1
|
Feng H, Li J, Wang H, Wei Z, Feng S. Senescence- and Immunity-Related Changes in the Central Nervous System: A Comprehensive Review. Aging Dis 2024:AD.2024.0755. [PMID: 39325939 DOI: 10.14336/ad.2024.0755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Senescence is a cellular state characterized by an irreversible halt in the cell cycle, accompanied by alterations in cell morphology, function, and secretion. Senescent cells release a plethora of inflammatory and growth factors, extracellular matrix proteins, and other bioactive substances, collectively known as the senescence-associated secretory phenotype (SASP). These excreted substances serve as crucial mediators of senescent tissues, while the secretion of SASP by senescent neurons and glial cells in the central nervous system modulates the activity of immune cells. Senescent immune cells also influence the physiological activities of various cells in the central nervous system. Further, the interaction between cellular senescence and immune regulation collectively affects the physiological and pathological processes of the central nervous system. Herein, we explore the role of senescence in the physiological and pathological processes underlying embryonic development, aging, degeneration, and injury of the central nervous system, through the immune response. Further, we elucidate the role of senescence in the physiological and pathological processes of the central nervous system, proposing a new theoretical foundation for treating central nervous system diseases.
Collapse
Affiliation(s)
- Haiwen Feng
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300070, China
| | - Junjin Li
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300070, China
| | - Hongda Wang
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300070, China
| | - Zhijian Wei
- Orthopedic Research Center of Shandong University and Department of Orthopedics, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Shiqing Feng
- Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin 300070, China
- Orthopedic Research Center of Shandong University and Department of Orthopedics, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
2
|
Castro R, Lopes M, De Biase L, Valdez G. Aging spinal cord microglia become phenotypically heterogeneous and preferentially target motor neurons and their synapses. Glia 2024; 72:206-221. [PMID: 37737058 PMCID: PMC10773989 DOI: 10.1002/glia.24470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/07/2023] [Accepted: 09/03/2023] [Indexed: 09/23/2023]
Abstract
Microglia have been found to acquire unique region-dependent deleterious features with age and diseases that contribute to neuronal dysfunction and degeneration in the brain. However, it remains unknown whether microglia exhibit similar phenotypic heterogeneity in the spinal cord. Here, we performed a regional analysis of spinal cord microglia in 3-, 16-, 23-, and 30-month-old mice. Using light and electron microscopy, we discovered that spinal cord microglia acquire an increasingly activated phenotype during the course of aging regardless of regional location. However, aging causes microglia in the ventral but not dorsal horn to lose their spatial organization. Aged ventral horn microglia also aggregate around the somata of motor neurons and increase their contacts with motor synapses, which have been shown to be lost with age. These findings suggest that microglia may affect the ability of motor neurons to receive and relay motor commands during aging. To generate additional insights about aging spinal cord microglia, we performed RNA-sequencing on FACS-isolated microglia from 3-, 18-, 22-, and 29-month-old mice. We found that spinal cord microglia acquire a similar transcriptional identity as those in the brain during aging that includes altered expression of genes with roles in microglia-neuron interactions and inflammation. By 29 months of age, spinal cord microglia exhibit additional and unique transcriptional changes known and predicted to cause senescence and to alter lysosomal and ribosomal regulation. Altogether, this work provides the foundation to target microglia to ameliorate aged-related changes in the spinal cord, and particularly on the motor circuit.
Collapse
Affiliation(s)
- Ryan Castro
- Neuroscience Graduate Program, Brown University, Providence, Rhode Island, USA
| | - Mikayla Lopes
- Molecular Biology, Cell Biology & Biochemistry Graduate Program, Brown University, Providence, Rhode Island, USA
| | - Lindsay De Biase
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Gregorio Valdez
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, Rhode Island, USA
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, Rhode Island, USA
- Department of Neurology, Warren Alpert Medical School of Medicine, Brown University, Providence, USA
| |
Collapse
|
3
|
Khaing ZZ, Chandrasekaran A, Katta A, Reed MJ. The Brain and Spinal Microvasculature in Normal Aging. J Gerontol A Biol Sci Med Sci 2023; 78:1309-1319. [PMID: 37093786 PMCID: PMC10395569 DOI: 10.1093/gerona/glad107] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Indexed: 04/25/2023] Open
Abstract
Changes in the brain and spinal cord microvasculature during normal aging contribute to the "sensitive" nature of aged central nervous system tissue to ischemic insults. In this review, we will examine alterations in the central nervous system microvasculature during normal aging, which we define as aging without a dominant pathology such as neurodegenerative processes, vascular injury or disease, or trauma. We will also discuss newer technologies to improve the study of central nervous system microvascular structure and function. Microvasculature within the brain and spinal cord will be discussed separately as anatomy and physiology differ between these compartments. Lastly, we will identify critical areas for future studies as well as key unanswered questions.
