1
|
Li J, Kong X, Liu T, Xian M, Wei J. The Role of ACE2 in Neurological Disorders: From Underlying Mechanisms to the Neurological Impact of COVID-19. Int J Mol Sci 2024; 25:9960. [PMID: 39337446 PMCID: PMC11431863 DOI: 10.3390/ijms25189960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Angiotensin-converting enzyme 2 (ACE2) has become a hot topic in neuroscience research in recent years, especially in the context of the global COVID-19 pandemic, where its role in neurological diseases has received widespread attention. ACE2, as a multifunctional metalloprotease, not only plays a critical role in the cardiovascular system but also plays an important role in the protection, development, and inflammation regulation of the nervous system. The COVID-19 pandemic further highlights the importance of ACE2 in the nervous system. SARS-CoV-2 enters host cells by binding to ACE2, which may directly or indirectly affect the nervous system, leading to a range of neurological symptoms. This review aims to explore the function of ACE2 in the nervous system as well as its potential impact and therapeutic potential in various neurological diseases, providing a new perspective for the treatment of neurological disorders.
Collapse
Affiliation(s)
- Jingwen Li
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China
- Institute for Sports and Brain Health, School of Physical Education, Henan University, Kaifeng 475004, China
| | - Xiangrui Kong
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China
- Institute for Sports and Brain Health, School of Physical Education, Henan University, Kaifeng 475004, China
| | - Tingting Liu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Meiyan Xian
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jianshe Wei
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China
- Institute for Sports and Brain Health, School of Physical Education, Henan University, Kaifeng 475004, China
| |
Collapse
|
2
|
Chittimalli K, Adkins S, Arora S, Singh J, Jarajapu YP. An Investigation of the Inflammatory Landscape in the Brain and Bone Marrow of the APP/PS1 Mouse. J Alzheimers Dis Rep 2024; 8:981-998. [PMID: 39114548 PMCID: PMC11305850 DOI: 10.3233/adr-240024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/29/2024] [Indexed: 08/10/2024] Open
Abstract
Background The APP/PS1 mouse model recapitulates pathology of human Alzheimer's disease (AD). While amyloid-β peptide deposition and neurodegeneration are features of AD, the pathology may involve inflammation and impaired vascular regeneration. Objective This study evaluated inflammatory environments in the brain and bone marrow (BM), and the impact on brain microvascular density. Methods BM and frontal cortex from male nine-month-old APP/PS1 or the control C57Bl6/j mice were studied. Vascular density and inflammatory cells were evaluated in the sections of frontal cortex by immunohistochemistry. Different subsets of hematopoietic stem/progenitor cells (BM) and monocyte-macrophages were characterized by flow cytometry and by clonogenic assays. Myelopoietic or inflammatory factors were evaluated by real-time RT-PCR or by western blotting. Results CD34+ or CD31+ vascular structures were lower (p < 0.01, n = 6) in the frontal cortex that was associated with decreased number of Lin-Sca-1+cKit+ vasculogenic progenitor cells in the BM and circulation (p < 0.02, n = 6) compared to the control. Multipotent progenitor cells MPP4, common lymphoid, common myeloid and myeloid progenitor cells were higher in the APP/PS1-BM compared to the control, which agreed with increased numbers of monocytes and pro-inflammatory macrophages. The expression of pro-myelopoietic factors and alarmins was higher in the APP/PS1 BM-HSPCs or in the BM-supernatants compared to the control. Frontal cortices of APP/PS1 mice showed higher number of pro-inflammatory macrophages (CD11b+F4/80+ or CD80+) and microglia (OX42+Iba1+). Conclusions These findings show that AD pathology in APP/PS1 mice is associated with upregulated myelopoiesis, which contributes to the brain inflammation and decreased vascularity.
