1
|
Wang Y, Deng M, Wu Y, Zheng C, Zhang F, Guo C, Zhang B, Hu C, Kong Q, Wang Y. A multifunctional mitochondria-protective gene delivery platform promote intervertebral disc regeneration. Biomaterials 2025; 317:123067. [PMID: 39742837 DOI: 10.1016/j.biomaterials.2024.123067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/09/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025]
Abstract
Intervertebral disc degeneration (IDD) is a deleterious condition driven by localized inflammation and the associated disruption of the normal homeostatic balance between anabolism and catabolism, contributing to progressive functional abnormalities within the nucleus pulposus (NP). Despite our prior evidence demonstrating that a miR-21 inhibitor can have regenerative effects that counteract the progression of IDD, its application for IDD treatment remains limited by the inadequacy of current local delivery systems. Here, an injectable tannic acid (TA)-loaded hydrogel gene delivery system was developed and used for the encapsulation of a multifunctional mitochondria-protecting gene nanocarrier (PHs). This engineered platform was designed for the sustained on-demand delivery of both miR-21 inhibitor and ss-31 (mitochondrial-targeted peptide) constructs to the NP. This prepared hydrogel could be implanted into the intervertebral disc using a minimally invasive approach whereupon it was able to rapidly release TA. Sustained PHs release was then achieved as appropriate through a mechanism mediated by the activity of MMP-2. Following the targeted uptake of PHs by degenerated NP cells, the subsequent release of encapsulated miR-21 inhibitor suppressed apoptotic cell death and modulated the metabolism of the extracellular matrix (ECM) by targeting the Spry1 gene. At the same time, ss-31 was able to target damaged mitochondria and alleviate inflammatory activity via the suppression of mitochondrial ROS-NLRP3-IL-1β/Caspase1 pathway activity. Synergistic ECM regeneration and anti-inflammatory effects were sufficient to provide therapeutic benefits in an in vivo model of IDD. Together, these results thus highlight this hydrogel-based gene delivery platform as a promising novel approach to the treatment of IDD.
Collapse
Affiliation(s)
- Yu Wang
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mingyan Deng
- Department of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ye Wu
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Cheng Zheng
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China
| | - Fanjun Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China
| | - Chuan Guo
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bo Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China
| | - Cheng Hu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China
| | - Qingquan Kong
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Lin L, Li D, Cai G, Zheng G, Huang D, Liu H, Lin S, Zhao F. Exploring the molecular mechanisms underlying intervertebral disc degeneration by analysing multiple datasets. Sci Rep 2025; 15:14748. [PMID: 40289127 PMCID: PMC12034803 DOI: 10.1038/s41598-025-98070-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 04/09/2025] [Indexed: 04/30/2025] Open
Abstract
The purpose of this study was to explore the genetic characteristics and immune cell infiltration related to intervertebral disc degeneration through multidataset analysis, predict potential therapeutic drugs, and provide a theoretical basis for clinical treatment. The gene expression profile data of the GSE70362, GSE186542, and GSE245147 datasets were downloaded from the Gene Expression Omnibus (GEO) database, and the hub genes were identified through differentially expressed gene analysis, Gene Ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) functional annotation and Mendelian randomization analysis were performed. Hub genes and immune cells were identified. Infiltration status was determined through GSEA and GSVA to clarify the specific signalling pathways associated with key genes and explore the potential molecular mechanisms by which key genes affect disease progression. The key genes were reversely predicted using miRNA grid construction and transcription factor regulation, and genes related to disease regulation were obtained from the GeneCards database. Finally, the differentially expressed genes were used for drug prediction through the Connectivity Map database to identify potential drugs for the treatment of intervertebral disc degeneration. The feasibility of the predicted drugs was tested by molecular docking technology. Real-time quantitative PCR was used to confirm the expression of key genes in the tissue samples.A total of 126 differentially expressed genes were identified in the GEO database, and 4 differentially expressed hub genes (COL6A2, DCXR, GLRX, and PDGFRB) were identified through bioinformatics methods. Immune infiltration analysis revealed that NK cells, macrophages, and eosinophils were activated during IVDD, whereas mast cells and T cells were suppressed. GO and KEGG analyses revealed that key genes are involved in the development of this disease through signalling pathways such as the glycolysis pathway, the oxidative phosphorylation pathway, the cholesterol regulatory pathway, and the haem metabolism pathway. Analysis of the constructed miRNA grid revealed that key genes are jointly regulated by multiple transcription factors, among which the most important motif is cisbp_M5578. Disease regulation-related genes were obtained through the GeneCards database, analysis of the correlation with key genes was performed, and the expression levels of the two mRNA and miRNA were significantly correlated. Finally, drug prediction performed through the Connectivity Map database revealed that drugs such as Abt-751, LY-2183240, podophyllotoxin, and vindesine can alleviate or even reverse the disease state. Finally, we collected 10 IVDD and 10 healthy disc tissue samples, and the RT‒qPCR results were consistent with the bioinformatics results. We identified COL6A2, DCXR, GLRX, and PDGFRB as key genes involved in IVDD. In addition, drugs such as Abt-751 are expected to control and reverse the progression of the disease. In the future, these key genes and predicted drugs may provide new directions for further mechanistic studies as well as new therapies for IVDD patients.
Collapse
Affiliation(s)
- Longquan Lin
- Department of Orthopaedics, The 910th Hospital of PLA, Quanzhou, 362000, China.
| | - Da Li
- Department of Orthopaedics, The 910th Hospital of PLA, Quanzhou, 362000, China
| | - Gangfeng Cai
- Department of Neurosurgery, Fujian Medical University Union Hospital, Fujian, 350000, China.
| | - Gengyang Zheng
- Department of Orthopaedics, The 910th Hospital of PLA, Quanzhou, 362000, China
| | - Dianfeng Huang
- Department of Orthopaedics, The 910th Hospital of PLA, Quanzhou, 362000, China
| | - Hua Liu
- Department of Orthopaedics, The 910th Hospital of PLA, Quanzhou, 362000, China
| | - Shunxin Lin
- Department of Orthopaedics, The 910th Hospital of PLA, Quanzhou, 362000, China
| | - Feng Zhao
- Department of Orthopaedics, The 910th Hospital of PLA, Quanzhou, 362000, China
| |
Collapse
|
3
|
Zhu J, Song T, Li Z, Zheng W, Liu Y, Li H, Wang S, Tang J, Feng S, Wang L, Lu X, Yuan F, Zhu Z. Integration of bioinformatics and multi-layered experimental validation reveals novel functions of acetylation-related genes in intervertebral disc degeneration. Gene 2025; 933:148974. [PMID: 39349110 DOI: 10.1016/j.gene.2024.148974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
BACKGROUND The molecular mechanisms underlying intervertebral disc degeneration (IDD) remain poorly understood. The purpose of this work is to elucidate key molecules and investigate the roles of acetylation-related RNAs and their associated pathways in IDD. METHOD Datasets GSE70362 and GSE124272 were obtained from the Gene Expression Omnibus (GEO) and combined to investigate differentially expressed genes (DEGs) associated with acetylation in IDD patients compared to healthy controls. Critical genes were pinpointed by integrating GO, KEGG and PPI networks. Furthermore, CIBERSORTx analysis was used to investigate the differences in immune cell infiltration between different groups and the biological processes (BP), cellular components (CC) and molecular functions (MF) were calculated by GSEA and GSVA. In addition, The single-cell database GSE165722 was incorporated to validate the specific expression patterns of hub genes in cells and identify distinct cell subtypes. This provides a theoretical basis for a more in-depth understanding of the roles played by critical cell subtypes in the process of IDD. Subsequently, tissues from IVD with varying degrees of degeneration were collected to corroborate the key DEGs using western blot, RT-qPCR, and immunofluorescence staining. RESULTS By integrating various datasets and references, we identified a total of 1620 acetylation-related genes. These genes were subjected to a combined analysis with the DEGs from the databases included in this study, resulting in the discovery of 358 acetylation-related differentially expressed genes (ARDEGs). A comparative analysis with differentially expressed genes obtained from three databases yielded 19 ARDEGs. The PPI network highlighted the top 10 genes (IL1B, LAMP1, PPIA, SOD2, LAMP2, FBL, MBP, SELL, IRF1 and KHDRBS1) based on their protein interaction relationships. CIBERSORTx immune infiltration analysis revealed a moderate positive correlation between the gene IL1β and Mast.cells.activated, as well as a similar correlation between the gene IRF1 and Mast.cells.activated. Single-cell dataset was used to identify cell types and illustrate the distribution of hub genes in different cell types. The two cell types with the highest AUCell scores (Neutrophils and Monocytes) were further explored, leading to the subdivision of Neutrophils into two new cell subtypes: S100A9-type Neutrophils and MARCKS-type Neutrophils. Monocytes were labeled as HLA-DRA9-type Monocytes and IGHG3-type Monocytes. Finally, molecular biology techniques were employed to validate the expression of the top 10 hub genes. Among them, four genes (IL1β, SOD2, LAMP2, and IRF1) were confirmed at the gene level, while two (IL1β and SOD2) were validated at the protein level. CONCLUSION In this study, we carried out a thorough analysis across three databases to identify and compare ARDEGs between IDD patients and healthy individuals. Furthermore, we validated a subset of these genes using molecular biology techniques on clinical samples. The identification of these differently expressed genes has the potential to offer new insights for diagnosing and treating IDD.