Collapse
Affiliation(s)
- Zin Z Khaing
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
| | | | - Anjali Katta
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
| | - May J Reed
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
4
|
Toedebusch RG, Wei NW, Simafranca KT, Furth-Jacobus JA, Brust-Mascher I, Stewart SL, Dickinson PJ, Woolard KD, Li CF, Vernau KM, Meyers FJ, Toedebusch CM. Intra- and Intertumoral Microglia/Macrophage Infiltration and Their Associated Molecular Signature Is Highly Variable in Canine Oligodendroglioma: A Preliminary Evaluation. Vet Sci 2023; 10:403. [PMID: 37368789 PMCID: PMC10303632 DOI: 10.3390/vetsci10060403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
The goal of this study was to define the glioma-associated microglia/macrophage (GAM) response and associated molecular landscape in canine oligodendrogliomas. Here, we quantified the intratumoral GAM density of low- and high-grade oligodendrogliomas compared to that of a normal brain, as well as the intratumoral concentration of several known GAM-derived pro-tumorigenic molecules in high-grade oligodendrogliomas compared to that in a normal brain. Our analysis demonstrated marked intra- and intertumoral heterogeneity of GAM infiltration. Correspondingly, we observed significant variability in the intratumoral concentrations of several GAM-associated molecules, unlike what we previously observed in high-grade astrocytomas. However, high-grade oligodendroglioma tumor homogenates (n = 6) exhibited an increase in the pro-tumorigenic molecules hepatocyte growth factor receptor (HGFR) and vascular endothelial growth factor (VEGF), as we observed in high-grade astrocytomas. Moreover, neoplastic oligodendrocytes displayed robust expression of GAL-3, a chimeric galectin implicated in driving immunosuppression in human glioblastoma. While this work identifies shared putative therapeutic targets across canine glioma subtypes (HGFR, GAL-3), it highlights several key differences in the immune landscape. Therefore, a continued effort to develop a comprehensive understanding of the immune microenvironment within each subtype is necessary to inform therapeutic strategies going forward.
Collapse
Affiliation(s)
- Ryan G. Toedebusch
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (R.G.T.); (N.-W.W.); (K.T.S.); (J.A.F.-J.); (P.J.D.); (C.-F.L.); (K.M.V.)
| | - Ning-Wei Wei
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (R.G.T.); (N.-W.W.); (K.T.S.); (J.A.F.-J.); (P.J.D.); (C.-F.L.); (K.M.V.)
| | - Kulani T. Simafranca
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (R.G.T.); (N.-W.W.); (K.T.S.); (J.A.F.-J.); (P.J.D.); (C.-F.L.); (K.M.V.)
| | - Jennie A. Furth-Jacobus
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (R.G.T.); (N.-W.W.); (K.T.S.); (J.A.F.-J.); (P.J.D.); (C.-F.L.); (K.M.V.)
| | - Ingrid Brust-Mascher
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA;
| | - Susan L. Stewart
- Division of Biostatistics, School of Medicine, University of California, Davis, CA 95616, USA;
- UC Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA;
| | - Peter J. Dickinson
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (R.G.T.); (N.-W.W.); (K.T.S.); (J.A.F.-J.); (P.J.D.); (C.-F.L.); (K.M.V.)
- UC Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA;
| | - Kevin D. Woolard
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA;
| | - Chai-Fei Li
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (R.G.T.); (N.-W.W.); (K.T.S.); (J.A.F.-J.); (P.J.D.); (C.-F.L.); (K.M.V.)
| | - Karen M. Vernau
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (R.G.T.); (N.-W.W.); (K.T.S.); (J.A.F.-J.); (P.J.D.); (C.-F.L.); (K.M.V.)
| | - Frederick J. Meyers
- UC Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA;
- Department of Internal Medicine, Division of Hematology and Oncology, Center for Precision Medicine, Microbiology, and Immunology, School of Medicine, University of California, Sacramento, CA 95817, USA
| | - Christine M. Toedebusch
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (R.G.T.); (N.-W.W.); (K.T.S.); (J.A.F.-J.); (P.J.D.); (C.-F.L.); (K.M.V.)
