-menopausal women. In comparison with a predominantly sedentary lifestyle, observational studies (n = 27) showed significantly longer TL with exercise of moderate to vigorous intensity; however, there was no consensus on the duration and type of physical activity and training modality. Interventional studies (n = 8) also showed similar findings of significantly longer TL prior to exercise intervention; however, these studies had smaller numbers of enrolled participants (mostly of high-performance athletes), and the physical activities covered a range of exercise intensities and duration. Amongst the selected studies, aerobic training of moderate to vigorous intensity is most prevalent. For telomere biology analysis, TL was determined mainly from leukocytes using qPCR. In some cases, especially in RCT and interventional studies, different sample types such as saliva, sperm, and muscle biopsies were analyzed; different leukocyte cell types and potential genetic markers in regulating telomere biology were also investigated. Conclusions Taken together, physical activity with regular aerobic training of moderate to vigorous intensity appears to help preserve TL. However, the optimal intensity, duration of physical activity, as well as type of exercise still need to be further elucidated. Along with TL or telomerase activity, participants’ fitness level, the type of physical activity, and training modality should be assessed at different time points in future studies, with the plan for long-term follow-up. Reducing the amount of sedentary behavior may have a positive effect of preserving and increasing TL. Further molecular characterization of telomere biology in different cell types and tissues is required in order to draw definitive causal conclusions on how physical activity affects TL and aging.
Collapse
|
5
|
Herranen P, Palviainen T, Rantanen T, Tiainen K, Viljanen A, Kaprio J, Sillanpää E. A Polygenic Risk Score for Hand Grip Strength Predicts Muscle Strength and Proximal and Distal Functional Outcomes among Older Women. Med Sci Sports Exerc 2022; 54:1889-1896. [PMID: 35776845 DOI: 10.1249/mss.0000000000002981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Hand grip strength (HGS) is a widely used indicator of overall muscle strength and general health. We computed a polygenic risk score (PRS) for HGS and examined whether it predicted muscle strength, functional capacity, and disability outcomes. METHODS Genomewide association study summary statistics for HGS from the Pan-UK Biobank was used. PRS were calculated in the Finnish Twin Study on Aging ( N = 429 women, 63-76 yr). Strength tests included HGS, isometric knee extension, and ankle plantarflexion strength. Functional capacity was examined with the Timed Up and Go, 6-min and 10-m walk tests, and dual-task tests. Disabilities in the basic activities of daily living (ADL) and instrumental ADL (IADL) were investigated with questionnaires. The proportion of variation in outcomes accounted for by PRS HGS was examined using linear mixed models and extended logistic regression. RESULTS The measured HGS increased linearly over increasing PRS ( β = 4.8, SE = 0.93, P < 0.001). PRS HGS independently accounted for 6.1% of the variation in the measured HGS ( β = 14.2, SE = 3.1, P < 0.001), 5.4% of the variation in knee extension strength ( β = 19.6, SE = 4.7, P < 0.001), 1.2% of the variation in ankle plantarflexion strength ( β = 9.4, SE = 4.2, P = 0.027), and 0.1%-1.5% of the variation in functional capacity tests ( P = 0.016-0.133). Further, participants with higher PRS HGS were less likely to have ADL/IADL disabilities (odds ratio = 0.74-0.76). CONCLUSIONS Older women with genetic risk for low muscle strength were significantly weaker than those with genetic susceptibility for high muscle strength. PRS HGS was also systematically associated with overall muscle strength and proximal and distal functional outcomes that require muscle strength.