Collapse
Affiliation(s)
- Jun Zhu
- Department of Orthopedics, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an 223003, Jiangsu Province, China; Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu Province, China
| | - Tongqu Song
- Department of Orthopedics, Xuzhou Central Hospital, Xuzhou 221009, Jiangsu Province, China
| | - Zheng Li
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu Province, China; Department of Orthopedics, The Affiliated Hospital, Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Wei Zheng
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu Province, China
| | - Yong Liu
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu Province, China
| | - Hao Li
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu Province, China
| | - Song Wang
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu Province, China
| | - Jinlong Tang
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu Province, China
| | - Shuo Feng
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu Province, China
| | - Lei Wang
- Department of Orthopedics, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an 223003, Jiangsu Province, China
| | - Xiaoqing Lu
- Department of Orthopedics, The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an 223003, Jiangsu Province, China
| | - Feng Yuan
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu Province, China.
| | - Zhengya Zhu
- Department of Orthopedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou 221006, Jiangsu Province, China.
| |
Collapse
|
4
|
Chen S, Huang Y, Lei L, Yang C, Ran D, Zhou E, Wang H, Ning X. Daphnetin ameliorates intervertebral disc degeneration via the Keap1/Nrf2/NF-κB axis in vitro and in vivo. Int Immunopharmacol 2025; 145:113785. [PMID: 39672027 DOI: 10.1016/j.intimp.2024.113785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/15/2024]
Abstract
Intervertebral disc degeneration (IVDD) is the primary cause of low back pain (LBP). Enhanced inflammation and reactive oxygen species (ROS) levels can cause apoptosis, which is one of the initial factors of IVDD. Our previous study showed that daphnetin (DAP) alleviates IVDD; however, the underlying mechanisms remain unknown. An IVDD mouse model was established by lumbar disc puncture to investigate the mechanisms of DAP regulation, and DAP was injected intraperitoneally. Moreover, nucleus pulposus cells (NPCs) were challenged with tumor necrosis factor-alpha (TNF-α)/H2O2 to mimic IVDD. Additionally, NPC apoptosis, ROS, and the expression of proinflammatory cytokines were comprehensively assessed. We found that DAP can reverse H2O2-induced ROS and play an anti-inflammatory role by inhibiting Nuclear factor-kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. Moreover, we found that DAP inhibits the apoptosis of NPCs induced by H2O2/TNF-α. DAP may regulate ROS production and apoptosis via the Kelch-like ECH-associated protein 1/NF-E2-related factor 2/heme oxygenase-1 (Keap1/Nrf2/HO-1) pathway. These findings were confirmed by in vivo results. The comprehensive nature of our research provides a strong foundation for the potential use of DAP as a therapeutic agent to alleviate IVDD.
Collapse
Affiliation(s)
- Shunlun Chen
- Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, PR China
| | - Yuming Huang
- Department of Spinal Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, PR China
| | - Linchuan Lei
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China
| | - Cheng Yang
- Beijing Jishuitan Hospital Guizhou Hospital
| | - Dongcheng Ran
- School of Clinical Medicine, Guizhou Medical University, Guiyang 550004, PR China
| | - Enyu Zhou
- School of Clinical Medicine, Guizhou Medical University, Guiyang 550004, PR China
| | - Hua Wang
- Department of Spine Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, PR China.
| | - Xu Ning
- Department of Orthopaedics, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, PR China.
| |
Collapse
|
5
|
Zhou H, Wu C, Jin Y, Wu O, Chen L, Guo Z, Wang X, Chen Q, Kwan KYH, Li YM, Xia D, Chen T, Wu A. Role of oxidative stress in mitochondrial dysfunction and their implications in intervertebral disc degeneration: Mechanisms and therapeutic strategies. J Orthop Translat 2024; 49:181-206. [PMID: 39483126 PMCID: PMC11526088 DOI: 10.1016/j.jot.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/03/2024] [Accepted: 08/22/2024] [Indexed: 11/03/2024] Open
Abstract
Background Intervertebral disc degeneration (IVDD) is widely recognized as one of the leading causes of low back pain. Intervertebral disc cells are the main components of the intervertebral disc (IVD), and their functions include synthesizing and secreting collagen and proteoglycans to maintain the structural and functional stability of the IVD. In addition, IVD cells are involved in several physiological processes. They help maintain nutrient metabolism balance in the IVD. They also have antioxidant and anti-inflammatory effects. Because of these roles, IVD cells are crucial in IVDD. When IVD cells are subjected to oxidative stress, mitochondria may become damaged, affecting normal cell function and accelerating degenerative changes. Mitochondria are the energy source of the cell and regulate important intracellular processes. As a key site for redox reactions, excessive oxidative stress and reactive oxygen species can damage mitochondria, leading to inflammation, DNA damage, and apoptosis, thus accelerating disc degeneration. Aim of review Describes the core knowledge of IVDD and oxidative stress. Comprehensively examines the complex relationship and potential mechanistic pathways between oxidative stress, mitochondrial dysfunction and IVDD. Highlights potential therapeutic targets and frontier therapeutic concepts. Draws researchers' attention and discussion on the future research of all three. Key scientific concepts of review Origin, development and consequences of IVDD, molecular mechanisms of oxidative stress acting on mitochondria, mechanisms of oxidative stress damage to IVD cells, therapeutic potential of targeting mitochondria to alleviate oxidative stress in IVDD. The translational potential of this article Targeted therapeutic strategies for oxidative stress and mitochondrial dysfunction are particularly critical in the treatment of IVDD. Using antioxidants and specific mitochondrial therapeutic agents can help reduce symptoms and pain. This approach is expected to significantly improve the quality of life for patients. Individualized therapeutic approaches, on the other hand, are based on an in-depth assessment of the patient's degree of oxidative stress and mitochondrial functional status to develop a targeted treatment plan for more precise and effective IVDD management. Additionally, we suggest preventive measures like customized lifestyle changes and medications. These are based on understanding how IVDD develops. The aim is to slow down the disease and reduce the chances of it coming back. Actively promoting clinical trials and evaluating the safety and efficacy of new therapies helps translate cutting-edge treatment concepts into clinical practice. These measures not only improve patient outcomes and quality of life but also reduce the consumption of healthcare resources and the socio-economic burden, thus having a positive impact on the advancement of the IVDD treatment field.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, 315010, China
| | - Chenyu Wu
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, 315010, China
| | - Yuxin Jin
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Ouqiang Wu
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Linjie Chen
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Zhenyu Guo
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Xinzhou Wang
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| | - Qizhu Chen
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200082, China
| | - Kenny Yat Hong Kwan
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 5/F Professorial Block, Queen Mary Hospital, 102 Pokfulam Road, Pokfulam, China
| | - Yan Michael Li
- Minimally Invasive Brain and Spine Institute, Upstate Medical University 475 Irving Ave, #402 Syracuse, NY, 13210, USA
| | - Dongdong Xia
- The First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang Province, 315010, China
| | - Tao Chen
- Department of Orthopaedics, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Tongji Hospital, Tongji University School of Medicine, School of Life Science and Technology, Tongji University, Shanghai, 200065, China
| | - Aimin Wu
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, 325000, China
| |
Collapse
|
6
|
Zheng X, Qiu J, Ye J, Gong Y, Jiang T, Gao N, Jiang C, Chu B, Zhang W, Li Z, Wu X, Yang G, Feng X, Hong Z. Macrophage-derived PDGF-BB modulates glycolytic enzymes expression and pyroptosis in nucleus pulposus cells via PDGFR-β/TXNIP pathway. Osteoarthritis Cartilage 2024; 32:1245-1260. [PMID: 38744373 DOI: 10.1016/j.joca.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/01/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
OBJECTIVE Intervertebral Disc Degeneration (IVDD) is one of the leading causes of low back pain, significantly impacting both individuals and society. This study aimed to investigate the significance of macrophage infiltration and the role of macrophage-secreted platelet-derived growth factor-BB (PDGF-BB) in IVDD progression. METHODS To confirm the protective function of macrophage-derived PDGF-BB on nucleus pulposus cells (NPCs), we employed Lysm-Cre transgenic mice to genetically ablate PDGF-B within the myeloid cells. Immunohistochemistry was utilized to detect the expression of glycolytic enzymes and pyroptosis-related proteins during the process of IVDD. Western blot, RT-PCR, ELISA and immunofluorescence were used to detect the protective effect of recombinant PDGF-BB on NPCs. RESULTS Macrophage-derived PDGF-BB deficiency resulted in the loss of NPCs and the increased ossification of cartilage endplates during lumbar disc degeneration. Also, PDGF-BB deficiency triggered the inhibition of glycolytic enzymes' expression and the activation of pathways related to pyroptosis in the nucleus pulposus. Mechanistically, our results suggest that PDGF-BB predominantly conveys its protective influence on NPCs through the PDGF receptor- beta (PDGFR-β)/ thioredoxin-interacting protein pathway. CONCLUSIONS The absence of PDGF-BB originating from macrophages expedites the advancement of IVDD, whereas the application of PDGF-BB treatment holds the potential for retarding intervertebral disc degeneration in the human body.