Collapse
Affiliation(s)
- Kishore Chittimalli
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | - Stephen Adkins
- School of Biomedical Sciences, University of North Dakota, Grand Forks, ND, USA
| | - Sanjay Arora
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | - Jagdish Singh
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| | - Yagna P.R. Jarajapu
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, USA
| |
Collapse
|
3
|
Chittimalli K, Jahan J, Sakamuri A, McAdams ZL, Ericsson AC, Jarajapu YP. Restoration of the gut barrier integrity and restructuring of the gut microbiome in aging by angiotensin-(1-7). Clin Sci (Lond) 2023; 137:913-930. [PMID: 37254732 PMCID: PMC10881191 DOI: 10.1042/cs20220904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 05/16/2023] [Accepted: 05/30/2023] [Indexed: 06/01/2023]
Abstract
Compromised barrier function of colon epithelium with aging is largely due to gut microbial dysbiosis. Recent studies implicate an important role for angiotensin converting enzymes, ACE and ACE2, angiotensins, and the receptors, AT1 receptor (AT1R) and Mas receptor (MasR), in the regulation of colon functions. The present study tested the hypothesis that leaky gut in aging is associated with an imbalance in ACE2/ACE and that the treatment with angiotenisn-(1-7) (Ang-(1-7)) will restore gut barrier integrity and microbiome. Studies were carried out in Young (3-4 months) and old (20-24 months) male mice. Ang-(1-7) was administered by using osmotic pumps. Outcome measures included expressions of ACE, ACE2, AT1R, and MasR, intestinal permeability by using FITC-dextran, and immunohistochemistry of claudin 1 and occludin, and intestinal stem cells (ISCs). ACE2 protein and activity were decreased in Old group while that of ACE were unchanged. Increased intestinal permeability and plasma levels of zonulin-1 in the Old group were normalized by Ang-(1-7). Epithelial disintegrity, reduced number of goblet cells and ISCs in the old group were restored by Ang-(1-7). Expression of claudin 1 and occludin in the aging colon was increased by Ang-(1-7). Infiltration of CD11b+ or F4/80+ inflammatory cells in the old colons were decreased by Ang-(1-7). Gut microbial dysbiosis in aging was evident by decreased richness and altered beta diversity that were reversed by Ang-(1-7) with increased abundance of Lactobacillus or Lachnospiraceae. The present study shows that Ang-(1-7) restores gut barrier integrity and reduces inflammation in the aging colon by restoring the layer of ISCs and by restructuring the gut microbiome.
Collapse
Affiliation(s)
- Kishore Chittimalli
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, U.S.A
| | - Jesmin Jahan
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, U.S.A
| | - Anil Sakamuri
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, U.S.A
| | - Zachary L. McAdams
- Missouri Metagenomics Center, Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, U.S.A
| | - Aaron C. Ericsson
- Missouri Metagenomics Center, Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, MO, U.S.A
| | - Yagna P.R. Jarajapu
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, U.S.A
| |
Collapse
|
4
|
Chittimalli K, Jahan J, Sakamuri A, Weyrick H, Winkle W, Adkins S, Vetter SW, Jarajapu YPR. Reversal of aging-associated increase in myelopoiesis and expression of alarmins by angiotensin-(1-7). Sci Rep 2023; 13:2543. [PMID: 36782016 PMCID: PMC9925828 DOI: 10.1038/s41598-023-29853-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 02/11/2023] [Indexed: 02/15/2023] Open
Abstract
Aging is associated with chronic systemic inflammation largely due to increased myelopoiesis, which in turn increases risk for vascular disease. We have previously shown evidence for the therapeutic potential of Angiotensin-(1-7) (Ang-(1-7)) in reversing vasoreparative dysfunction in aging. This study tested the hypothesis that ischemic vascular repair in aging by Ang-(1-7) involves attenuation of myelopoietic potential in the bone marrow and decreased mobilization of inflammatory cells. Young or Old male mice of age 3-4 and 22-24 months, respectively, received Ang-(1-7) (1 µg/kg/min, s.c.) for four weeks. Myelopoiesis was evaluated in the bone marrow (BM) cells by carrying out the colony forming unit (CFU-GM) assay followed by flow cytometry of monocyte-macrophages. Expression of pro-myelopoietic factors and alarmins in the hematopoietic progenitor-enriched BM cells was evaluated. Hindlimb ischemia (HLI) was induced by femoral ligation, and mobilization of monocytes into the blood stream was determined. Blood flow recovery was monitored by Laser Doppler imaging and infiltration of inflammatory cells was evaluated by immunohistochemistry. BM cells from Old mice generated a higher number of monocytes (Ly6G-CD11b+Ly6Chi) and M1 macrophages (Ly6ChiF4/80+) compared to that of Young, which was reversed by Ang-(1-7). Gene expression of selected myelopoietic factors, alarmins (S100A8, S100A9, S100A14 and HMGb1) and the receptor for alarmins, RAGE, was higher in the Old hematopoietic progenitor-enriched BM cells compared to the Young. Increased expressions of these factors were decreased by Ang-(1-7). Ischemia-induced mobilization of monocytes was higher in Old mice with decreased blood flow recovery and increased infiltration of monocyte-macrophages compared to the Young, all of which were reversed by Ang-(1-7). Enhanced ischemic vascular repair by Ang-(1-7) in aging is largely by decreasing the generation and recruitment of inflammatory monocyte-macrophages to the areas of ischemic injury. This is associated with decreased alarmin signaling in the BM-hematopoietic progenitor cells.