Collapse
Affiliation(s)
- Päivi Herranen
- Gerontology Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, FINLAND
| | | | - Taina Rantanen
- Gerontology Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, FINLAND
| | - Kristina Tiainen
- Gerontology Research Center, Faculty of Social Sciences, Health Sciences, Tampere University, Tampere, FINLAND
| | - Anne Viljanen
- Gerontology Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, FINLAND
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland, Helsinki, FINLAND
| | | |
Collapse
|
6
|
Tzemah-Shahar R, Hochner H, Iktilat K, Agmon M. What can we learn from physical capacity about biological age? A systematic review. Ageing Res Rev 2022; 77:101609. [PMID: 35306185 DOI: 10.1016/j.arr.2022.101609] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/02/2022] [Accepted: 03/14/2022] [Indexed: 01/16/2023]
Abstract
OBJECTIVE To systematically investigate the relationship between objective measures of physical capacity (e.g., cardio-respiratory fitness or daily step count) and biological age, measured in different ways. DATA SOURCE PubMed; SCOPUS - Elsevier API; and Web of Science - ISI 1984-present, as well as contextual search engines used to identify additional relevant publications. STUDY SELECTION Cross-sectional and longitudinal studies that assessed the association between objectively measured physical capacity and biological aging in adult individuals (age>18). RESULTS Analysis of 28 studies demonstrated that physical capacity is positively associated with biological aging; the most dominant measures of physical capacity are muscular strength or gait speed. The majority of the studies estimated biological aging by a single methodology - either Leukocyte Telomere Length or DNA methylation levels. CONCLUSIONS This systematic review of the objective physical capacity measures used to estimate aging finds that the current literature is limited insofar as it overlooks the potential contribution of many feasible markers. We recommend measuring physical capacity in the context of aging using a wide range of modifiable behavioral markers, beyond simple muscle strength or simple gait speed. Forming a feasible and diversified method for estimating physical capacity through which it will also be possible to estimate biological aging in wide population studies is essential for the development of interventions that may alleviate the burden of age-related disease.
Collapse
Affiliation(s)
- Roy Tzemah-Shahar
- The Cheryl Spencer Institute for Nursing Research, Faculty of Health and Social Welfare, University of Haifa, Haifa, Israel
| | - Hagit Hochner
- Epidemiology unit, Hebrew University School of Public Health, Jerusalem, Israel
| | - Khalil Iktilat
- Department of Gerontology, Faculty of Health and Social Welfare, University of Haifa, Haifa, Israel
| | - Maayan Agmon
- The Cheryl Spencer Institute for Nursing Research, Faculty of Health and Social Welfare, University of Haifa, Haifa, Israel
| |
Collapse
|
7
|
Föhr T, Törmäkangas T, Lankila H, Viljanen A, Rantanen T, Ollikainen M, Kaprio J, Sillanpää E. The association between epigenetic clocks and physical functioning in older women: a three-year follow-up. J Gerontol A Biol Sci Med Sci 2021; 77:1569-1576. [PMID: 34543398 PMCID: PMC9373966 DOI: 10.1093/gerona/glab270] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Indexed: 01/16/2023] Open
Abstract
Background Epigenetic clocks are composite markers developed to predict chronological age or mortality risk from DNA methylation (DNAm) data. The present study investigated the associations between 4 epigenetic clocks (Horvath’s and Hannum’s DNAmAge and DNAm GrimAge and PhenoAge) and physical functioning during a 3-year follow-up. Method We studied 63- to 76-year-old women (N = 413) from the Finnish Twin Study on Aging. DNAm was measured from blood samples at baseline. Age acceleration (AgeAccel), that is, discrepancy between chronological age and DNAm age, was determined as residuals from linear model. Physical functioning was assessed under standardized laboratory conditions at baseline and at follow-up. A cross-sectional analysis was performed with path models, and a longitudinal analysis was conducted with repeated measures linear models. A nonrandom missing data analysis was performed. Results In comparison to the other clocks, GrimAgeAccel was more strongly associated with physical functioning. At baseline, GrimAgeAccel was associated with lower performance in the Timed Up and Go (TUG) test and the 6-minute walk test. At follow-up, significant associations were observed between GrimAgeAccel and lowered performance in the TUG, 6-minute and 10-m walk tests, and knee extension and ankle plantar flexion strength tests. Conclusions The DNAm GrimAge, a novel estimate of biological aging, associated with decline in physical functioning over the 3-year follow-up in older women. However, associations between chronological age and physical function phenotypes followed similar pattern. Current epigenetic clocks do not provide strong benefits in predicting the decline of physical functioning at least during a rather short follow-up period and restricted age range.