Collapse
Affiliation(s)
- Xiaohang Zheng
- Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China; Enze Medical Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
| | - Jianxin Qiu
- Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China; Enze Medical Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
| | - Jiajing Ye
- Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China; Enze Medical Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
| | - Yuhang Gong
- Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China; Enze Medical Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
| | - Ting Jiang
- Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China; Enze Medical Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
| | - Ning Gao
- Department of Cardiovascular Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Jiang
- Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China; Enze Medical Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
| | - Binxiang Chu
- Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China; Enze Medical Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
| | - Weikang Zhang
- Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China; Enze Medical Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
| | - Ze Li
- Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China; Enze Medical Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
| | - Xinyu Wu
- Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China; Enze Medical Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
| | - Guangyong Yang
- Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China; Enze Medical Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
| | - Xingbing Feng
- Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China; Enze Medical Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China
| | - Zhenghua Hong
- Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China; Enze Medical Research Center, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, China.
| |
Collapse
|
7
|
Wu Y, Wu S, Chen Z, Yang E, Yu H, Zhang G, Lian X, Xu J. Machine learning and single-cell analysis identify the mitophagy-associated gene TOMM22 as a potential diagnostic biomarker for intervertebral disc degeneration. Heliyon 2024; 10:e37378. [PMID: 39296040 PMCID: PMC11407931 DOI: 10.1016/j.heliyon.2024.e37378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 09/21/2024] Open
Abstract
Background Mitophagy selectively eliminates potentially cytotoxic and damaged mitochondria and effectively prevents excessive cytotoxicity from damaged mitochondria, thereby attenuating inflammatory and oxidative responses. However, the potential role of mitophagy in intervertebral disc degeneration remains to be elucidated. Methods The GSVA method, two machine learning methods (SVM-RFE algorithm and random forest), the CIBERSORT and MCPcounter methods, as well as the consensus clustering method and the WGCNA algorithm were used to analyze the involvement of mitophagy in intervertebral disc degeneration, the diagnostic value of mitophagy-associated genes in intervertebral disc degeneration, and the infiltration of immune cells, and identify the gene modules that were closely related to mitophagy. Single-cell analysis was used to detect mitophagy scores and TOMM22 expression, and pseudo-temporal analysis was used to explore the function of TOMM22 in nucleus pulposus cells. In addition, TOMM22 expression was compared between human normal and degenerated intervertebral disc tissue samples by immunohistochemistry and PCR. Results This study identified that the mitophagy pathway score was elevated in intervertebral disc degeneration compared with the normal condition. A strong link was present between mitophagy genes and immune cells, which may be used to typify intervertebral disc degeneration. The single-cell level showed that mitophagy-associated gene TOMM22 was highly expressed in medullary cells of the disease group. Further investigations indicated the upregulation of TOMM22 expression in late-stage nucleus pulposus cells and its role in cellular communication. In addition, human intervertebral disc tissue samples established that TOMM22 levels were higher in disc degeneration samples than in normal samples. Conclusions Our findings revealed that mitophagy may be used in the diagnosis of intervertebral disc degeneration and its typing, and TOMM22 is a molecule in this regard and may act as a potential diagnostic marker in intervertebral disc degeneration.
Collapse
Affiliation(s)
- Yinghao Wu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, PR China
| | - Shengting Wu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, PR China
| | - Zhiheng Chen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, PR China
| | - Erzhu Yang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, PR China
| | - Haiyue Yu
- Bengbu Medical University, Anhui, 233030, PR China
| | - Guowang Zhang
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, PR China
| | - XiaoFeng Lian
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, PR China
| | - JianGuang Xu
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, PR China
| |
Collapse
|
8
|
Zheng C, Guo D, Zhang T, Hu W, Zhang B, Feng H, Gao Y, Yang G. HDAC/H3K27ac-mediated transcription of NDUFA3 exerts protective effects on high glucose-treated human nucleus pulposus cells through improving mitochondrial function. Sci Rep 2024; 14:21165. [PMID: 39256449 PMCID: PMC11387752 DOI: 10.1038/s41598-024-71810-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 08/30/2024] [Indexed: 09/12/2024] Open
Abstract
Diabetes mellitus (DM) is a well-documented risk factor of intervertebral disc degeneration (IVDD). The current study was aimed to clarify the effects and mechanisms of NADH: ubiquinone oxidoreductase subunit A3 (NDUFA3) in human nucleus pulposus cells (HNPCs) exposed to high glucose. NDUFA3 was overexpressed in HNPCs via lenti-virus transduction, which were co-treated with high glucose and rotenone (a mitochondrial complex I inhibitor) for 48 h. Cell activities were assessed for cell viability, cell apoptosis, reactive oxygen species (ROS) production, mitochondrial membrane potential (MMP) ratio, oxygen consumption rate (OCR) and mitochondrial complexes I activities. High glucose decreased cell viability, increased apoptotic cells, increased ROS production, decreased MMP levels and OCR values in HNPCs in a dose-dependent manner. Rotenone co-treatment augmented the high glucose-induced injuries on cell viability, apoptosis, ROS production and mitochondrial function. NDUFA3 overexpression counteracted the high glucose-induced injuries in HNPCs. HDAC/H3K27ac mechanism was involved in regulating NDUFA3 transcription. NDUFA3 knockdown decreased cell viability and increased apoptotic cells, which were reversed by ROS scavenger N-acetylcysteine. HDAC/H3K27ac-mediated transcription of NDUFA3 protects HNPCs against high glucose-induced injuries through suppressing cell apoptosis, eliminating ROS, improving mitochondrial function and oxidative phosphorylation. This study sheds light on candidate therapeutic targets and deepens the understanding of molecular mechanisms behind DM-induced IVDD.