Collapse
Affiliation(s)
- Kishore Chittimalli
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Sudro-16, Albrecht Blvd., Fargo, ND, 58108, USA
| | - Jesmin Jahan
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Sudro-16, Albrecht Blvd., Fargo, ND, 58108, USA
| | - Anil Sakamuri
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Sudro-16, Albrecht Blvd., Fargo, ND, 58108, USA
| | - Hope Weyrick
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Sudro-16, Albrecht Blvd., Fargo, ND, 58108, USA
| | - Wink Winkle
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Sudro-16, Albrecht Blvd., Fargo, ND, 58108, USA
| | - Steven Adkins
- School of Biomedical Sciences, University of North Dakota, Grand Forks, ND, 58202, USA
| | - Stefan W Vetter
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Sudro-16, Albrecht Blvd., Fargo, ND, 58108, USA
| | - Yagna P R Jarajapu
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Sudro-16, Albrecht Blvd., Fargo, ND, 58108, USA.
| |
Collapse
|
5
|
Bueno V, Destro PH, Teixeira D, Frasca D. Angiotensin Converting Enzyme 1 Expression in the Leukocytes of Adults Aged 64 to 67 Years. JMIRX MED 2023; 4:e45220. [PMID: 37725526 PMCID: PMC10414256 DOI: 10.2196/45220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 09/21/2023]
Abstract
The renin angiotensin system is composed of several enzymes and substrates on which angiotensin converting enzyme (ACE) 1 and renin act to produce angiotensin II. ACE1 and its substrates control blood pressure, affect cardiovascular and renal function, hematopoiesis, reproduction, and immunity. The increased expression of ACE1 has been observed in human monocytes during congestive heart failure and abdominal aortic aneurysm. Moreover, T lymphocytes from individuals with hypertension presented increased expression of ACE1 after in vitro stimulation with angiotensin II (ATII) with the highest ACE1 expression observed in individuals with hypertension with low-grade inflammation. Our group and others have shown that aging is associated with comorbidities, chronic inflammation, and immunosenescence, but there is a lack of data about ACE1 expression on immune cells during the aging process. Therefore, our aim was to evaluate the levels of ACE1 expression in nonlymphoid cells compared to lymphoid that in cells in association with the immunosenescence profile in adults older than 60 years. Cryopreserved peripheral blood mononuclear cells obtained from blood samples were used. Cells were stained with monoclonal antibodies and evaluated via flow cytometry. We found that ACE1 was expressed in 56.9% of nonlymphocytes and in more than 90% of lymphocytes (all phenotypes). All donors exhibited characteristics of immunosenescence, as evaluated by low frequencies of naïve CD4+ and CD8+ T cells, high frequencies of effector memory re-expressing CD45RA CD8+ T cells, and double-negative memory B cells. These findings, in addition to the increased C-reactive protein levels, are intriguing questions for the study of ACE1, inflammaging, immunosenescence, and perspectives for drug development or repurposing (Reviewed by the Plan P #PeerRef Community).