Collapse
Affiliation(s)
- Tiina Föhr
- Faculty of Sport and Health Sciences, Gerontology Research Center (GEREC), University of Jyväskylä, Jyväskylä, Finland
| | - Timo Törmäkangas
- Faculty of Sport and Health Sciences, Gerontology Research Center (GEREC), University of Jyväskylä, Jyväskylä, Finland
| | - Hannamari Lankila
- Faculty of Sport and Health Sciences, Gerontology Research Center (GEREC), University of Jyväskylä, Jyväskylä, Finland
| | - Anne Viljanen
- Faculty of Sport and Health Sciences, Gerontology Research Center (GEREC), University of Jyväskylä, Jyväskylä, Finland
| | - Taina Rantanen
- Faculty of Sport and Health Sciences, Gerontology Research Center (GEREC), University of Jyväskylä, Jyväskylä, Finland
| | - Miina Ollikainen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.,Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Elina Sillanpää
- Faculty of Sport and Health Sciences, Gerontology Research Center (GEREC), University of Jyväskylä, Jyväskylä, Finland.,Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Valente C, Andrade R, Alvarez L, Rebelo-Marques A, Stamatakis E, Espregueira-Mendes J. Effect of physical activity and exercise on telomere length: Systematic review with meta-analysis. J Am Geriatr Soc 2021; 69:3285-3300. [PMID: 34161613 DOI: 10.1111/jgs.17334] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/24/2021] [Accepted: 05/29/2021] [Indexed: 12/30/2022]
Abstract
PURPOSE To compare a physically active lifestyle or structured exercise program to physically inactive lifestyle or control groups on telomere length (TL). METHOD We searched PubMed, EMBASE, Cochrane Library, and Open Gray databases up to March 31, 2020. We calculated standardized mean differences (SMD) with 95% confidence intervals (CI) of TL comparing physically active to physically inactive individuals and exercise intervention to control groups. Risk of bias was judged using the Risk of Bias Assessment tool for Non-randomized Studies (RoBANS) for physical activity (PA) studies and the Cochrane risk-of-bias (RoB2) for exercise intervention studies. Certainty of evidence was judged using Grading of Recommendations Assessment, Development and Evaluation (GRADE). RESULTS We included 30 studies (24 assessing the effects of PA and 6 assessing the effects of exercise interventions) comprising 7418 individuals. Physically active individuals had longer telomeres (SMD = 0.70, 95% CI 0.12-1.28, very-low certainty), especially in middle-aged individuals (SMD = 0.90, 95% CI 0.08-1.72, very-low certainty) and when considering only athletes (SMD = 0.54, 95% CI 0.18-0.90, very-low certainty). Trim-and-fill analyses revealed that most of the pooled effects were overestimated. Exercise interventions did not yield any significant effect on TL. CONCLUSION There is very-low certainty that physically active individuals have longer telomeres with a moderate effect, but this effect is probably overestimated.
Collapse
Affiliation(s)
- Cristina Valente
- Clínica Do Dragão, Espregueira-Mendes Sports Centre - FIFA Medical Centre of Excellence, Porto, Portugal.,Dom Henrique Research Centre, Porto, Portugal
| | - Renato Andrade
- Clínica Do Dragão, Espregueira-Mendes Sports Centre - FIFA Medical Centre of Excellence, Porto, Portugal.,Dom Henrique Research Centre, Porto, Portugal.,Porto Biomechanics Laboratory (LABIOMEP), Faculty of Sports, University of Porto, Porto, Portugal
| | - Luis Alvarez
- Dpto. Producción y Sanidad Animal, Salud Pública Veterinaria y Ciencia y Tecnología de los Alimentos, Facultad de Veterinaria, Universidad CEU Cardenal Herrera, Valencia, Spain.,I3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IPATIMUP, Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal
| | - Alexandre Rebelo-Marques
- Clínica Do Dragão, Espregueira-Mendes Sports Centre - FIFA Medical Centre of Excellence, Porto, Portugal.,Dom Henrique Research Centre, Porto, Portugal.,Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Clinical Academic Center of Coimbra, Coimbra, Portugal
| | - Emmanuel Stamatakis
- Charles Perkins Centre, School of Health Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - João Espregueira-Mendes
- Clínica Do Dragão, Espregueira-Mendes Sports Centre - FIFA Medical Centre of Excellence, Porto, Portugal.,Dom Henrique Research Centre, Porto, Portugal.,ICVS/3B's-PT Government Associate Laboratory, Guimarães, Portugal.,3B's Research Group-Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Guimarães, Portugal.,School of Medicine, Minho University, Braga, Portugal
| |
Collapse
|
9
|
Telomere length in COPD: Relationships with physical activity, exercise capacity, and acute exacerbations. PLoS One 2019; 14:e0223891. [PMID: 31622416 PMCID: PMC6797105 DOI: 10.1371/journal.pone.0223891] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 09/10/2019] [Indexed: 01/11/2023] Open
Abstract