Collapse
Affiliation(s)
- Cheng Zheng
- Department of Spinal and Spinal Surgery, Henan Key Laboratory for Intelligent Precision Orthopedic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No.7, Wei Wu Road, Jinshui District, Zhengzhou, 450003, China
- Xinxiang Medical University, 601 Jinsui Avenue, Hongqi District, Xinxiang City, Henan Province, Xinxiang, 453003, China
| | - Dongshuai Guo
- Department of Spinal and Spinal Surgery, Henan Key Laboratory for Intelligent Precision Orthopedic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No.7, Wei Wu Road, Jinshui District, Zhengzhou, 450003, China
| | - Tong Zhang
- Department of Spinal and Spinal Surgery, Henan Key Laboratory for Intelligent Precision Orthopedic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No.7, Wei Wu Road, Jinshui District, Zhengzhou, 450003, China
| | - Weiran Hu
- Department of Spinal and Spinal Surgery, Henan Key Laboratory for Intelligent Precision Orthopedic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No.7, Wei Wu Road, Jinshui District, Zhengzhou, 450003, China
| | - Bo Zhang
- Department of Spinal and Spinal Surgery, Henan Key Laboratory for Intelligent Precision Orthopedic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No.7, Wei Wu Road, Jinshui District, Zhengzhou, 450003, China
| | - Hang Feng
- Department of Spinal and Spinal Surgery, Henan Key Laboratory for Intelligent Precision Orthopedic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No.7, Wei Wu Road, Jinshui District, Zhengzhou, 450003, China
| | - Yanzheng Gao
- Department of Spinal and Spinal Surgery, Henan Key Laboratory for Intelligent Precision Orthopedic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No.7, Wei Wu Road, Jinshui District, Zhengzhou, 450003, China
| | - Guang Yang
- Department of Spinal and Spinal Surgery, Henan Key Laboratory for Intelligent Precision Orthopedic Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No.7, Wei Wu Road, Jinshui District, Zhengzhou, 450003, China.
| |
Collapse
|
9
|
Hu S, Zhu M, Xing H, Xue Y, Li J, Wang Z, Zhu Z, Fang M, Li Z, Xu J, He Y, Zhang N. Thread-structural microneedles loaded with engineered exosomes for annulus fibrosus repair by regulating mitophagy recovery and extracellular matrix homeostasis. Bioact Mater 2024; 37:1-13. [PMID: 38515611 PMCID: PMC10951295 DOI: 10.1016/j.bioactmat.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/09/2024] [Accepted: 03/04/2024] [Indexed: 03/23/2024] Open
Abstract
Low back pain is among the most grave public health concerns worldwide and the major clinical manifestation of intervertebral disc degeneration (IVDD). The destruction of annulus fibrosus (AF) is the primary cause of IVDD. A sustainable and stable treatment system for IVDD is lacking because of the special organizational structure and low nutrient supply of AF. We here found that IVDD results in the impaired mitochondrial function of AF tissue, and mitochondrial autophagy (mitophagy) plays a protective role in this process. We therefore reported a thread-structural microneedle (T-MN) matching the ring structure of AF. Based on the adsorption effect of laminin, our T-MN could load with bone marrow mesenchymal stem cell-derived exosomes to envelope the regulating mitophagy microRNA (miRNA 378), named as T-MN@EXO@miR-378. In general, we offered in situ locking in the defect site of AF to prevent nucleus pulposus leakage and promoted AF repair. The design of the thread structure was aimed at bionically matching the layered AF structure, thereby providing stronger adhesion. The T-MN@EXO@miR-378 effectively attached to AF and slowly released therapeutic engineered exosomes, and prevented IVDD progression by restoring mitophagy, promoting AF cell proliferation and migration, and inhibiting the pathological remodeling of the extracellular matrix. This functional system can be used as an excellent tool for sustained drug release and has a certain prospect in substituting the conventional treatment of IVDD.
Collapse
Affiliation(s)
- Shaojun Hu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, PR China
| | - Meng Zhu
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Hongyuan Xing
- Department of Orthopaedics, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, PR China
| | - Yucheng Xue
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, PR China
| | - Jun Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, PR China
| | - Zhan Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, PR China
| | - Zhou Zhu
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Miaojie Fang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, PR China
| | - Zilong Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, PR China
| | - Jianbin Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, PR China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, PR China
| | - Ning Zhang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, PR China
| |
Collapse
|
10
|
Liu S, Li K, He Y, Chen S, Yang W, Chen X, Feng S, Xiong L, Peng Y, Shao Z. PGC1α-Inducing Senomorphic Nanotherapeutics Functionalized with NKG2D-Overexpressing Cell Membranes for Intervertebral Disc Degeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400749. [PMID: 38554394 PMCID: PMC11165536 DOI: 10.1002/advs.202400749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/07/2024] [Indexed: 04/01/2024]
Abstract
Cellular senescence is a significant contributor to intervertebral disc aging and degeneration. However, the application of senotherapies, such as senomorphics targeting senescence markers and the senescence-associated secretory phenotype (SASP), remains limited due to challenges in precise delivery. Given that the natural killer group 2D (NKG2D) ligands are increased on the surface of senescent nucleus pulposus (NP) cells, the NKG2D-overexpressing NP cell membranes (NNPm) are constructed, which is expected to achieve a dual targeting effect toward senescent NP cells based on homologous membrane fusion and the NKG2D-mediated immunosurveillance mechanism. Then, mesoporous silica nanoparticles carrying a peroxisome proliferator-activated receptor-ɣ coactivator 1α (PGC1α)inducer (SP) are coated with NNPm (SP@NNPm) and it is found that SP@NNPm selectively targets senescent NP cells, and the SP cores exhibit pH-responsive drug release. Moreover, SP@NNPm effectively induces PGC1α-mediated mitochondrial biogenesis and mitigates senescence-associated markers induced by oxidative stress and the SASP, thereby alleviating puncture-induced senescence and disc degeneration. This dual-targeting nanotherapeutic system represents a novel approach to delivery senomorphics for disc degeneration treatment.
Collapse
Affiliation(s)
- Sheng Liu
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Kanglu Li
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Yuxin He
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Sheng Chen
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Wenbo Yang
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Xuanzuo Chen
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Shiqing Feng
- The Second Hospital of Shandong UniversityCheeloo College of MedicineShandong UniversityJinan250033China
- Department of OrthopedicsQilu Hospital of Shandong UniversityCheeloo College of MedicineShandong UniversityJinan250012China
- Department of OrthopedicsTianjin Medical University General HospitalTianjin Medical UniversityTianjin300052China
| | - Liming Xiong
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Yizhong Peng
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Zengwu Shao
- Department of OrthopedicsUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| |
Collapse
|
11
|
Da W, Chen Q, Shen B. The current insights of mitochondrial hormesis in the occurrence and treatment of bone and cartilage degeneration. Biol Res 2024; 57:37. [PMID: 38824571 PMCID: PMC11143644 DOI: 10.1186/s40659-024-00494-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 04/03/2024] [Indexed: 06/03/2024] Open
Abstract
It is widely acknowledged that aging, mitochondrial dysfunction, and cellular phenotypic abnormalities are intricately associated with the degeneration of bone and cartilage. Consequently, gaining a comprehensive understanding of the regulatory patterns governing mitochondrial function and its underlying mechanisms holds promise for mitigating the progression of osteoarthritis, intervertebral disc degeneration, and osteoporosis. Mitochondrial hormesis, referred to as mitohormesis, represents a cellular adaptive stress response mechanism wherein mitochondria restore homeostasis and augment resistance capabilities against stimuli by generating reactive oxygen species (ROS), orchestrating unfolded protein reactions (UPRmt), inducing mitochondrial-derived peptides (MDP), instigating mitochondrial dynamic changes, and activating mitophagy, all prompted by low doses of stressors. The varying nature, intensity, and duration of stimulus sources elicit divergent degrees of mitochondrial stress responses, subsequently activating one or more signaling pathways to initiate mitohormesis. This review focuses specifically on the effector molecules and regulatory networks associated with mitohormesis, while also scrutinizing extant mechanisms of mitochondrial dysfunction contributing to bone and cartilage degeneration through oxidative stress damage. Additionally, it underscores the potential of mechanical stimulation, intermittent dietary restrictions, hypoxic preconditioning, and low-dose toxic compounds to trigger mitohormesis, thereby alleviating bone and cartilage degeneration.
