1
|
Baek H, Yang SW, Kim S, Lee Y, Park H, Park M, Jeon BJ, Park H, Hwang HS, Kim JY, Kim JH, Kang YS. Development of Anti-Inflammatory Agents Utilizing DC-SIGN Mediated IL-10 Secretion in Autoimmune and Immune-Mediated Disorders: Bridging Veterinary and Human Health. Int J Mol Sci 2025; 26:2329. [PMID: 40076949 PMCID: PMC11901132 DOI: 10.3390/ijms26052329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/21/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025] Open
Abstract
DC-SIGN (dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin) is a C-type lectin receptor expressed on dendritic cells and M2 macrophages, playing a key role in immune regulation and pathogen recognition. Its ability to mediate anti-inflammatory effects by interacting with specific ligands triggers pathways that suppress pro-inflammatory responses and promote tissue repair, making it a potential therapeutic target for inflammatory and autoimmune diseases. DC-SIGN homologs in various animal species share structural similarities and perform comparable immune functions, offering valuable insights into its broader application across species. By recognizing carbohydrate ligands on pathogens, DC-SIGN facilitates immune modulation, which can be harnessed for developing therapies aimed at controlling inflammation. In veterinary medicine, autoimmune and inflammatory diseases, such as rheumatoid arthritis and inflammatory bowel disease, represent significant challenges, and the anti-inflammatory properties of DC-SIGN could provide new therapeutic options to improve disease management and enhance animal health. Future investigations should focus on the structural and functional analysis of DC-SIGN homologs in various species, as well as the development of preclinical models to translate these findings into clinical interventions bridging veterinary and human health.
Collapse
Affiliation(s)
- Hayeon Baek
- Department of KONKUK-KIST Biomedical Science & Technology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea; (H.B.); (M.P.)
| | - Seung-Woo Yang
- Sanford Consortium for Regenerative Medicine, School of Medicine, University of California, San Diego, CA 92037, USA;
- Division of Maternal and Fetal Medicine, Department of Obstetrics and Gynecology, Research Institute of Medical Science, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea;
| | - Seulki Kim
- Department of Veterinary Pharmacology and Toxicology, Veterinary Science Research Institute, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (S.K.); (Y.L.)
| | - Yunseok Lee
- Department of Veterinary Pharmacology and Toxicology, Veterinary Science Research Institute, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (S.K.); (Y.L.)
| | - Hwi Park
- Department of Veterinary Ophthalmology, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (H.P.); (B.-J.J.); (H.P.); (J.-Y.K.)
| | - Min Park
- Department of KONKUK-KIST Biomedical Science & Technology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea; (H.B.); (M.P.)
| | - Byung-Ju Jeon
- Department of Veterinary Ophthalmology, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (H.P.); (B.-J.J.); (H.P.); (J.-Y.K.)
| | - Hanwool Park
- Department of Veterinary Ophthalmology, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (H.P.); (B.-J.J.); (H.P.); (J.-Y.K.)
| | - Han-Sung Hwang
- Division of Maternal and Fetal Medicine, Department of Obstetrics and Gynecology, Research Institute of Medical Science, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea;
| | - Joon-Young Kim
- Department of Veterinary Ophthalmology, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (H.P.); (B.-J.J.); (H.P.); (J.-Y.K.)
| | - Jung-Hyun Kim
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea;
| | - Young-Sun Kang
- Department of KONKUK-KIST Biomedical Science & Technology, Konkuk University, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Republic of Korea; (H.B.); (M.P.)