RATIONALE Shorter leukocyte telomere length (LTL) is associated with reduced health-related quality of life and increased risk for acute exacerbations (AEs) and mortality in chronic obstructive pulmonary disease (COPD). Increased physical activity and exercise capacity are associated with reduced risk for AEs and death. However, the relationships between LTL and physical activity, exercise capacity, and AEs in COPD are unknown. METHODS Data from 3 COPD cohorts were examined: Cohort 1 (n = 112, physical activity intervention trial), Cohorts 2 and 3 (n = 182 and 294, respectively, separate observational studies). Subjects completed a 6-minute walk test (6MWT) and provided blood for LTL assessment using real-time PCR. Physical activity was measured as average daily step count using an accelerometer or pedometer. Number of self-reported AEs was available for 1) the year prior to enrollment (Cohorts 1 and 3) and 2) prospectively after enrollment (all cohorts). Multivariate models examined associations between LTL and average daily step count, 6MWT distance, and AEs. RESULTS A significant association between longer LTL and increased 6MWT distance was observed in the three combined cohorts (β = 3x10-5, p = 0.045). No association between LTL and average daily step count was observed. Shorter LTL was associated with an increased number of AEs in the year prior to enrollment (Cohorts 1 and 3 combined, β = -1.93, p = 0.04) and with prospective AEs (Cohort 3, β = -1.3388, p = 0.0003). CONCLUSIONS Among COPD patients, increased LTL is associated with higher exercise capacity, but not physical activity. Shorter LTL was associated with AEs in a subgroup of cohorts.
Collapse
|
10
|
Abstract
The older Finnish Twin Cohort (FTC) was established in 1974. The baseline survey was in 1975, with two follow-up health surveys in 1981 and 1990. The fourth wave of assessments was done in three parts, with a questionnaire study of twins born during 1945-1957 in 2011-2012, while older twins were interviewed and screened for dementia in two time periods, between 1999 and 2007 for twins born before 1938 and between 2013 and 2017 for twins born in 1938-1944. The content of these wave 4 assessments is described and some initial results are described. In addition, we have invited twin-pairs, based on response to the cohortwide surveys, to participate in detailed in-person studies; these are described briefly together with key results. We also review other projects based on the older FTC and provide information on the biobanking of biosamples and related phenotypes.
Collapse
|
11
|
Abstract
Telomeres are specialised structures at the end of linear chromosomes. They consist of tandem repeats of the hexanucleotide sequence TTAGGG, as well as a protein complex called shelterin. Together, they form a protective loop structure against chromosome fusion and degradation. Shortening or damage to telomeres and opening of the loop induce an uncapped state that triggers a DNA damage response resulting in senescence or apoptosis.Average telomere length, usually measured in human blood lymphocytes, was thought to be a biomarker for ageing, survival and mortality. However, it becomes obvious that regulation of telomere length is very complex and involves multiple processes. For example, the "end replication problem" during DNA replication as well as oxidative stress are responsible for the shortening of telomeres. In contrast, telomerase activity can potentially counteract telomere shortening when it is able to access and interact with telomeres. However, while highly active during development and in cancer cells, the enzyme is down-regulated in most human somatic cells with a few exceptions such as human lymphocytes. In addition, telomeres can be transcribed, and the transcription products called TERRA are involved in telomere length regulation.Thus, telomere length and their integrity are regulated at many different levels, and we only start to understand this process under conditions of increased oxidative stress, inflammation and during diseases as well as the ageing process.This chapter aims to describe our current state of knowledge on telomeres and telomerase and their regulation in order to better understand their role for the ageing process.
Collapse
|
12
|
Brown LL, Zhang YS, Mitchell C, Ailshire J. Does Telomere Length Indicate Biological, Physical, and Cognitive Health Among Older Adults? Evidence from the Health and Retirement Study. J Gerontol A Biol Sci Med Sci 2018; 73:1626-1632. [PMID: 29346517 PMCID: PMC6230208 DOI: 10.1093/gerona/gly001] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Indexed: 12/26/2022] Open
Abstract
Telomere length (TL) has been suggested as a biomarker that can indicate individual variability in the rate of aging. Yet, it remains unclear whether TL is related to recognized indicators of health in an aging, older nationally representative sample. We examine whether TL is associated with 15 biological, physical, and cognitive markers of health among older adults ages 54+. TL was assayed from saliva using quantitative polymerase chain reaction (T/S ratio) in the 2008 Health and Retirement Study (n = 4,074). We estimated probability of high-risk levels across indictors of health by TL and age-singly and jointly. TL was associated with seven indicators of poor functioning: high-density lipoprotein and total cholesterol, cystatin C, pulse pressure, body mass index, lung function, and walking speed. However, after adjusting for age, associations were substantially attenuated; only associations with cholesterol and lung function remained significant. Additionally, findings show TL did not add to the predictive power of chronological age in predicting poor functioning. While TL may not be a useful clinical marker of functional aging in an older adult population, it may still play an important role in longitudinal studies in young and middle aged populations that attempt to understand aging.