Collapse
Affiliation(s)
- Wacili Da
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Quan Chen
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Bin Shen
- Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
12
|
Tamagawa S, Sakai D, Nojiri H, Nakamura Y, Warita T, Matsushita E, Schol J, Soma H, Ogasawara S, Munesada D, Koike M, Shimizu T, Sato M, Ishijima M, Watanabe M. SOD2 orchestrates redox homeostasis in intervertebral discs: A novel insight into oxidative stress-mediated degeneration and therapeutic potential. Redox Biol 2024; 71:103091. [PMID: 38412803 PMCID: PMC10907854 DOI: 10.1016/j.redox.2024.103091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 02/14/2024] [Indexed: 02/29/2024] Open
Abstract
Low back pain (LBP) is a pervasive global health concern, primarily associated with intervertebral disc (IVD) degeneration. Although oxidative stress has been shown to contribute to IVD degeneration, the underlying mechanisms remain undetermined. This study aimed to unravel the role of superoxide dismutase 2 (SOD2) in IVD pathogenesis and target oxidative stress to limit IVD degeneration. SOD2 demonstrated a dynamic regulation in surgically excised human IVD tissues, with initial upregulation in moderate degeneration and downregulation in severely degenerated IVDs. Through a comprehensive set of in vitro and in vivo experiments, we found a suggestive association between excessive mitochondrial superoxide, cellular senescence, and matrix degradation in human and mouse IVD cells. We confirmed that aging and mechanical stress, established triggers for IVD degeneration, escalated mitochondrial superoxide levels in mouse models. Critically, chondrocyte-specific Sod2 deficiency accelerated age-related and mechanical stress-induced disc degeneration in mice, and could be attenuated by β-nicotinamide mononucleotide treatment. These revelations underscore the central role of SOD2 in IVD redox balance and unveil potential therapeutic avenues, making SOD2 and mitochondrial superoxide promising targets for effective LBP interventions.
Collapse
Affiliation(s)
- Shota Tamagawa
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan; Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Daisuke Sakai
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan.
| | - Hidetoshi Nojiri
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshihiko Nakamura
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| | - Takayuki Warita
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| | - Erika Matsushita
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| | - Jordy Schol
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| | - Hazuki Soma
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| | - Shota Ogasawara
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| | - Daiki Munesada
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| | - Masato Koike
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takahiko Shimizu
- Aging Stress Response Research Project Team, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Masato Sato
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| | - Muneaki Ishijima
- Department of Medicine for Orthopaedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masahiko Watanabe
- Department of Orthopaedic Surgery, Surgical Science, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
13
|
Xu WN, Zheng HL, Yang RZ, Sun YF, Peng BR, Liu C, Song J, Jiang SD, Zhu LX. The mitochondrial UPR induced by ATF5 attenuates intervertebral disc degeneration via cooperating with mitophagy. Cell Biol Toxicol 2024; 40:16. [PMID: 38472656 PMCID: PMC10933207 DOI: 10.1007/s10565-024-09854-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
Intervertebral disc degeneration (IVDD) is an aging disease that results in a low quality of life and heavy socioeconomic burden. The mitochondrial unfolded protein response (UPRmt) take part in various aging-related diseases. Our research intents to explore the role and underlying mechanism of UPRmt in IVDD. Nucleus pulposus (NP) cells were exposed to IL-1β and nicotinamide riboside (NR) served as UPRmt inducer to treat NP cells. Detection of ATP, NAD + and NADH were used to determine the function of mitochondria. MRI, Safranin O-fast green and Immunohistochemical examination were used to determine the degree of IVDD in vivo. In this study, we discovered that UPRmt was increased markedly in the NP cells of human IVDD tissues than in healthy controls. In vitro, UPRmt and mitophagy levels were promoted in NP cells treated with IL-1β. Upregulation of UPRmt by NR and Atf5 overexpression inhibited NP cell apoptosis and further improved mitophagy. Silencing of Pink1 reversed the protective effects of NR and inhibited mitophagy induced by the UPRmt. In vivo, NR might attenuate the degree of IDD by activating the UPRmt in rats. In summary, the UPRmt was involved in IVDD by regulating Pink1-induced mitophagy. Mitophagy induced by the UPRmt might be a latent treated target for IVDD.
Collapse
Affiliation(s)
- Wen-Ning Xu
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200082, China
| | - Huo-Liang Zheng
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200082, China
| | - Run-Ze Yang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan-Fang Sun
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Bi-Rong Peng
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Chun Liu
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China
| | - Jian Song
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200082, China.
- Department of Orthopedics, Huashan Hospital Fudan University, Shanghai, 200040, China.
| | - Sheng-Dan Jiang
- Department of Clinic of Spine Center, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200082, China.
| | - Li-Xin Zhu
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, China.
| |
Collapse
|
14
|
Zhou H, Qian Q, Chen Q, Chen T, Wu C, Chen L, Zhang Z, Wu O, Jin Y, Wang X, Guo Z, Sun J, Zhang J, Shen S, Wang X, Jones M, Khan MA, Makvandi P, Zhou Y, Wu A. Enhanced Mitochondrial Targeting and Inhibition of Pyroptosis with Multifunctional Metallopolyphenol Nanoparticles in Intervertebral Disc Degeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308167. [PMID: 37953455 DOI: 10.1002/smll.202308167] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/29/2023] [Indexed: 11/14/2023]
Abstract
Intervertebral disc degeneration (IVDD) is a significant contributor to low back pain, characterized by excessive reactive oxygen species generation and inflammation-induced pyroptosis. Unfortunately, there are currently no specific molecules or materials available to effectively delay IVDD. This study develops a multifunctional full name of PG@Cu nanoparticle network (PG@Cu). A designed pentapeptide, bonded on PG@Cu nanoparticles via a Schiff base bond, imparts multifunctionality to the metal polyphenol particles (PG@Cu-FP). PG@Cu-FP exhibits enhanced escape from lysosomal capture, enabling efficient targeting of mitochondria to scavenge excess reactive oxygen species. The scavenging activity against reactive oxygen species originates from the polyphenol-based structures within the nanoparticles. Furthermore, Pyroptosis is effectively blocked by inhibiting Gasdermin mediated pore formation and membrane rupture. PG@Cu-FP successfully reduces the activation of the nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing 3 inflammasome by inhibiting Gasdermin protein family (Gasdermin D, GSDMD) oligomerization, leading to reduced expression of Nod-like receptors. This multifaceted approach demonstrates higher efficiency in inhibiting Pyroptosis. Experimental results confirm that PG@Cu-FP preserves disc height, retains water content, and preserves tissue structure. These findings highlight the potential of PG@Cu-FP in improving IVDD and provide novel insights for future research in IVDD treatments.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Qiuping Qian
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Qizhu Chen
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Tao Chen
- Department of Orthopaedics, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education Tongji Hospital, Tongji University School of Medicine, School of Life Science and Technology, Tongji University, Shanghai, 200065, China
| | - Chenyu Wu
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Linjie Chen
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Zhiguang Zhang
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Ouqiang Wu
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Yuxin Jin
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Xinzhou Wang
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Zhenyu Guo
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Jing Sun
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Jun Zhang
- Zhejiang Provincial People's Hospital Bijie Hospital, Bijie, Guizhou, 551700, China
| | - Shuying Shen
- Department of Orthopaedics, Key Laboratory of Musculoskeletal System Degeneration and Regeneration Translational Research of Zhejiang Province, Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Xiangyang Wang
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Morgan Jones
- Spine Unit, The Royal Orthopaedic Hospital, Bristol Road South, Northfield, Birmingham, B31 2AP, United Kingdom
| | - Moonis Ali Khan
- Chemistry Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Pooyan Makvandi
- The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang, 324000, China
| | - Yunlong Zhou
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, 325000, China
| | - Aimin Wu
- Department of Orthopaedics, Key Laboratory of Structural Malformations in Children of Zhejiang Province, Key Laboratory of Orthopaedics of Zhejiang Province, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| |
Collapse
|
15
|
Lin J, Wang L, Wu Y, Xiang Q, Zhao Y, Zheng X, Jiang S, Sun Z, Fan D, Li W. Involvement of DJ-1 in the pathogenesis of intervertebral disc degeneration via hexokinase 2-mediated mitophagy. Exp Mol Med 2024; 56:747-759. [PMID: 38531963 PMCID: PMC10984922 DOI: 10.1038/s12276-024-01196-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 03/28/2024] Open
Abstract
Intervertebral disc degeneration (IDD) is an important pathological basis for degenerative spinal diseases and is involved in mitophagy dysfunction. However, the molecular mechanisms underlying mitophagy regulation in IDD remain unclear. This study aimed to clarify the role of DJ-1 in regulating mitophagy during IDD pathogenesis. Here, we showed that the mitochondrial localization of DJ-1 in nucleus pulposus cells (NPCs) first increased and then decreased in response to oxidative stress. Subsequently, loss- and gain-of-function experiments revealed that overexpression of DJ-1 in NPCs inhibited oxidative stress-induced mitochondrial dysfunction and mitochondria-dependent apoptosis, whereas knockdown of DJ-1 had the opposite effect. Mechanistically, mitochondrial translocation of DJ-1 promoted the recruitment of hexokinase 2 (HK2) to damaged mitochondria by activating Akt and subsequently Parkin-dependent mitophagy to inhibit oxidative stress-induced apoptosis in NPCs. However, silencing Parkin, reducing mitochondrial recruitment of HK2, or inhibiting Akt activation suppressed DJ-1-mediated mitophagy. Furthermore, overexpression of DJ-1 ameliorated IDD in rats through HK2-mediated mitophagy. Taken together, these findings indicate that DJ-1 promotes HK2-mediated mitophagy under oxidative stress conditions to inhibit mitochondria-dependent apoptosis in NPCs and could be a therapeutic target for IDD.