- Department of Veterinary Pharmacology and Toxicology, Veterinary Science Research Institute, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea; (S.K.); (Y.L.)
| |
Collapse
|
2
|
Angelini A, Garcia Marquez G, Malovannaya A, Fiorotto ML, Saltzman A, Jain A, Trial J, Taffet GE, Cieslik KA. Sex Differences in Response to Diet Enriched With Glutathione Precursors in the Aging Heart. J Gerontol A Biol Sci Med Sci 2025; 80:glae258. [PMID: 39492659 PMCID: PMC11788829 DOI: 10.1093/gerona/glae258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Indexed: 11/05/2024] Open
Abstract
Common features of the aging heart are dysregulated metabolism, inflammation, and fibrosis. Elevated oxidative stress is another hallmark of cardiac aging that can exacerbate each of these conditions. We hypothesize that by increasing natural antioxidant levels (glutathione), we will improve cardiac function. Twenty-one-month-old mice were fed glycine and N-acetyl cysteine (GlyNAC; glutathione precursors)-supplemented or control diets for 12 weeks. Heart function was monitored longitudinally, and the exercise performance was determined at the end of the study. We found that the GlyNAC diet was beneficial for old male but not old female mice, leading to an increase of Ndufb8 expression (a subunit of the mitochondrial respiratory chain complex), and higher enzymatic activity for CPT1b and CrAT, 2 carnitine acyltransferases that are critical to cardiomyocyte metabolism. Although no quantifiable change of collagen turnover was detected, hearts from GlyNAC-fed old males exhibited a slight but significant enrichment in Fmod, a protein that can inhibit collagen fibril formation, possibly reducing extracellular matrix stiffness and thus improving diastolic function. Cardiac diastolic function was modestly improved in males but not females, and surprisingly GlyNAC-fed female mice showed a decline in exercise performance. In summary, our work supports the concept that aged male and female hearts are phenotypically different. These basic differences may affect the response to pharmacological and diet interventions, including antioxidants.
Collapse
Affiliation(s)
- Aude Angelini
- Department of Medicine, Houston Methodist Hospital and Houston Methodist Research Institute, Houston, Texas, USA
- Section of Cardiovascular Sciences, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Grecia Garcia Marquez
- Department of Medicine, Houston Methodist Hospital and Houston Methodist Research Institute, Houston, Texas, USA
- Section of Geriatrics and Palliative Medicine, Department of Medicine, and Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, USA
| | - Anna Malovannaya
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, Texas, USA
| | - Marta L Fiorotto
- USDA/ARS Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Alexander Saltzman
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, Texas, USA
| | - Antrix Jain
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, Texas, USA
| | - JoAnn Trial
- Department of Medicine, Houston Methodist Hospital and Houston Methodist Research Institute, Houston, Texas, USA
- Section of Cardiovascular Sciences, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - George E Taffet
- Department of Medicine, Houston Methodist Hospital and Houston Methodist Research Institute, Houston, Texas, USA
- Section of Geriatrics and Palliative Medicine, Department of Medicine, and Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, USA
| | - Katarzyna A Cieslik
- Department of Medicine, Houston Methodist Hospital and Houston Methodist Research Institute, Houston, Texas, USA
- Section of Cardiovascular Sciences, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
3
|
Li H, Lin S, Wang Y, Shi Y, Fang X, Wang J, Cui H, Bian Y, Qi X. Immunosenescence: A new direction in anti-aging research. Int Immunopharmacol 2024; 141:112900. [PMID: 39137628 DOI: 10.1016/j.intimp.2024.112900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/22/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
The immune system is a major regulatory system of the body, that is composed of immune cells, immune organs, and related signaling factors. As an organism ages, observable age-related changes in the function of the immune system accumulate in a process described as 'immune aging. Research has shown that the impact of aging on immunity is detrimental, with various dysregulated responses that affect the function of immune cells at the cellular level. For example, increased aging has been shown to result in the abnormal chemotaxis of neutrophils and decreased phagocytosis of macrophages. Age-related diminished functionality of immune cell types has direct effects on host fitness, leading to poorer responses to vaccination, more inflammation and tissue damage, as well as autoimmune disorders and the inability to control infections. Similarly, age impacts the function of the immune system at the organ level, resulting in decreased hematopoietic function in the bone marrow, a gradual deficiency of catalase in the thymus, and thymic atrophy, resulting in reduced production of related immune cells such as B cells and T cells, further increasing the risk of autoimmune disorders in the elderly. As the immune function of the body weakens, aging cells and inflammatory factors cannot be cleared, resulting in a cycle of increased inflammation that accumulates over time. Cumulatively, the consequences of immune aging increase the likelihood of developing age-related diseases, such as Alzheimer's disease, atherosclerosis, and osteoporosis, among others. Therefore, targeting the age-related changes that occur within cells of the immune system might be an effective anti-aging strategy. In this article, we summarize the relevant literature on immune aging research, focusing on its impact on aging, in hopes of providing new directions for anti-aging research.