- UC Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA;
| |
Collapse
|
5
|
Hense JD, Garcia DN, Isola JV, Alvarado-Rincón JA, Zanini BM, Prosczek JB, Stout MB, Mason JB, Walsh PT, Brieño-Enríquez MA, Schadock I, Barros CC, Masternak MM, Schneider A. Senolytic treatment reverses obesity-mediated senescent cell accumulation in the ovary. GeroScience 2022; 44:1747-1759. [PMID: 35460445 DOI: 10.1007/s11357-022-00573-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/13/2022] [Indexed: 11/26/2022] Open
Abstract
Senescent cells are in a cell cycle arrest state and accumulate with aging and obesity, contributing to a chronic inflammatory state. Treatment with senolytic drugs dasatinib and quercetin (D + Q) can reduce senescent cell burden in several tissues, increasing lifespan. Despite this, there are few reports about senescent cells accumulating in female reproductive tissues. Therefore, the aim of the study was to characterize the ovarian reserve and its relationship with cellular senescence in genetically obese mice (ob/ob). In experiment 1, ob/ob (n = 5) and wild-type (WT) mice (n = 5) at 12 months of age were evaluated. In experiment 2, 2-month-old female ob/ob mice were treated with senolytics (D + Q, n = 6) or placebo (n = 6) during the 4 months. Obese mice had more senescent cells in ovaries, indicated by increased p21 and p16 and lipofuscin staining and macrophage infiltration. Treatment with D + Q significantly reduced senescent cell burden in ovaries of obese mice. Neither obesity nor treatment with D + Q affected the number of ovarian follicles. In conclusion, our data indicate that obesity due to leptin deficiency increases the load of senescent cells in the ovary, which is reduced by treatment by senolytics. However, neither obesity nor D + Q treatment affected the ovarian reserve.
Collapse
Affiliation(s)
- Jéssica D Hense
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, RS, Pelotas, Brazil
| | - Driele N Garcia
- Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - José V Isola
- Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Joao A Alvarado-Rincón
- Facultad de Ciencias Agropecuarias, Universidad de La Salle, Campus Utopía, Yopal, Casanare, Colombia
| | - Bianka M Zanini
- Faculdade de Veterinária, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Juliane B Prosczek
- Faculdade de Nutrição, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1, Pelotas, RS, 96010-610, Brazil
| | - Michael B Stout
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Jeffrey B Mason
- Department of Animal, Dairy and Veterinary Sciences, Center for Integrated BioSystems, School of Veterinary Medicine, Utah State University, Logan, UT, USA
| | - Patrick T Walsh
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Miguel A Brieño-Enríquez
- Department of Obstetrics, Gynecology and Reproductive Sciences, Magee-Womens Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Ines Schadock
- Faculdade de Nutrição, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1, Pelotas, RS, 96010-610, Brazil
| | - Carlos C Barros
- Faculdade de Nutrição, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1, Pelotas, RS, 96010-610, Brazil
| | - Michal M Masternak
- College of Medicine, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, Poznan, Poland
| | - Augusto Schneider
- Faculdade de Nutrição, Universidade Federal de Pelotas, Rua Gomes Carneiro, 1, Pelotas, RS, 96010-610, Brazil.
| |
Collapse
|
6
|
Balasubramanian P, Kiss T, Tarantini S, Nyúl-Tóth Á, Ahire C, Yabluchanskiy A, Csipo T, Lipecz A, Tabak A, Institoris A, Csiszar A, Ungvari Z. Obesity-induced cognitive impairment in older adults: a microvascular perspective. Am J Physiol Heart Circ Physiol 2021; 320:H740-H761. [PMID: 33337961 PMCID: PMC8091942 DOI: 10.1152/ajpheart.00736.2020] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/30/2020] [Accepted: 12/12/2020] [Indexed: 02/07/2023]
Abstract
Over two-thirds of individuals aged 65 and older are obese or overweight in the United States. Epidemiological data show an association between the degree of adiposity and cognitive dysfunction in the elderly. In this review, the pathophysiological roles of microvascular mechanisms, including impaired endothelial function and neurovascular coupling responses, microvascular rarefaction, and blood-brain barrier disruption in the genesis of cognitive impairment in geriatric obesity are considered. The potential contribution of adipose-derived factors and fundamental cellular and molecular mechanisms of senescence to exacerbated obesity-induced cerebromicrovascular impairment and cognitive decline in aging are discussed.