Collapse
Affiliation(s)
- Jialiang Lin
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Peking University Health Science Center, Beijing, China
| | - Longjie Wang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Yuhao Wu
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, China
| | - Qian Xiang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Peking University Health Science Center, Beijing, China
| | - Yongzhao Zhao
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Peking University Health Science Center, Beijing, China
| | - Xuanqi Zheng
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
- Peking University Health Science Center, Beijing, China
| | - Shuai Jiang
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Zhuoran Sun
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Dongwei Fan
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China
| | - Weishi Li
- Department of Orthopedics, Peking University Third Hospital, Beijing, China.
- Beijing Key Laboratory of Spinal Disease Research, Beijing, China.
- Engineering Research Center of Bone and Joint Precision Medicine, Ministry of Education, Beijing, China.
| |
Collapse
|
16
|
Fekete M, Major D, Feher A, Fazekas-Pongor V, Lehoczki A. Geroscience and pathology: a new frontier in understanding age-related diseases. Pathol Oncol Res 2024; 30:1611623. [PMID: 38463143 PMCID: PMC10922957 DOI: 10.3389/pore.2024.1611623] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/07/2024] [Indexed: 03/12/2024]
Abstract
Geroscience, a burgeoning discipline at the intersection of aging and disease, aims to unravel the intricate relationship between the aging process and pathogenesis of age-related diseases. This paper explores the pivotal role played by geroscience in reshaping our understanding of pathology, with a particular focus on age-related diseases. These diseases, spanning cardiovascular and cerebrovascular disorders, malignancies, and neurodegenerative conditions, significantly contribute to the morbidity and mortality of older individuals. We delve into the fundamental cellular and molecular mechanisms underpinning aging, including mitochondrial dysfunction and cellular senescence, and elucidate their profound implications for the pathogenesis of various age-related diseases. Emphasis is placed on the importance of assessing key biomarkers of aging and biological age within the realm of pathology. We also scrutinize the interplay between cellular senescence and cancer biology as a central area of focus, underscoring its paramount significance in contemporary pathological research. Moreover, we shed light on the integration of anti-aging interventions that target fundamental aging processes, such as senolytics, mitochondria-targeted treatments, and interventions that influence epigenetic regulation within the domain of pathology research. In conclusion, the integration of geroscience concepts into pathological research heralds a transformative paradigm shift in our understanding of disease pathogenesis and promises breakthroughs in disease prevention and treatment.
Collapse
Affiliation(s)
- Monika Fekete
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - David Major
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Agnes Feher
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | | | - Andrea Lehoczki
- Department of Public Health, Semmelweis University, Budapest, Hungary
- Departments of Hematology and Stem Cell Transplantation, South Pest Central Hospital, National Institute of Hematology and Infectious Diseases, Saint Ladislaus Campus, Budapest, Hungary
| |
Collapse
|
17
|
Kuchynsky K, Stevens P, Hite A, Xie W, Diop K, Tang S, Pietrzak M, Khan S, Walter B, Purmessur D. Transcriptional profiling of human cartilage endplate cells identifies novel genes and cell clusters underlying degenerated and non-degenerated phenotypes. Arthritis Res Ther 2024; 26:12. [PMID: 38173036 PMCID: PMC10763221 DOI: 10.1186/s13075-023-03220-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/22/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Low back pain is a leading cause of disability worldwide and is frequently attributed to intervertebral disc (IVD) degeneration. Though the contributions of the adjacent cartilage endplates (CEP) to IVD degeneration are well documented, the phenotype and functions of the resident CEP cells are critically understudied. To better characterize CEP cell phenotype and possible mechanisms of CEP degeneration, bulk and single-cell RNA sequencing of non-degenerated and degenerated CEP cells were performed. METHODS Human lumbar CEP cells from degenerated (Thompson grade ≥ 4) and non-degenerated (Thompson grade ≤ 2) discs were expanded for bulk (N=4 non-degenerated, N=4 degenerated) and single-cell (N=1 non-degenerated, N=1 degenerated) RNA sequencing. Genes identified from bulk RNA sequencing were categorized by function and their expression in non-degenerated and degenerated CEP cells were compared. A PubMed literature review was also performed to determine which genes were previously identified and studied in the CEP, IVD, and other cartilaginous tissues. For single-cell RNA sequencing, different cell clusters were resolved using unsupervised clustering and functional annotation. Differential gene expression analysis and Gene Ontology, respectively, were used to compare gene expression and functional enrichment between cell clusters, as well as between non-degenerated and degenerated CEP samples. RESULTS Bulk RNA sequencing revealed 38 genes were significantly upregulated and 15 genes were significantly downregulated in degenerated CEP cells relative to non-degenerated cells (|fold change| ≥ 1.5). Of these, only 2 genes were previously studied in CEP cells, and 31 were previously studied in the IVD and other cartilaginous tissues. Single-cell RNA sequencing revealed 11 unique cell clusters, including multiple chondrocyte and progenitor subpopulations with distinct gene expression and functional profiles. Analysis of genes in the bulk RNA sequencing dataset showed that progenitor cell clusters from both samples were enriched in "non-degenerated" genes but not "degenerated" genes. For both bulk- and single-cell analyses, gene expression and pathway enrichment analyses highlighted several pathways that may regulate CEP degeneration, including transcriptional regulation, translational regulation, intracellular transport, and mitochondrial dysfunction. CONCLUSIONS This thorough analysis using RNA sequencing methods highlighted numerous differences between non-degenerated and degenerated CEP cells, the phenotypic heterogeneity of CEP cells, and several pathways of interest that may be relevant in CEP degeneration.
Collapse
Affiliation(s)
- Kyle Kuchynsky
- Department of Biomedical Engineering, The Ohio State University, 3016 Fontana Laboratories, 140 W. 19th Ave, Columbus, OH, 43210, USA
| | - Patrick Stevens
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Amy Hite
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - William Xie
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Khady Diop
- Department of Biomedical Engineering, The Ohio State University, 3016 Fontana Laboratories, 140 W. 19th Ave, Columbus, OH, 43210, USA
| | - Shirley Tang
- Department of Biomedical Engineering, The Ohio State University, 3016 Fontana Laboratories, 140 W. 19th Ave, Columbus, OH, 43210, USA
| | - Maciej Pietrzak
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Safdar Khan
- Department of Orthopaedics, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Benjamin Walter
- Department of Biomedical Engineering, The Ohio State University, 3016 Fontana Laboratories, 140 W. 19th Ave, Columbus, OH, 43210, USA
| | - Devina Purmessur
- Department of Biomedical Engineering, The Ohio State University, 3016 Fontana Laboratories, 140 W. 19th Ave, Columbus, OH, 43210, USA.