Collapse
Affiliation(s)
- Lauren L Brown
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles
| | - Yuan S Zhang
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles
| | - Colter Mitchell
- Institute for Social Research, University of Michigan, Ann Arbor
| | - Jennifer Ailshire
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles
| |
Collapse
|
13
|
Montiel Rojas D, Nilsson A, Ponsot E, Brummer RJ, Fairweather-Tait S, Jennings A, de Groot LCPGM, Berendsen A, Pietruszka B, Madej D, Caumon E, Meunier N, Malpuech-Brugère C, Guidarelli G, Santoro A, Franceschi C, Kadi F. Short Telomere Length Is Related to Limitations in Physical Function in Elderly European Adults. Front Physiol 2018; 9:1110. [PMID: 30147659 PMCID: PMC6096049 DOI: 10.3389/fphys.2018.01110] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 07/24/2018] [Indexed: 11/25/2022] Open
Abstract
The present study aims to explore the potential influence of leucocyte telomere length (LTL) on both a single indicator and a composite construct of physical functioning in a large European population of elderly men and women across diverse geographical locations. A total of 1,221 adults (65–79 years) were recruited from five European countries within the framework of NU-AGE study. The physical functioning construct was based on the 36-item Short Form Health Survey. Handgrip strength was used as a single indicator of muscle function and LTL was assessed using quantitative real-time PCR. Women had significantly longer (p < 0.05) LTL than men. Participants in Poland had significantly shorter LTL than in the other study centers, whereas participants in the Netherlands had significantly longer LTL than most of the other centers (p < 0.01). An analysis of LTL as a continuous outcome against physical functioning by using linear models revealed inconsistent findings. In contrast, based on an analysis of contrasting telomere lengths (first vs. fifth quintile of LTL), a significant odds ratio (OR) of 1.7 (95% CI: 1.1 – 2.6; p < 0.05) of having functional limitation was observed in those belonging to the first LTL quintile compared to the fifth. Interestingly, having the shortest LTL was still related to a higher likelihood of having physical limitation when compared to all remaining quintiles (OR: 1.5, 95% CI: 1.1 – 2.1; p < 0.05), even after adjustment by study center, age, sex, and overweight status. Collectively, our findings suggest that short LTL is an independent risk factor that accounts for functional decline in elderly European populations. The influence of LTL on functional limitation seems driven by the detrimental effect of having short telomeres rather than reflecting a linear dose-response relationship.