Collapse
Affiliation(s)
- Valquiria Bueno
- Division of Immunology, Department of Microbiology Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Pedro Henrique Destro
- Division of Immunology, Department of Microbiology Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Daniela Teixeira
- Division of Immunology, Department of Microbiology Immunology and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | - Daniela Frasca
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
6
|
Marshall AJ, Gaubert A, Kapoor A, Tan A, McIntosh E, Jang JY, Yew B, Ho JK, Blanken AE, Dutt S, Sible IJ, Li Y, Rodgers K, Nation DA. Blood-Derived Progenitor Cells Are Depleted in Older Adults with Cognitive Impairment: A Role for Vascular Resilience? J Alzheimers Dis 2023; 93:1041-1050. [PMID: 37154177 PMCID: PMC10258882 DOI: 10.3233/jad-220269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Depletion of blood-derived progenitor cells, including so called "early endothelial progenitor cells", has been observed in individuals with early stage Alzheimer's disease relative to matched older control subjects. These findings could implicate the loss of angiogenic support from hematopoietic progenitors or endothelial progenitors in cognitive dysfunction. OBJECTIVE To investigate links between progenitor cell proliferation and mild levels of cognitive dysfunction. METHODS We conducted in vitro studies of blood-derived progenitor cells using blood samples from sixty-five older adults who were free of stroke or dementia. Peripheral blood mononuclear cells from venous blood samples were cultured in CFU-Hill media and the number of colony forming units were counted after 5 days in vitro. Neuropsychological testing was administered to all participants. RESULTS Fewer colony forming units were observed in samples from older adults with a Clinical Dementia Rating global score of 0.5 versus 0. Older adults whose samples developed fewer colony forming units exhibited worse performance on neuropsychological measures of memory, executive functioning, and language ability. CONCLUSION These data suggest blood progenitors may represent a vascular resilience marker related to cognitive dysfunction in older adults.
Collapse
Affiliation(s)
- Anisa J. Marshall
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Aimee Gaubert
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Arunima Kapoor
- Department of Psychological Science, University of California, Irvine, Irvine, CA, USA
| | - Alick Tan
- Department of Clinical Pharmacy, University of Southern California, Los Angeles, CA, USA
| | - Elissa McIntosh
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Jung Yun Jang
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Belinda Yew
- Department of Rehabilitation and Human Performance, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jean K. Ho
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Anna E. Blanken
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Shubir Dutt
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
- Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Isabel J. Sible
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Yanrong Li
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
| | - Kathleen Rodgers
- Center for Innovations in Brain Science, Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - Daniel A. Nation
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, USA
- Department of Psychological Science, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
7
|
Paracrine-mediated rejuvenation of aged mesenchymal stem cells is associated with downregulation of the autophagy-lysosomal pathway. NPJ AGING 2022; 8:10. [PMID: 35927427 PMCID: PMC9293998 DOI: 10.1038/s41514-022-00091-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 06/30/2022] [Indexed: 12/02/2022]
Abstract
Age-related differences in stem-cell potency contribute to variable outcomes in clinical stem cell trials. To help understand the effect of age on stem cell potency, bone marrow-derived mesenchymal stem cells (MSCs) were isolated from young (6 weeks) and old (18–24 months) mice. HUVEC tubule formation (TF) induced by the old and young MSCs and ELISA of conditioned media were compared to one another, and to old MSCs after 7 d in indirect co-culture with young MSCs. Old MSCs induced less TF than did young (1.56 ± 0.11 vs 2.38 ± 0.17, p = 0.0003) and released lower amounts of VEGF (p = 0.009) and IGF1 (p = 0.037). After 7 d in co-culture with young MSCs, TF by the old MSCs significantly improved (to 2.09 ± 0.18 from 1.56 ± 0.11; p = 0.013), and was no longer different compared to TF from young MSCs (2.09 ± 0.18 vs 2.38 ± 0.17; p = 0.27). RNA seq of old MSCs, young MSCs, and old MSCs following co-culture with young MSCs revealed that the age-related differences were broadly modified by co-culture, with the most significant changes associated with lysosomal pathways. These results indicate that the age-associated decreased paracrine-mediated effects of old MSCs are improved following indirect co-culture with young MSC. The observed effect is associated with broad transcriptional modification, suggesting potential targets to both assess and improve the therapeutic potency of stem cells from older patients.