Collapse
Affiliation(s)
- Hanzhou Li
- Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Union Medical Center, Tianjin, China
| | - Shan Lin
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuming Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuexuan Shi
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xixing Fang
- College of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Jida Wang
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Huantian Cui
- Yunnan University of Chinese Medicine, Yunnan, China.
| | - Yuhong Bian
- Tianjin University of Traditional Chinese Medicine, Tianjin, China.
| | - Xin Qi
- Tianjin University of Traditional Chinese Medicine, Tianjin, China; Tianjin Union Medical Center, Tianjin, China.
| |
Collapse
|
4
|
Daneshgar N, Lan R, Regnier M, Mackintosh SG, Venkatasubramanian R, Dai DF. Klotho enhances diastolic function in aged hearts through Sirt1-mediated pathways. GeroScience 2024; 46:4729-4741. [PMID: 38976132 PMCID: PMC11336011 DOI: 10.1007/s11357-024-01209-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/16/2024] [Indexed: 07/09/2024] Open
Abstract
Aging leads to a progressive decline in cardiac function, increasing the risk of heart failure with preserved ejection fraction (HFpEF). This study elucidates the impact of α-Klotho, an anti-aging hormone, on cardiac diastolic dysfunction and explore its downstream mechanisms. Aged wild-type and heterozygous Klotho-deficient mice received daily injection of soluble α-Klotho (sKL) for 10 weeks, followed by a comprehensive assessment of heart function by echocardiography, intracardiac pressure catheter, exercise tolerance, and cardiac pathology. Our findings show that klotho deficiency accentuated cardiac hypertrophy, diastolic dysfunction, and exercise intolerance, while sKL treatment ameliorates these abnormalities and improves cardiac capillary densities. Downstream of klotho, we focused on the Sirtuin1 (Sirt1) signaling pathway to elucidate the potential underlying mechanism by which Klotho improves diastolic function. We found that decreased Klotho levels were linked with Sirt1 deficiency, whereas sKL treatment restored Sirt1 expression in aged hearts and mitigated the DNA damage response pathway activation. Through tandem mass tag proteomics and unbiased acetylomics analysis, we identified 220 significantly hyperacetylated lysine sites in critical cardiac proteins of aged hearts. We found that sKL supplementation attenuated age-dependent DNA damage and cardiac diastolic dysfunction. In contrast, Klotho deficiency significantly increased hyperacetylation of several crucial cardiac contractile proteins, potentially impairing ventricular relaxation and diastolic function, thus predisposing to HFpEF. These results suggest the potential benefit of sKL supplementation as a promising therapeutic strategy for combating HFpEF in aging.