Collapse
Affiliation(s)
| | - Andreas Nilsson
- School of Health Sciences, Örebro University, Örebro, Sweden
| | - Elodie Ponsot
- School of Health Sciences, Örebro University, Örebro, Sweden
| | | | | | - Amy Jennings
- Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | | | - Agnes Berendsen
- Department of Human Nutrition, Wageningen University & Research, Wageningen, Netherlands
| | - Barbara Pietruszka
- Department of Human Nutrition, Warsaw University of Life Sciences, Warsaw, Poland
| | - Dawid Madej
- Department of Human Nutrition, Warsaw University of Life Sciences, Warsaw, Poland
| | - Elodie Caumon
- Centre Hospitalier Universitaire de Clermont-Ferrand, Centre de Recherche en Nutrition Humaine d'Auvergne, Clermont-Ferrand, France
| | - Nathalie Meunier
- Centre Hospitalier Universitaire de Clermont-Ferrand, Centre de Recherche en Nutrition Humaine d'Auvergne, Clermont-Ferrand, France
| | - Corinne Malpuech-Brugère
- Unité de Nutrition Humaine, Institut National de la Recherche Agronomique, Centre de Recherche en Nutrition Humaine d'Auvergne, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Giulia Guidarelli
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Aurelia Santoro
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy.,Interdepartmental Center "L. Galvani" (CIG), University of Bologna, Bologna, Italy
| | - Claudio Franceschi
- Bellaria Hospital, Institute of Neurological Sciences, University of Bologna, Bologna, Italy
| | - Fawzi Kadi
- School of Health Sciences, Örebro University, Örebro, Sweden
| |
Collapse
|
14
|
Sillanpää E, Laakkonen EK, Vaara E, Rantanen T, Kovanen V, Sipilä S, Kaprio J, Ollikainen M. Biological clocks and physical functioning in monozygotic female twins. BMC Geriatr 2018; 18:83. [PMID: 29614968 PMCID: PMC5883300 DOI: 10.1186/s12877-018-0775-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 03/26/2018] [Indexed: 02/06/2023] Open
Abstract
Background Biomarkers of biological aging – DNA methylation age (DNAm age) and leukocyte telomere length (LTL)– correlate strongly with chronological age across the life course. It is, however, unclear how these measures of cellular wear and tear are associated with muscle strength and functional capacity, which are known to decline with older age and are associated with mortality. We investigated if DNAm age and LTL were associated with body composition and physical functioning by examining 48 monozygotic twin sisters. Methods White blood cell DNAm age (predicted years) was calculated from Illumina 450 k BeadChip methylation data using an online calculator. DNAm age acceleration was defined from the residuals derived from a linear regression model of DNAm age on chronological age. LTL was measured by qPCR. Total body percentage of fat and lean mass were estimated using bioimpedance. Physical functioning was measured by grip strength, knee extension strength and by 10 m maximal walking speed test. Results In all participants, DNAm age (58.4 ± 6.6) was lower than chronological age (61.3 ± 5.9 years). Pairwise correlations of monozygotic co-twins were high for DNAm age (0.88, 95% CI 0.79, 0.97), age acceleration (0.68, 95% CI 0.30, 0.85) and LTL (0.77, 95% CI 0.60, 0.94). Increased age acceleration i.e. faster epigenetic aging compared to chronological age was associated with lower grip strength (β = − 5.3 SE 1.9 p = 0.011), but not with other measures of physical functioning or body composition. LTL was not associated with body composition or physical functioning. Conclusions To conclude, accelerated DNAm age is associated with lower grip strength, a biomarker known to be associated with physiological aging, and which predicts decline in physical functioning and mortality. Further studies may clarify whether epigenetic aging explains the decline in muscle strength with aging or whether DNAm age just illustrates the progress of aging. Electronic supplementary material The online version of this article (10.1186/s12877-018-0775-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elina Sillanpää
- Gerontology Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, P.O. Box 35 (VIV), FIN-40014, Jyväskylä, Finland. .,Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.
| | - Eija K Laakkonen
- Gerontology Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, P.O. Box 35 (VIV), FIN-40014, Jyväskylä, Finland
| | - Elina Vaara
- Department of Social Research, University of Helsinki, Helsinki, Finland
| | - Taina Rantanen
- Gerontology Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, P.O. Box 35 (VIV), FIN-40014, Jyväskylä, Finland
| | - Vuokko Kovanen
- Gerontology Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, P.O. Box 35 (VIV), FIN-40014, Jyväskylä, Finland
| | - Sarianna Sipilä
- Gerontology Research Center, Faculty of Sport and Health Sciences, University of Jyväskylä, P.O. Box 35 (VIV), FIN-40014, Jyväskylä, Finland
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.,Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Miina Ollikainen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland.,Department of Public Health, University of Helsinki, Helsinki, Finland
| |
Collapse
|
15
|
Leukocyte and Skeletal Muscle Telomere Length and Body Composition in Monozygotic Twin Pairs Discordant for Long-term Hormone Replacement Therapy. Twin Res Hum Genet 2017; 20:119-131. [PMID: 28193312 DOI: 10.1017/thg.2017.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Estrogen-based hormone replacement therapy (HRT) may be associated with deceleration of cellular aging. We investigated whether long-term HRT has effects on leukocyte (LTL) or mean and minimum skeletal muscle telomere length (SMTL) in a design that controls for genotype and childhood environment. Associations between telomeres, body composition, and physical performance were also examined. Eleven monozygotic twin pairs (age 57.6 ± 1.8 years) discordant for HRT were studied. Mean duration of HRT use was 7.3 ± 3.7 years in the user sister, while their co-twins had never used HRT. LTL was measured by qPCR and SMTLs by southern blot. Body and muscle composition were estimated by bioimpedance and computed tomography, respectively. Physical performance was measured by jumping height and grip strength. HRT users and non-users did not differ in LTL or mean or minimum SMTL. Within-pair correlations were high in LTL (r = 0.69, p = .020) and in mean (r = 0.74, p = .014) and minimum SMTL (r = 0.88, p = .001). Body composition and performance were better in users than non-users. In analyses of individuals, LTL was associated with BMI (r 2 = 0.30, p = .030), percentage total body (r 2 = 0.43, p = .014), and thigh (r 2 = 0.55, p = .004) fat, while minimum SMTL was associated with fat-free mass (r 2 = 0.27, p = .020) and thigh muscle area (r 2 = 0.42, p = .016). We found no associations between HRT use and telomere length. Longer LTLs were associated with lower total and regional fat, while longer minimum SMTLs were associated with higher fat-free mass and greater thigh muscle area. This suggests that telomeres measured from different tissues may have different associations with measures of body composition.