Collapse
|
8
|
Shamoon L, Romero A, De la Cuesta F, Sánchez-Ferrer CF, Peiró C. Angiotensin-(1-7), a protective peptide against vascular aging. Peptides 2022; 152:170775. [PMID: 35231551 DOI: 10.1016/j.peptides.2022.170775] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/09/2022] [Accepted: 02/25/2022] [Indexed: 12/15/2022]
Abstract
Vascular aging is a complex and multifaceted process that provokes profound molecular, structural, and functional changes in the vasculature. Eventually, these profound aging alterations make arteries more prone to vascular disease, including hypertension, atherosclerosis and other arterial complications that impact the organism beyond the cardiovascular system and accelerate frailty. For these reasons, preventing or delaying the hallmarks of vascular aging is nowadays a major health goal, especially in our aged societies. In this context, angiotensin(Ang)-(1-7), a major player of the protective branch of the renin-angiotensin system, has gained relevance over recent years as growing knowledge on its anti-aging properties is being unveiled. Here, we briefly review the main actions of Ang-(1-7) against vascular aging. These include protection against vascular cell senescence, anti-inflammatory and antioxidant effects together with the induction of cytoprotective systems. Ang-(1-7) further ameliorates endothelial dysfunction, a hallmark of vascular aging and disease, attenuates fibrosis and calcification and promotes protective angiogenesis and repair. Although further research is needed to better understand the anti-aging properties of Ang-(1-7) on the vasculature, this heptapeptide arises as a promising pharmacological tool for preventing vascular aging and frailty.
Collapse
Affiliation(s)
- L Shamoon
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Spain; Instituto de Investigación Sanitaria La Paz, IdIPAZ, Madrid, Spain
| | - A Romero
- German Center for the Study of Diabetes, Düsseldorf, Germany
| | - F De la Cuesta
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Spain.
| | - C F Sánchez-Ferrer
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Spain; Instituto de Investigación Sanitaria La Paz, IdIPAZ, Madrid, Spain.
| | - C Peiró
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Spain; Instituto de Investigación Sanitaria La Paz, IdIPAZ, Madrid, Spain.
| |
Collapse
|
9
|
Quarleri J, Delpino MV. SARS-CoV-2 interacts with renin-angiotensin system: impact on the central nervous system in elderly patients. GeroScience 2022; 44:547-565. [PMID: 35157210 PMCID: PMC8853071 DOI: 10.1007/s11357-022-00528-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/08/2022] [Indexed: 01/18/2023] Open
Abstract
SARS-CoV-2 is a recently identified coronavirus that causes the current pandemic disease known as COVID-19. SARS-CoV-2 uses angiotensin-converting enzyme 2 (ACE2) as a receptor, suggesting that the initial steps of SARS-CoV-2 infection may have an impact on the renin-angiotensin system (RAS). Several processes are influenced by RAS in the brain. The neurological symptoms observed in COVID-19 patients, including reduced olfaction, meningitis, ischemic stroke, cerebral thrombosis, and delirium, could be associated with RAS imbalance. In this review, we focus on the potential role of disturbances in the RAS as a cause for central nervous system sequelae of SARS-CoV-2 infection in elderly patients.
Collapse
Affiliation(s)
- Jorge Quarleri
- Instituto de Investigaciones Biomédicas en Retrovirus Y Sida (INBIRS), Universidad de Buenos Aires-CONICET, Paraguay 2155-Piso 11 (1121), Buenos Aires, Argentina.
| | - M Victoria Delpino
- Instituto de Investigaciones Biomédicas en Retrovirus Y Sida (INBIRS), Universidad de Buenos Aires-CONICET, Paraguay 2155-Piso 11 (1121), Buenos Aires, Argentina.