Collapse
Affiliation(s)
- Priya Balasubramanian
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Tamas Kiss
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, Departments of Medical Physics and Informatics & Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| | - Stefano Tarantini
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, the Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Ádám Nyúl-Tóth
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Chetan Ahire
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Tamas Csipo
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
- International Training Program in Geroscience, Division of Clinical Physiology, Department of Cardiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Agnes Lipecz
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Adam Tabak
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Internal Medicine and Oncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Department of Epidemiology and Public Health, University College London, London, United Kingdom
| | - Adam Institoris
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Anna Csiszar
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, Departments of Medical Physics and Informatics & Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment and Neurodegeneration Program, Department of Biochemistry and Molecular Biology, Center for Geroscience and Healthy Brain Aging/Reynolds Oklahoma Center on Aging, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
- International Training Program in Geroscience, Theoretical Medicine Doctoral School, Departments of Medical Physics and Informatics & Cell Biology and Molecular Medicine, University of Szeged, Szeged, Hungary
- International Training Program in Geroscience, Doctoral School of Basic and Translational Medicine, Department of Public Health, Semmelweis University, Budapest, Hungary
- Department of Health Promotion Sciences, the Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| |
Collapse
|
7
|
Toedebusch R, Grodzki AC, Dickinson PJ, Woolard K, Vinson N, Sturges B, Snyder J, Li CF, Nagasaka O, Consales B, Vernau K, Knipe M, Murthy V, Lein PJ, Toedebusch CM. Glioma-associated microglia/macrophages augment tumorigenicity in canine astrocytoma, a naturally occurring model of human glioma. Neurooncol Adv 2021; 3:vdab062. [PMID: 34131649 PMCID: PMC8193901 DOI: 10.1093/noajnl/vdab062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Glioma-associated microglia/macrophages (GAMs) markedly influence glioma progression. Under the influence of transforming growth factor beta (TGFB), GAMs are polarized toward a tumor-supportive phenotype. However, neither therapeutic targeting of GAM recruitment nor TGFB signaling demonstrated efficacy in glioma patients despite efficacy in preclinical models, underscoring the need for a comprehensive understanding of the TGFB/GAM axis. Spontaneously occurring canine gliomas share many features with human glioma and provide a complementary translational animal model for further study. Given the importance of GAM and TGFB in human glioma, the aims of this study were to further define the GAM-associated molecular profile and the relevance of TGFB signaling in canine glioma that may serve as the basis for future translational studies. METHODS GAM morphometry, levels of GAM-associated molecules, and the canonical TGFB signaling axis were compared in archived samples of canine astrocytomas versus normal canine brain. Furthermore, the effect of TGFB on the malignant phenotype of canine astrocytoma cells was evaluated. RESULTS GAMs diffusely infiltrated canine astrocytomas. GAM density was increased in high-grade tumors that correlated with a pro-tumorigenic molecular signature and upregulation of the canonical TGFB signaling axis. Moreover, TGFB1 enhanced the migration of canine astrocytoma cells in vitro. CONCLUSIONS Canine astrocytomas share a similar GAM-associated immune landscape with human adult glioma. Our data also support a contributing role for TGFB1 signaling in the malignant phenotype of canine astrocytoma. These data further support naturally occurring canine glioma as a valid model for the investigation of GAM-associated therapeutic strategies for human malignant glioma.
Collapse
Affiliation(s)
- Ryan Toedebusch
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Ana Cristina Grodzki
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Peter J Dickinson
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Kevin Woolard
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Nicole Vinson
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Beverly Sturges
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - John Snyder
- Riemann Computing, LLC, St. Louis, Missouri, USA
| | - Chai-Fei Li
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Ori Nagasaka
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Blaire Consales
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Karen Vernau
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Marguerite Knipe
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Vishal Murthy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| | - Christine M Toedebusch
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, California, USA
| |
Collapse
|
8
|
Hashimoto K, Kobatake Y, Asahina R, Yamato O, Islam MS, Sakai H, Nishida H, Maeda S, Kamishina H. Up-regulated inflammatory signatures of the spinal cord in canine degenerative myelopathy. Res Vet Sci 2020; 135:442-449. [PMID: 33187678 DOI: 10.1016/j.rvsc.2020.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/25/2020] [Accepted: 11/02/2020] [Indexed: 01/17/2023]
Abstract
Canine degenerative myelopathy (DM) is an adult-onset fatal disease characterized by progressive degeneration of the spinal cord. Affected dogs have homozygous mutations in superoxide dismutase 1, and thus DM is a potential spontaneous animal model of human familial amyotrophic lateral sclerosis (ALS). Neuroinflammation is the pathological hallmark of ALS, whereby proinflammatory cytokines and chemokines are overproduced by activated glial cells such as astrocytes and microglia. However, the detailed pathogenesis of spinal cord degeneration in DM remains unknown. To further characterize the pathological mechanism of DM, we analyzed the caudal cervical cords of ten Pembroke Welsh Corgis pathologically diagnosed with DM by quantitative real-time reverse transcription polymerase chain reaction, immunohistochemistry (IHC), and double immunofluorescence. Compared to control spinal cord tissues, we found significantly enhanced transcriptions of interleukin-1β, tumor necrosis factor-α, CC motif chemokine ligand (CCL) 2 and vascular cell adhesion molecule -1 mRNA in the spinal cords of DM dogs. Moreover, IHC for the class II major histocompatibility complex molecules HLA-DR and CCL2 indicated that the immunopositive areas of activated macrophages/microglia and CCL2 protein were significantly increased in DM, and CCL2 protein was mainly overproduced by astrocytes. Our results suggest a proinflammatory state of the microenvironment in the DM spinal cord in which activated microglia and astrocytes play important roles by secreting a set of cytokines, chemokines, and expressing adhesion molecules.