Collapse
|
16
|
Dimauro I, Scalabrin M, Fantini C, Grazioli E, Beltran Valls MR, Mercatelli N, Parisi A, Sabatini S, Di Luigi L, Caporossi D. Resistance training and redox homeostasis: Correlation with age-associated genomic changes. Redox Biol 2016; 10:34-44. [PMID: 27687219 PMCID: PMC5040637 DOI: 10.1016/j.redox.2016.09.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 09/19/2016] [Accepted: 09/20/2016] [Indexed: 01/15/2023] Open
Abstract
Regular physical activity is effective as prevention and treatment for different chronic conditions related to the ageing processes. In fact, a sedentary lifestyle has been linked to a worsening of cellular ageing biomarkers such as telomere length (TL) and/or specific epigenetic changes (e.g. DNA methylation), with increase of the propensity to aging-related diseases and premature death. Extending our previous findings, we aimed to test the hypothesis that 12 weeks of low frequency, moderate intensity, explosive-type resistance training (EMRT) may attenuate age-associated genomic changes. To this aim, TL, global DNA methylation, TRF2, Ku80, SIRT1, SIRT2 and global protein acetylation, as well as other proteins involved in apoptotic pathway (Bcl-2, Bax and Caspase-3), antioxidant response (TrxR1 and MnSOD) and oxidative damage (myeloperoxidase) were evaluated before and after EMRT in whole blood or peripheral mononuclear cells (PBMCs) of elderly subjects. Our findings confirm the potential of EMRT to induce an adaptive change in the antioxidant protein systems at systemic level and suggest a putative role of resistance training in the reduction of global DNA methylation. Moreover, we observed that EMRT counteracts the telomeres' shortening in a manner that proved to be directly correlated with the amelioration of redox homeostasis and efficacy of training regime, evaluated as improvement of both muscle's power/strength and functional parameters.
Collapse
Affiliation(s)
- Ivan Dimauro
- Unit of Biology, Genetics and Biochemistry, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro de Bosis 15, 00135 Rome, Italy.
| | - Mattia Scalabrin
- Unit of Biology, Genetics and Biochemistry, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro de Bosis 15, 00135 Rome, Italy.
| | - Cristina Fantini
- Unit of Biology, Genetics and Biochemistry, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro de Bosis 15, 00135 Rome, Italy.
| | - Elisa Grazioli
- Unit of Biology, Genetics and Biochemistry, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro de Bosis 15, 00135 Rome, Italy.
| | - Maria Reyes Beltran Valls
- Unit of Biology, Genetics and Biochemistry, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro de Bosis 15, 00135 Rome, Italy.
| | - Neri Mercatelli
- Unit of Biology, Genetics and Biochemistry, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro de Bosis 15, 00135 Rome, Italy.
| | - Attilio Parisi
- Unit of Sport Medicine, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy.
| | - Stefania Sabatini
- Unit of Biology, Genetics and Biochemistry, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro de Bosis 15, 00135 Rome, Italy.
| | - Luigi Di Luigi
- Unit of Endocrinology, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy.
| | - Daniela Caporossi
- Unit of Biology, Genetics and Biochemistry, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro de Bosis 15, 00135 Rome, Italy.
| |
Collapse
|