| |
Collapse
|
10
|
Murphy ME, Narasimhan A, Adrian A, Kumar A, Green CL, Soto-Palma C, Henpita C, Camell C, Morrow CS, Yeh CY, Richardson CE, Hill CM, Moore DL, Lamming DW, McGregor ER, Simmons HA, Pak HH, Bai H, Denu JM, Clark J, Simcox J, Chittimalli K, Dahlquist K, Lee KA, Calubag M, Bouska M, Yousefzadeh MJ, Sonsalla M, Babygirija R, Yuan R, Tsuji T, Rhoads T, Menon V, Jarajapu YP, Zhu Y. Metabolism in the Midwest: research from the Midwest Aging Consortium at the 49 th Annual Meeting of the American Aging Association. GeroScience 2022; 44:39-52. [PMID: 34714522 PMCID: PMC8554732 DOI: 10.1007/s11357-021-00479-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 11/25/2022] Open
Affiliation(s)
- Michaela E Murphy
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Akilavalli Narasimhan
- Institute On the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Alexis Adrian
- Department of Urology, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Molecular and Cellular Pharmacology Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
- U54 George M. O'Brien Center for Benign Urology Research, Madison, WI, 53705, USA
| | - Ankur Kumar
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Cara L Green
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
| | - Carolina Soto-Palma
- Institute On the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Chathurika Henpita
- Institute On the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Christina Camell
- Institute On the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Christopher S Morrow
- Department of Neuroscience, University of Wisconsin - Madison, Madison, WI, 53705, USA
| | - Chung-Yang Yeh
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
| | - Claire E Richardson
- Department of Genetics, University of Wisconsin - Madison, Madison, WI, 53706, USA
| | - Cristal M Hill
- Neurosignaling Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, 70809, USA
| | - Darcie L Moore
- Department of Neuroscience, University of Wisconsin - Madison, Madison, WI, 53705, USA
| | - Dudley W Lamming
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Eric R McGregor
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Heather A Simmons
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, 53175, USA
| | - Heidi H Pak
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Hua Bai
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - John M Denu
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, 53705, USA
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, Madison, WI, USA
| | - Josef Clark
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
| | - Judith Simcox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Kishore Chittimalli
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, 58105, USA
| | - Korbyn Dahlquist
- Institute On the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Kyoo-A Lee
- Institute On the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Mariah Calubag
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
- Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Mark Bouska
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Matthew J Yousefzadeh
- Institute On the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Michelle Sonsalla
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
| | - Reji Babygirija
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
- Cellular and Molecular Biology Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Rong Yuan
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois School of Medicine, Springfield, IL, USA
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, 62794, USA
| | - Tadataka Tsuji
- Section On Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Timothy Rhoads
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, 53705, USA
- William S. Middleton Memorial Veterans Hospital, Madison, WI, 53705, USA
| | - Vinal Menon
- Institute On the Biology of Aging and Metabolism, University of Minnesota, Minneapolis, MN, USA
| | - Yagna Pr Jarajapu
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, 58105, USA
| | - Yun Zhu
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois School of Medicine, Springfield, IL, USA.
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL, 62794, USA.
| |
Collapse
|
11
|
Vasam G, S SJ, Miyat SY, Adam H, Jarajapu YP. Early onset of aging phenotype in vascular repair by Mas receptor deficiency. GeroScience 2021; 44:311-327. [PMID: 34661816 DOI: 10.1007/s11357-021-00473-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/08/2021] [Indexed: 10/20/2022] Open
Abstract
Aging is associated with impaired vascular repair following ischemic insult, largely due to reparative dysfunctions of progenitor cells. Activation of Mas receptor (MasR) was shown to reverse aging-associated vasoreparative dysfunction. This study tested the impact of MasR-deficiency on mobilization and vasoreparative functions with aging. Wild type (WT) or MasR-deficient mice (MasR-/- or MasR+/-) at 12-14 weeks (young) or middle age (11-12 months) (MA) were used in the study. Mobilization of lineage-negative, Sca-1-positive cKit-positive (LSK) cells in response to G-CSF or plerixafor was determined. Hindlimb ischemia (HLI) was induced by femoral artery ligation. Mobilization and blood flow recovery were monitored post-HLI. Radiation chimeras were made by lethal irradiation of WT or MasR-/- mice followed by administration of bone marrow cells from MasR-/- or WT mice, respectively. Nitric oxide (NO) generation by stromal-derived factor-1α (SDF) and mitochondrial reactive oxygen species (mitoROS) levels were determined by flow cytometry. Effect of A779 treatment on mobilization, blood flow recovery, and NO and ROS levels were determined in young WT and MasR+/- mice. Circulating LSK cells in basal or in response to plerixafor or G-CSF or in response to ischemic injury were lower in MasR-/- mice compared to the WT. Responses in MasR+/- mice were similar to the WT at young age but at the middle age, impairments were observed. Impaired mobilization to ischemia or G-CSF was rescued in WT → MasR-/- chimeras. NO levels were lower and mitoROS were higher in MasR-/- LSK cells compared to WT cells. A779 precipitated dysfunctions in young-MasR+/- mice similar to that observed in MA-MasR+/-, and this accompanied decreased NO generation by SDF and enhanced mitoROS levels. This study shows that mice at MA do not exhibit vasoreparative dysfunction. Either partial or total loss of MasR precipitates advanced-aging phenotype likely due to lack of NO and oxidative stress.