- Department of Orthopaedics, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
18
|
Deng YJ, Wang XG, Li Z, Wang B, Li J, Ma J, Xue X, Tian X, Liu QC, Liu JY, Zhang Y, Yuan B. Comprehensive analysis of senescence-related genes and immune infiltration in intervertebral disc degeneration: a meta-data approach utilizing bulk and single-cell RNA sequencing data. Front Mol Biosci 2023; 10:1296782. [PMID: 38187091 PMCID: PMC10770860 DOI: 10.3389/fmolb.2023.1296782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/13/2023] [Indexed: 01/09/2024] Open
Abstract
Objectives: This study aims to identify the key senescence genes and potential regulatory mechanisms that contribute to the etiology of intervertebral disc degeneration (IDD). Method: We analyzed GSE34095 and GSE70362 datasets, identifying key senescence-related differentially expressed genes (DEGs) in IDD using lasso regression. Risk scores classified patients into high- and low-risk groups. We compared pathways, functions, and immune infiltration between these groups. Diagnostic ability was assessed using ROC curves and a nomogram predicted IDD incidence. In single-cell dataset GSE165722, we evaluated expression of key senescence-related DEGs. Results: We identified 12 key senescence-related DEGs distinguishing high- and low-risk IDD patients. Enrichment analysis revealed cellular stress response, apoptotic signaling pathway, and protein kinase activation differences. Immune cell analysis showed elevated eosinophils in low-risk group and increased effector memory CD8 T, central memory CD4 T, myeloid-derived suppressor, natural killer, monocyte, Type 1 T helper, plasmacytoid dendritic, and natural killer T cells in high-risk group. A nomogram using AUC >0.75 genes (CXCL8, MAP4K4, MINK1, and TNIK) predicted IDD incidence with good diagnostic power. High senescence scores were observed in neutrophils. Conclusion: Our diagnostic model, based on key senescence-related DEGs and immune cell infiltration, offers new insights into IDD pathogenesis and immunotherapy strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Bin Yuan
- Department of Spine Surgery, Xi’an Daxing Hospital, Yanan University, Xi’an, China
| |
Collapse
|
19
|
Zhao W, Wei J, Ji X, Jia E, Li J, Huo J. Machine learning algorithm predicts fibrosis-related blood diagnosis markers of intervertebral disc degeneration. BMC Med Genomics 2023; 16:274. [PMID: 37915003 PMCID: PMC10619283 DOI: 10.1186/s12920-023-01705-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 10/15/2023] [Indexed: 11/03/2023] Open
Abstract
BACKGROUND Intervertebral disc cell fibrosis has been established as a contributing factor to intervertebral disc degeneration (IDD). This study aimed to identify fibrosis-related diagnostic genes for patients with IDD. METHODS RNA-sequencing data was downloaded from Gene Expression Omnibus (GEO) database. The diagnostic genes was identified using Random forest based on the differentially expressed fibrosis-related genes (DE-FIGs) between IDD and control samples. The immune infiltration states in IDD and the regulatory network as well as potential drugs targeted diagnostic genes were investigated. Quantitative Real-Time PCR was conducted for gene expression valifation. RESULTS CEP120 and SPDL1 merged as diagnostic genes. Substantial variations were observed in the proportions of natural killer cells, neutrophils, and myeloid-derived suppressor cells between IDD and control samples. Further experiments indicated that AC144548.1 could regulate the expressions of SPDL1 and CEP120 by combininghsa-miR-5195-3p and hsa-miR-455-3p, respectively. Additionally, transcription factors FOXM1, PPARG, and ATF3 were identified as regulators of SPDL1 and CEP120 transcription. Notably, 56 drugs were predicted to target these genes. The down-regulation of SPDL1 and CEP120 was also validated. CONCLUSION This study identified two diagnostic genes associated with fibrosis in patients with IDD. Additionally, we elucidated their potential regulatory networks and identified target drugs, which offer a theoretical basis and reference for further study into fibrosis-related genes involved in IDD.
Collapse
Affiliation(s)
- Wei Zhao
- First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, PR China
- Shanxi Medical University, Taiyuan, Shanxi Province, PR China
| | - Jinzheng Wei
- Shanxi Medical University, Taiyuan, Shanxi Province, PR China
| | - Xinghua Ji
- Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, PR China
| | - Erlong Jia
- First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, PR China
| | - Jinhu Li
- First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, PR China.
| | - Jianzhong Huo
- Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, PR China.
| |
Collapse
|
20
|
Lu Z, Zheng Z. Integrated analysis of single-cell and bulk RNA sequencing data identifies the characteristics of ferroptosis in lumbar disc herniation. Funct Integr Genomics 2023; 23:289. [PMID: 37653201 DOI: 10.1007/s10142-023-01216-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/09/2023] [Accepted: 08/15/2023] [Indexed: 09/02/2023]
Abstract
Lumbar disc herniation (LDH) is the most common condition associated with low back pain, and it adversely impacts individuals' health. Ferroptosis has recently emerged as a novel factor in the pathogenesis of LDH; however, the specific impacts of ferroptosis on LDH have not been fully elucidated. Ferroptosis-related differentially expressed genes (FRDEGs) were identified from the transcriptomic datasets of LDH. Gene set enrichment analysis (GSEA) was conducted to identify biological mechanism and related pathways. LASSO and SVM-RFE algorithms were applied to detect signature genes. Function of the signature gene was confirmed by RT-qPCR. The CIBERSORT algorithm was used to compare immune infiltration between LDH and normal samples. Correlation analysis between MYB and immune cells was analyzed using the Pearson method. Additionally, we used scRNA-seq to dissect cell clusters and cellular interactions. AUCell scoring was used to analyze the ferroptosis scores of different cell types. We found that MYB, a highly expressed ferroptosis-related gene, was associated with LDH By leveraging bioinformatics analysis. In immune infiltration analysis, the abundance of monocytes and macrophages varied significantly between the LDH group and disc spondylolisthesis (DS) group. MYB was correlated with most immune cells. GSEA revealed MYB was significantly enriched in immune-related pathways. Furthermore, scRNA-seq analysis revealed the presence of eight distinct cell types. AUCell analysis showed that macrophages had a high ferroptosis score. Cell trajectory analysis revealed that chondrocyte 1 was at the beginning of the trajectory, while calcification inhibiting chondrocytes and fibrochondrocytes accumulated along the middle and tail end of the trajectory, respectively. Cell-cell communication analysis identified chondrocyte 1 had an extensive communication network with other clusters and interacted with nucleus pulposus through collagen signaling pathway. Our analysis demonstrated that MYB may be a potential therapeutic target for LDH. This study provides a resource for the orthopedics community that will facilitate additional discoveries directedly toward understanding the pathogenesis process of LDH.
Collapse
Affiliation(s)
- Ziqiang Lu
- Luoyang Orthopedic-Traumatological Hospital Of Henan Province, Luoyang, Henan, China.
| | - Zhenyu Zheng
- Luoyang Orthopedic-Traumatological Hospital Of Henan Province, Luoyang, Henan, China
| |
Collapse
|
21
|
Samanta A, Lufkin T, Kraus P. Intervertebral disc degeneration-Current therapeutic options and challenges. Front Public Health 2023; 11:1156749. [PMID: 37483952 PMCID: PMC10359191 DOI: 10.3389/fpubh.2023.1156749] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/12/2023] [Indexed: 07/25/2023] Open
Abstract
Degeneration of the intervertebral disc (IVD) is a normal part of aging. Due to the spine's declining function and the development of pain, it may affect one's physical health, mental health, and socioeconomic status. Most of the intervertebral disc degeneration (IVDD) therapies today focus on the symptoms of low back pain rather than the underlying etiology or mechanical function of the disc. The deteriorated disc is typically not restored by conservative or surgical therapies that largely focus on correcting symptoms and structural abnormalities. To enhance the clinical outcome and the quality of life of a patient, several therapeutic modalities have been created. In this review, we discuss genetic and environmental causes of IVDD and describe promising modern endogenous and exogenous therapeutic approaches including their applicability and relevance to the degeneration process.