Collapse
Affiliation(s)
- Kei Hashimoto
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Yui Kobatake
- The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Ryota Asahina
- The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Osamu Yamato
- Laboratory of Veterinary Clinical Pathology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-8580, Japan
| | - Md Shafiqul Islam
- Laboratory of Veterinary Clinical Pathology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-8580, Japan
| | - Hiroki Sakai
- The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan; Center for Highly Advanced Integration of Nano and Life Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Hidetaka Nishida
- The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Sadatoshi Maeda
- The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Hiroaki Kamishina
- The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan; Center for Highly Advanced Integration of Nano and Life Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan.
| |
Collapse
|
9
|
Piekarz KM, Bhaskaran S, Sataranatarajan K, Street K, Premkumar P, Saunders D, Zalles M, Gulej R, Khademi S, Laurin J, Peelor R, Miller BF, Towner R, Van Remmen H. Molecular changes associated with spinal cord aging. GeroScience 2020; 42:765-784. [PMID: 32144690 DOI: 10.1007/s11357-020-00172-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/21/2020] [Indexed: 12/25/2022] Open
Abstract
Age-related muscle weakness and loss of muscle mass (sarcopenia) is a universal problem in the elderly. Our previous studies indicate that alpha motor neurons (α-MNs) play a critical role in this process. The goal of the current study is to uncover changes in the aging spinal cord that contribute to loss of innervation and the downstream degenerative processes that occur in skeletal muscle. The number of α-MNs is decreased in the spinal cord of wildtype mice during aging, beginning in middle age and reaching a 41% loss by 27 months of age. There is evidence for age-related loss of myelin and mild inflammation, including astrocyte and microglia activation and an increase in levels of sICAM-1. We identified changes in metabolites consistent with compromised neuronal viability, such as reduced levels of N-acetyl-aspartate. Cleaved caspase-3 is more abundant in spinal cord from old mice, suggesting that apoptosis contributes to neuronal loss. RNA-seq analysis revealed changes in the expression of a number of genes in spinal cord from old mice, in particular genes encoding extracellular matrix components (ECM) and a 172-fold increase in MMP-12 expression. Furthermore, blood-spinal cord barrier (BSCB) permeability is increased in old mice, which may contribute to alterations in spinal cord homeostasis and exacerbate neuronal distress. Together, these data show for the first time that the spinal cord undergoes significant changes during aging, including progressive α-MNs loss that is associated with low-grade inflammation, apoptosis, changes in ECM, myelination, and vascular permeability.
Collapse
Affiliation(s)
- Katarzyna M Piekarz
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73117, USA.,Program in Aging and Metabolism, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Shylesh Bhaskaran
- Program in Aging and Metabolism, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | | | - Kaitlyn Street
- Program in Aging and Metabolism, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Pavithra Premkumar
- Program in Aging and Metabolism, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Debra Saunders
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Michelle Zalles
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73117, USA.,Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Rafal Gulej
- Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Shadi Khademi
- Program in Aging and Metabolism, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Jaime Laurin
- Program in Aging and Metabolism, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Rick Peelor
- Program in Aging and Metabolism, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Benjamin F Miller
- Program in Aging and Metabolism, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Rheal Towner
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73117, USA.,Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA
| | - Holly Van Remmen
- Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73117, USA. .,Program in Aging and Metabolism, Oklahoma Medical Research Foundation, Oklahoma City, OK, 73104, USA. .,Oklahoma City VA Medical Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|