1
|
Zhang H, He Y, Song C, Chai Z, Liu C, Sun S, Huang Q, He C, Zhang X, Zhou Y, Zhao F. Analysis of fatty acid composition and sensitivity to dietary n-3 PUFA intervention of mouse n-3 PUFA-enriched tissues/organs. Prostaglandins Leukot Essent Fatty Acids 2023; 192:102568. [PMID: 37003143 DOI: 10.1016/j.plefa.2023.102568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023]
Abstract
PURPOSE n-3 polyunsaturated fatty acids (PUFAs), docosahexaenoic acid (DHA; C22:6 n3) and eicosapentaenoic acid (EPA; C20:5 n3), are of concern for their health-promoting effects such as anti-inflammatory, but the tissue selectivity for n-3 PUFA (i.e., which tissues and organs are rich in n-3 PUFA) is still not well known. In addition, it is unclear which tissues and organs are more sensitive to n-3 PUFA intervention. These unresolved issues have greatly hindered the exploring of the health benefits of n-3 PUFA. METHODS Twenty-four 7-week-old male C57BL/6 J mice were assigned to the control, fish oil, DHA, and EPA groups. The last three groups were given a 4-week oral intervention of fatty acids in ethyl ester (400 mg/kg bw). The fatty acid profiles in 27 compartments were determined by gas chromatography. RESULTS The proportion of long-chain n-3 PUFA (the total relative percentage of EPA, DPA n3, and DHA) was analyzed. Eight tissues and organs, including the brain (cerebral cortex, hippocampus, hypothalamus) and peripheral organs (tongue, quadriceps, gastrocnemius, kidney, and heart) were determined as being n-3 PUFA-enriched tissues and organs, owing to their high n-3 PUFA levels. The highest n-3 PUFA content was observed in the tongue for the first time. Notably, the content of linoleic acid (LA; C18:2 n6c) in peripheral organs was observed to be relatively high compared with that in the brain. Interestingly, the proportions of EPA in the kidney, heart, quadriceps, gastrocnemius, and tongue increased more markedly after the EPA intervention than after the DHA or fish oil intervention. As expected, the levels of proinflammatory arachidonic acid (AA; C20:4 n6) in the kidney, quadriceps, and tongue were markedly decreased after the three dietary interventions. CONCLUSION Peripheral tissues and organs, including the tongue, quadriceps, gastrocnemius, kidney, and heart, besides the brain, showed obvious tissue selectivity for n-3 PUFA. In the whole body of mice, the tongue exhibits the strongest preference for n-3 PUFA, with the highest proportion of n-3 PUFA. Moreover, these peripheral tissues and organs, especially the kidney, are more sensitive to dietary EPA administration in comparison with the brain.
Collapse
Affiliation(s)
- Hui Zhang
- School of Public Health, Health Science Center, Ningbo University, Zhejiang Key Laboratory of Pathophysiology, Ningbo, Zhejiang, 315211, China
| | - Yannan He
- Institute of Nutrition & Health, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China; OmegaBandz.Inc, Shanghai, 1180 Xingxian Road, Shanghai, 201815, China
| | - Chunyan Song
- School of Public Health, Health Science Center, Ningbo University, Zhejiang Key Laboratory of Pathophysiology, Ningbo, Zhejiang, 315211, China
| | - Zhenglong Chai
- School of Public Health, Health Science Center, Ningbo University, Zhejiang Key Laboratory of Pathophysiology, Ningbo, Zhejiang, 315211, China
| | - Chundi Liu
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Shuben Sun
- The Affiliated Hospital of Medical School, Ningbo University, Institute of Digestive Disease of Ningbo University, Ningbo, Zhejiang, 315020, China
| | - Qiuhan Huang
- School of Public Health, Health Science Center, Ningbo University, Zhejiang Key Laboratory of Pathophysiology, Ningbo, Zhejiang, 315211, China
| | - Canxia He
- School of Public Health, Health Science Center, Ningbo University, Zhejiang Key Laboratory of Pathophysiology, Ningbo, Zhejiang, 315211, China
| | - Xiaohong Zhang
- School of Public Health, Health Science Center, Ningbo University, Zhejiang Key Laboratory of Pathophysiology, Ningbo, Zhejiang, 315211, China.
| | - Yuping Zhou
- The Affiliated Hospital of Medical School, Ningbo University, Institute of Digestive Disease of Ningbo University, Ningbo, Zhejiang, 315020, China
| | - Feng Zhao
- Institute of Nutrition & Health, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| |
Collapse
|
2
|
Valencak TG, Spenlingwimmer T, Nimphy R, Reinisch I, Hoffman JM, Prokesch A. Challenging a "Cushy" Life: Potential Roles of Thermogenesis and Adipose Tissue Adaptations in Delayed Aging of Ames and Snell Dwarf Mice. Metabolites 2020; 10:E176. [PMID: 32365727 PMCID: PMC7281452 DOI: 10.3390/metabo10050176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 02/07/2023] Open
Abstract
Laboratory mouse models with genetically altered growth hormone (GH) signaling and subsequent endocrine disruptions, have longer lifespans than control littermates. As such, these mice are commonly examined to determine the role of the somatotropic axis as it relates to healthspan and longevity in mammals. The two most prominent mouse mutants in this context are the genetically dwarf Ames and Snell models which have been studied extensively for over two decades. However, it has only been proposed recently that both white and brown adipose tissue depots may contribute to their delayed aging. Here we review the current state of the field and supplement it with recent data from our labs.
Collapse
Affiliation(s)
- Teresa G. Valencak
- College of Animal Sciences, Zhejiang University, Zijingang Campus, 866 Yuhangtang Road, Hangzhou 310058, China
- Department of Biomedical Sciences, Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Veterinärplatz 1, A-1210 Vienna, Austria; (T.S.); (R.N.)
| | - Tanja Spenlingwimmer
- Department of Biomedical Sciences, Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Veterinärplatz 1, A-1210 Vienna, Austria; (T.S.); (R.N.)
| | - Ricarda Nimphy
- Department of Biomedical Sciences, Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine, Veterinärplatz 1, A-1210 Vienna, Austria; (T.S.); (R.N.)
| | - Isabel Reinisch
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (I.R.); (A.P.)
| | - Jessica M. Hoffman
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd., CH464, Birmingham, AL 35294, USA;
| | - Andreas Prokesch
- Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; (I.R.); (A.P.)
- BioTechMed-Graz, Mozartgasse 12/II, 8010 Graz, Austria
| |
Collapse
|