Collapse
Affiliation(s)
- Nastaran Daneshgar
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Renny Lan
- UAMS, Arkansas Children's Nutrition Center, Little Rock, AR, USA
| | - Michael Regnier
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Samuel G Mackintosh
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Dao-Fu Dai
- Department of Pathology, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Noh JY, Han HW, Kim DM, Giles ED, Farnell YZ, Wright GA, Sun Y. Innate immunity in peripheral tissues is differentially impaired under normal and endotoxic conditions in aging. Front Immunol 2024; 15:1357444. [PMID: 39221237 PMCID: PMC11361940 DOI: 10.3389/fimmu.2024.1357444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Chronic low-grade inflammation is a hallmark of aging, aka "inflammaging", which is linked to a wide range of age-associated diseases. Immune dysfunction increases disease susceptibility, and increases morbidity and mortality of aging. Innate immune cells, including monocytes, macrophages and neutrophils, are the first responders of host defense and the key mediators of various metabolic and inflammatory insults. Currently, the understanding of innate immune programming in aging is largely fragmented. Here we investigated the phenotypic and functional properties of innate immune cells in various peripheral tissues of young and aged mice under normal and endotoxic conditions. Under the steady state, aged mice showed elevated pro-inflammatory monocytes/macrophages in peripheral blood, adipose tissue, liver, and colon. Under lipopolysaccharide (LPS)-induced inflammatory state, the innate immune cells of aged mice showed a different response to LPS stimulus than that of young mice. LPS-induced immune responses displayed differential profiles in different tissues and cell types. In the peripheral blood, when responding to LPS, the aged mice showed higher neutrophils, but lower pro-inflammatory monocytes than that in young mice. In the peritoneal fluid, while young mice exhibited significantly elevated pro-inflammatory neutrophils and macrophages in response to LPS, aged mice exhibited decreased pro-inflammatory neutrophils and variable cytokine responses in macrophages. In the adipose tissue, LPS induced less infiltrated neutrophils but more infiltrated macrophages in old mice than young mice. In the liver, aged mice showed a more robust increase of pro-inflammatory macrophages compared to that in young mice under LPS stimulation. In colon, macrophages showed relatively mild response to LPS in both young and old mice. We have further tested bone-marrow derived macrophages (BMDM) from young and aged mice, we found that BMDM from aged mice have impaired polarization, displaying higher expression of pro-inflammatory markers than those from young mice. These data collectively suggest that innate immunity in peripheral tissues is impaired in aging, and the dysregulation of immunity is tissue- and cell-dependent. Our findings in the rodent model underscore the complexity of aging immunity. Further investigation is needed to determine whether the immune profile observed in aged mice is applicable in age-associated diseases in humans.
Collapse
Affiliation(s)
- Ji Yeon Noh
- Department of Nutrition, Texas A&M University, College Station, TX, United States
| | - Hye Won Han
- Department of Nutrition, Texas A&M University, College Station, TX, United States
| | - Da Mi Kim
- Department of Nutrition, Texas A&M University, College Station, TX, United States
| | - Erin D. Giles
- School of Kinesiology, University of Michigan, Ann Arbor, MI, United States
| | - Yuhua Z. Farnell
- Department of Poultry Science, Texas A&M University, College Station, TX, United States
| | - Gus A. Wright
- Department of Veterinary Pathobiology, Texas A&M University,
College Station, TX, United States
| | - Yuxiang Sun
- Department of Nutrition, Texas A&M University, College Station, TX, United States
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX, United States
| |
Collapse
|
6
|
Ungvari A, Gulej R, Csik B, Mukli P, Negri S, Tarantini S, Yabluchanskiy A, Benyo Z, Csiszar A, Ungvari Z. The Role of Methionine-Rich Diet in Unhealthy Cerebrovascular and Brain Aging: Mechanisms and Implications for Cognitive Impairment. Nutrients 2023; 15:4662. [PMID: 37960316 PMCID: PMC10650229 DOI: 10.3390/nu15214662] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
As aging societies in the western world face a growing prevalence of vascular cognitive impairment and Alzheimer's disease (AD), understanding their underlying causes and associated risk factors becomes increasingly critical. A salient concern in the western dietary context is the high consumption of methionine-rich foods such as red meat. The present review delves into the impact of this methionine-heavy diet and the resultant hyperhomocysteinemia on accelerated cerebrovascular and brain aging, emphasizing their potential roles in cognitive impairment. Through a comprehensive exploration of existing evidence, a link between high methionine intake and hyperhomocysteinemia and oxidative stress, mitochondrial dysfunction, inflammation, and accelerated epigenetic aging is drawn. Moreover, the microvascular determinants of cognitive deterioration, including endothelial dysfunction, reduced cerebral blood flow, microvascular rarefaction, impaired neurovascular coupling, and blood-brain barrier (BBB) disruption, are explored. The mechanisms by which excessive methionine consumption and hyperhomocysteinemia might drive cerebromicrovascular and brain aging processes are elucidated. By presenting an intricate understanding of the relationships among methionine-rich diets, hyperhomocysteinemia, cerebrovascular and brain aging, and cognitive impairment, avenues for future research and potential therapeutic interventions are suggested.