Collapse
Affiliation(s)
- Goutham Vasam
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, 58108, USA
| | - Shrinidh Joshi S
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, 58108, USA
| | - Su Yamin Miyat
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, 58108, USA
| | - Hashim Adam
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, 58108, USA
| | - Yagna P Jarajapu
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND, 58108, USA.
| |
Collapse
|
12
|
Róka B, Tod P, Kaucsár T, Bukosza ÉN, Vörös I, Varga ZV, Petrovich B, Ágg B, Ferdinandy P, Szénási G, Hamar P. Delayed Contralateral Nephrectomy Halted Post-Ischemic Renal Fibrosis Progression and Inhibited the Ischemia-Induced Fibromir Upregulation in Mice. Biomedicines 2021; 9:biomedicines9070815. [PMID: 34356879 PMCID: PMC8301422 DOI: 10.3390/biomedicines9070815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
(1) Background: Ischemia reperfusion (IR) is the leading cause of acute kidney injury (AKI) and results in predisposition to chronic kidney disease. We demonstrated that delayed contralateral nephrectomy (Nx) greatly improved the function of the IR-injured kidney and decelerated fibrosis progression. Our aim was to identify microRNAs (miRNA/miR) involved in this process. (2) Methods: NMRI mice were subjected to 30 min of renal IR and one week later to Nx/sham surgery. The experiments were conducted for 7-28 days after IR. On day 8, multiplex renal miRNA profiling was performed. Expression of nine miRNAs was determined with qPCR at all time points. Based on the target prediction, plexin-A2 and Cd2AP were measured by Western blot. (3) Results: On day 8 after IR, the expression of 20/1195 miRNAs doubled, and 9/13 selected miRNAs were upregulated at all time points. Nx reduced the expression of several ischemia-induced pro-fibrotic miRNAs (fibromirs), such as miR-142a-duplex, miR-146a-5p, miR-199a-duplex, miR-214-3p and miR-223-3p, in the injured kidneys at various time points. Plexin-A2 was upregulated by IR on day 10, while Cd2AP was unchanged. (4) Conclusion: Nx delayed fibrosis progression and decreased the expression of ischemia-induced fibromirs. The protein expression of plexin-A2 and Cd2AP is mainly regulated by factors other than miRNAs.
Collapse
Affiliation(s)
- Beáta Róka
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (B.R.); (P.T.); (T.K.); (É.N.B.); (G.S.)
| | - Pál Tod
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (B.R.); (P.T.); (T.K.); (É.N.B.); (G.S.)
- Institute for Translational Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Tamás Kaucsár
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (B.R.); (P.T.); (T.K.); (É.N.B.); (G.S.)
| | - Éva Nóra Bukosza
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (B.R.); (P.T.); (T.K.); (É.N.B.); (G.S.)
| | - Imre Vörös
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary; (I.V.); (Z.V.V.); (B.P.); (B.Á.); (P.F.)
- HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University, 1089 Budapest, Hungary
| | - Zoltán V. Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary; (I.V.); (Z.V.V.); (B.P.); (B.Á.); (P.F.)
- HCEMM-SU Cardiometabolic Immunology Research Group, Semmelweis University, 1089 Budapest, Hungary
| | - Balázs Petrovich
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary; (I.V.); (Z.V.V.); (B.P.); (B.Á.); (P.F.)
| | - Bence Ágg
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary; (I.V.); (Z.V.V.); (B.P.); (B.Á.); (P.F.)
- Pharmahungary Group, 6722 Szeged, Hungary
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089 Budapest, Hungary; (I.V.); (Z.V.V.); (B.P.); (B.Á.); (P.F.)
- Pharmahungary Group, 6722 Szeged, Hungary
| | - Gábor Szénási
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (B.R.); (P.T.); (T.K.); (É.N.B.); (G.S.)
| | - Péter Hamar
- Institute of Translational Medicine, Semmelweis University, 1094 Budapest, Hungary; (B.R.); (P.T.); (T.K.); (É.N.B.); (G.S.)
- Institute for Translational Medicine, Medical School, University of Pécs, 7624 Pécs, Hungary
- Correspondence: ; Tel.: +36-20-825-9751
| |
Collapse
|