Collapse
Affiliation(s)
- Anna Ungvari
- Department of Public Health, Semmelweis University, 1089 Budapest, Hungary
| | - Rafal Gulej
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Boglarka Csik
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Department of Public Health, Doctoral School of Basic and Translational Medicine, Semmelweis University, 1089 Budapest, Hungary
| | - Peter Mukli
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Department of Public Health, Doctoral School of Basic and Translational Medicine, Semmelweis University, 1089 Budapest, Hungary
| | - Sharon Negri
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Stefano Tarantini
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Department of Public Health, Doctoral School of Basic and Translational Medicine, Semmelweis University, 1089 Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Andriy Yabluchanskiy
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Department of Public Health, Doctoral School of Basic and Translational Medicine, Semmelweis University, 1089 Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| | - Zoltan Benyo
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary;
- Cerebrovascular and Neurocognitive Disorders Research Group, Eötvös Loránd Research Network, Semmelweis University, 1094 Budapest, Hungary
| | - Anna Csiszar
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Department of Translational Medicine, Doctoral School of Basic and Translational Medicine, Semmelweis University, 1089 Budapest, Hungary
| | - Zoltan Ungvari
- Vascular Cognitive Impairment, Neurodegeneration and Healthy Brain Aging Program, Department of Neurosurgery, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA; (R.G.); (B.C.); (P.M.); (S.N.); (S.T.); (A.Y.); (A.C.); (Z.U.)
- Oklahoma Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- International Training Program in Geroscience, Department of Public Health, Doctoral School of Basic and Translational Medicine, Semmelweis University, 1089 Budapest, Hungary
- Stephenson Cancer Center, University of Oklahoma, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
| |
Collapse
|
7
|
Angelini A, Trial J, Saltzman AB, Malovannaya A, Cieslik KA. A defective mechanosensing pathway affects fibroblast-to-myofibroblast transition in the old male mouse heart. iScience 2023; 26:107283. [PMID: 37520701 PMCID: PMC10372839 DOI: 10.1016/j.isci.2023.107283] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/12/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023] Open
Abstract
The cardiac fibroblast interacts with an extracellular matrix (ECM), enabling myofibroblast maturation via a process called mechanosensing. Although in the aging male heart, ECM is stiffer than in the young mouse, myofibroblast development is impaired, as demonstrated in 2-D and 3-D experiments. In old male cardiac fibroblasts, we found a decrease in actin polymerization, α-smooth muscle actin (α-SMA), and Kindlin-2 expressions, the latter an effector of the mechanosensing. When Kindlin-2 levels were manipulated via siRNA interference, young fibroblasts developed an old-like fibroblast phenotype, whereas Kindlin-2 overexpression in old fibroblasts reversed the defective phenotype. Finally, inhibition of overactivated extracellular regulated kinases 1 and 2 (ERK1/2) in the old male fibroblasts rescued actin polymerization and α-SMA expression. Pathological ERK1/2 overactivation was also attenuated by Kindlin-2 overexpression. In contrast, old female cardiac fibroblasts retained an operant mechanosensing pathway. In conclusion, we identified defective components of the Kindlin/ERK/actin/α-SMA mechanosensing axis in aged male fibroblasts.
Collapse
Affiliation(s)
- Aude Angelini
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - JoAnn Trial
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Alexander B. Saltzman
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX, USA
| | - Anna Malovannaya
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, TX, USA
| | - Katarzyna A. Cieslik
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
8
|
Angelini A, Ortiz-Urbina J, Trial J, Reddy AK, Malovannaya A, Jain A, Entman ML, Taffet GE, Cieslik KA. Sex-specific phenotypes in the aging mouse heart and consequences for chronic fibrosis. Am J Physiol Heart Circ Physiol 2022; 323:H285-H300. [PMID: 35714177 PMCID: PMC9273262 DOI: 10.1152/ajpheart.00078.2022] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/24/2022] [Accepted: 06/09/2022] [Indexed: 01/18/2023]
Abstract
The incidence of diastolic dysfunction increases with age in both humans and mice. This is characterized by increased passive stiffness and slower relaxation of the left ventricle. The stiffness arises at least partially from progressively increased interstitial collagen deposition because of highly secretory fibroblasts. In the past, we demonstrated that AMPK activation via the drug 5-aminoimidazole-4-carboxamide riboside (AICAR) in middle-aged mice reduced adverse remodeling after myocardial infarction. Therefore, as an attempt to normalize the fibroblast phenotype, we used 21-mo-old male and female mice and treated them with AICAR (0.166 mg/g body wt) where each mouse was followed in a functional study over a 3-mo period. We found sex-related differences in extracellular matrix (ECM) composition as well as heart function indices at baseline, which were further accentuated by AICAR treatment. AICAR attenuated the age-related increase in left atrial volume (LAV, an indicator of diastolic dysfunction) in female but not in male hearts, which was associated with reduced collagen deposition in the old female heart, and reduced the transcription factor Gli1 expression in cardiac fibroblasts. We further demonstrated that collagen synthesis was dependent on Gli1, which is a target of AMPK-mediated degradation. By contrast, AICAR had a minor impact on cardiac fibroblasts in the old male heart because of blunted AMPK phosphorylation. Hence, it did not significantly improve old male heart function indices. In conclusion, we demonstrated that male and female hearts are phenotypically different, and sex-specific differences need to be considered when analyzing the response to pharmacological intervention.NEW & NOTEWORTHY The aging heart develops diastolic dysfunction because of increased collagen deposition. We attempted to reduce collagen expression in the old heart by activating AMPK using AICAR. An improvement of diastolic function and reduction of cardiac fibrosis was found only in the female heart and correlated with decreased procollagen expression and increased degradation of the transcription factor Gli1. Male hearts display blunted AICAR-dependent AMPK activation and therefore this treatment had no benefits for the male mice.
Collapse
Affiliation(s)
- Aude Angelini
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Jesus Ortiz-Urbina
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, Texas
- Tecnologico de Monterrey, School of Medicine and Health Sciences, Monterrey, Mexico
- Section of Geriatrics, Department of Medicine, and Huffington Center on Aging, Baylor College of Medicine, Houston, Texas
| | - JoAnn Trial
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Anilkumar K Reddy
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Anna Malovannaya
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, Texas
| | - Antrix Jain
- Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, Texas
| | - Mark L Entman
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, Texas
- DeBakey Heart Center, Houston Methodist Hospital, Houston, Texas
| | - George E Taffet
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, Texas
- DeBakey Heart Center, Houston Methodist Hospital, Houston, Texas
- Section of Geriatrics, Department of Medicine, and Huffington Center on Aging, Baylor College of Medicine, Houston, Texas
| | - Katarzyna A Cieslik
- Section of Cardiovascular Research, Department of Medicine, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
9
|
Targeting the Metabolic-Inflammatory Circuit in Heart Failure With Preserved Ejection Fraction. Curr Heart Fail Rep 2022; 19:63-74. [PMID: 35403986 DOI: 10.1007/s11897-022-00546-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/25/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE OF REVIEW Heart failure with preserved ejection fraction (HFpEF) is a leading cause of morbidity and mortality. The current mechanistic paradigm supports a comorbidity-driven systemic proinflammatory state that evokes microvascular and myocardial dysfunction. Crucially, diabetes and obesity are frequently prevalent in HFpEF patients; as such, we review the involvement of a metabolic-inflammatory circuit in disease pathogenesis. RECENT FINDINGS Experimental models of diastolic dysfunction and genuine models of HFpEF have facilitated discovery of underlying drivers of HFpEF, where metabolic derangement and systemic inflammation appear to be central components of disease pathophysiology. Despite a shared phenotype among these models, molecular signatures differ depending on type and combination of comorbidities present. Inflammation, oxidative stress, hypertension, and metabolic derangements have been positioned as therapeutic targets to suppress the metabolic-inflammatory circuit in HFpEF. However, the stratification of unique patient phenogroups within the collective HFpEF subgroup argues for specific interventions for distinct phenogroups.
Collapse
|
10
|
Feng W, Liu J, Wang S, Hu Y, Pan H, Hu T, Guan H, Zhang D, Mao Y. Alginate oligosaccharide alleviates D-galactose-induced cardiac ageing via regulating myocardial mitochondria function and integrity in mice. J Cell Mol Med 2021; 25:7157-7168. [PMID: 34227740 PMCID: PMC8335675 DOI: 10.1111/jcmm.16746] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 05/23/2021] [Accepted: 05/25/2021] [Indexed: 12/21/2022] Open
Abstract
Ageing is a crucial risk factor for the development of age‐related cardiovascular diseases. Therefore, the molecular mechanisms of ageing and novel anti‐ageing interventions need to be deeply studied. Alginate oligosaccharide (AOS) possesses high pharmacological activities and beneficial effects. Our study was undertaken to investigate whether AOS could be used as an anti‐ageing drug to alleviate cardiac ageing. D‐galactose (D‐gal)‐induced C57BL/6J ageing mice were established by subcutaneous injection of D‐gal (200 mg·kg‐1·d‐1) for 8 weeks. AOS (50, 100 and 150 mg·kg‐1·d‐1) were administrated intragastrically for the last 4 weeks. As a result, AOS prevented cardiac dysfunction in D‐gal‐induced ageing mice, including partially preserved ejection fraction (EF%) and fractional shortening (FS%). AOS inhibited D‐gal‐induced up‐regulation of natriuretic peptides A (ANP), brain natriuretic peptide (BNP) and ageing markers p53 and p21 in a dose‐dependent manner. To further explore the potential mechanisms contributing to the anti‐ageing protective effect of AOS, the age‐related mitochondrial compromise was analysed. Our data indicated that AOS alleviated D‐gal‐induced cardiac ageing by improving mitochondrial biogenesis, maintaining the mitochondrial integrity and enhancing the efficient removal of impaired mitochondria. AOS also decreased the ROS production and oxidative stress status, which, in turn, further inhibiting cardiac mitochondria from being destroyed. Together, these results demonstrate that AOS may be an effective therapeutic agent to alleviate cardiac ageing.
Collapse
Affiliation(s)
- Wenjing Feng
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China.,Department of Epidemiology and Health Statistics, The School of Public Health of Qingdao University, Qingdao, China
| | - Jianya Liu
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shan Wang
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yi Hu
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hui Pan
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ting Hu
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Marine Biomedical Research Institute of Qingdao, Qingdao, China
| | - Huashi Guan
- Key Laboratory of Marine Drugs, Ministry of Education, Shandong Provincial Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Dongfeng Zhang
- Department of Epidemiology and Health Statistics, The School of Public Health of Qingdao University, Qingdao, China
| | - Yongjun Mao
- Department of Geriatric Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|