Collapse
Affiliation(s)
| | | | - Petra Kraus
- Department of Biology, Clarkson University, Potsdam, NY, United States
| |
Collapse
|
22
|
Yang Z, Yuan ZZ, Ma XL. Identification of a potential novel biomarker in intervertebral disk degeneration by bioinformatics analysis and experimental validation. Front Immunol 2023; 14:1136727. [PMID: 37325631 PMCID: PMC10266279 DOI: 10.3389/fimmu.2023.1136727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/10/2023] [Indexed: 06/17/2023] Open
Abstract
Background Intervertebral disk degeneration (IVDD) is a major cause of low back pain and one of the most common health problems all over the world. However, the early diagnosis of IVDD is still restricted. The purpose of this study is to identify and validate the key characteristic gene of IVDD and analyze its correlation with immune cell infiltration. Methods 3 IVDD-related gene expression profiles were downloaded from the Gene Expression Omnibus database to screen for differentially expressed genes (DEGs). Gene Ontology (GO) and gene set enrichment analysis (GSEA) were conducted to explore the biological functions. Two machine learning algorithms were used to identify characteristic genes, which were tested to further find the key characteristic gene. The receiver operating characteristic curve was performed to estimate the clinical diagnostic value of the key characteristic gene. The excised human intervertebral disks were obtained, and the normal nucleus pulposus (NP) and degenerative NP were carefully separated and cultured in vitro. The expression of the key characteristic gene was validated by real-time quantitative PCR (qRT-PCR). The related protein expression in NP cells was detected by Western blot. Finally, the correlation was investigated between the key characteristic gene and immune cell infiltration. Results A total of 5 DEGs, including 3 upregulated genes and 2 downregulated genes, were screened between IVDD and control samples. GO enrichment analysis showed that DEGs were enriched to 4 items in BP, 6 items in CC, and 13 items in MF. They mainly included the regulation of ion transmembrane transport, transporter complex, and channel activity. GSEA suggested that the cell cycle, DNA replication, graft versus host disease, and nucleotide excision repair were enriched in control samples, while complement and coagulation cascades, Fc γ R-mediated phagocytosis, neuroactive ligand-receptor interaction, the NOD-like receptor signaling pathway, gap junctions, etc., were enriched in IVDD samples. Furthermore, ZNF542P was identified and tested as key characteristic gene in IVDD samples through machine learning algorithms and showed a good diagnostic value. The results of qRT-PCR showed that compared with normal NP cells, the expression of ZNF542P gene was decreased in degenerated NP cells. The results of Western blot suggested that compared with normal NP cells, the expression of NLRP3 and pro Caspase-1 was increased in degenerated NP cells. Finally, we found that the expression of ZNF542P was positively related to the proportions of T cells gamma delta (γδT cells). Conclusion ZNF542P is a potential biomarker in the early diagnosis of IVDD and may be associated with the NOD-like receptor signaling pathway and the infiltration of γδT cells.
Collapse
Affiliation(s)
- Zhao Yang
- *Correspondence: Zhao Yang, ; Xin-Long Ma,
| | | | - Xin-Long Ma
- Department of Orthopedics, Tianjin Hospital, Tianjin, China
| |
Collapse
|
23
|
Gu Y, Yu W, Qi M, Hu J, Jin Q, Wang X, Wang C, Chen Y, Yuan W. Identification and validation of hub genes and pathways associated with mitochondrial dysfunction in hypertrophy of ligamentum flavum. Front Genet 2023; 14:1117416. [PMID: 37234868 PMCID: PMC10206037 DOI: 10.3389/fgene.2023.1117416] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/22/2023] [Indexed: 05/28/2023] Open
Abstract
Background: Lumbar spinal stenosis which can lead to irreversible neurologic damage and functional disability, is characterized by hypertrophy of ligamentum flavum (HLF). Recent studies have indicated that mitochondrial dysfunction may contribute to the development of HLF. However, the underlying mechanism is still unclear. Methods: The dataset GSE113212 was obtained from the Gene Expression Omnibus database, and the differentially expressed genes were identified. The intersection of DEGs and mitochondrial dysfunction-related genes were identified as mitochondrial dysfunction-related DEGs. Gene Ontology analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and Gene Set Enrichment Analysis were performed. Protein-protein interaction network was constructed, and miRNAs and transcriptional factors of the hub genes were predicted via the miRNet database. Small molecule drugs targeted to these hub genes were predicted via PubChem. Immune infiltration analysis was performed to evaluate the infiltration level of immune cells and their correlation with the hub genes. In final, we measured the mitochondrial function and oxidative stress in vitro and verified the expression of hub genes by qPCR experiments. Results: In total, 43 genes were identified as MDRDEGs. These genes were mainly involved in cellular oxidation, catabolic processes, and the integrity of mitochondrial structure and function. The top hub genes were screened, including LONP1, TK2, SCO2, DBT, TFAM, MFN2. The most significant enriched pathways include cytokine-cytokine receptor interaction, focal adhesion, etc. Besides, SP1, PPARGC1A, YY1, MYC, PPARG, and STAT1 were predicted transcriptional factors of these hub genes. Additionally, increased immune infiltration was demonstrated in HLF, with a close correlation between hub genes and immune cells found. The mitochondrial dysfunction and the expression of hub genes were validated by evaluation of mitochondrial DNA, oxidative stress markers and quantitative real-time PCR. Conclusion: This study applied the integrative bioinformatics analysis and revealed the mitochondrial dysfunction-related key genes, regulatory pathways, TFs, miRNAs, and small molecules underlying the development of HLF, which improved the understanding of molecular mechanisms and the development of novel therapeutic targets for HLF.
Collapse
Affiliation(s)
- Yifei Gu
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Wenchao Yu
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Min Qi
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jinquan Hu
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Qianmei Jin
- Department of Rheumatology and Immunology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Xinwei Wang
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Chen Wang
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Yu Chen
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Wen Yuan
- Department of Orthopaedics, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
24
|
Xu J, Shao T, Lou J, Zhang J, Xia C. Aging, cell senescence, the pathogenesis and targeted therapies of intervertebral disc degeneration. Front Pharmacol 2023; 14:1172920. [PMID: 37214476 PMCID: PMC10196014 DOI: 10.3389/fphar.2023.1172920] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
Intervertebral disc degeneration (IVDD) refers to the aging and degenerative diseases of intervertebral disc components such as nucleus pulposus, annulus fibrosus, and cartilage endplate, and is the main cause of chronic low back pain. Over the past few years, many researchers around the world concerned that the degeneration of nucleus pulposus (NP) cells plays the main role in IVDD. The degeneration of NP cells is caused by a series of pathological processes, including oxidative stress, inflammatory response, apoptosis, abnormal proliferation, and autophagy. Interestingly, many studies have found a close relationship between the senescence of NP cells and the progression of NP degeneration. The classical aging pathways also have been confirmed to be involved in the pathological process of IVDD. Moreover, several anti-aging drugs have been used to treat IVDD by inhibiting NP cells senescence, such as proanthocyanidins, resveratrol and bone morphogenetic protein 2. Therefore, this article will systematically list and discuss aging, cell senescence, the pathogenesis and targeted therapies of IVDD, in order to provide new ideas for the treatment of IVDD in the future.
Collapse
Affiliation(s)
- Jiongnan Xu
- Center for Plastic and Reconstructive Surgery, Department of Orthopedics, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital Hangzhou Medical College, Hangzhou, China
- The Second School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ting Shao
- Center for Plastic and Reconstructive Surgery, Department of Orthopedics, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital Hangzhou Medical College, Hangzhou, China
| | - Jianfen Lou
- Center for Plastic and Reconstructive Surgery, Department of Orthopedics, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital Hangzhou Medical College, Hangzhou, China
| | - Jun Zhang
- Department of Orthopedics, Zhejiang Provincial People’s Hospital Bijie Hospital, Bijie, Guizhou, China
| | - Chen Xia
- Center for Plastic and Reconstructive Surgery, Department of Orthopedics, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
25
|
Song C, Zhou Y, Cheng K, Liu F, Cai W, Zhou D, Chen R, Shi H, Fu Z, Chen J, Liu Z. Cellular senescence - Molecular mechanisms of intervertebral disc degeneration from an immune perspective. Biomed Pharmacother 2023; 162:114711. [PMID: 37084562 DOI: 10.1016/j.biopha.2023.114711] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/10/2023] [Accepted: 04/13/2023] [Indexed: 04/23/2023] Open
Abstract
Intervertebral disc degeneration (IVDD) is a frequent and intractable chronic condition in orthopedics that causes enormous discomfort in patients' lives and thoughts, as well as a significant economic burden on society and the nation. As a result, understanding the pathophysiology of IVDD is critical. The pathophysiology of IVDD has been linked to numerous variables, including oxidative stress, apoptosis, matrix metalloproteinases, and inflammatory factors. Cellular senescence has recently attracted a lot of attention in the study of age-related diseases. It has been discovered that IVDD is intimately linked to human senescence, in which nucleus pulposus cell senescence may play a significant role. Previously, our group did a comprehensive and systematic clarification of the pathogenesis of IVDD from an immune perspective and discovered that the fundamental pathogenesis of IVDD is inflammatory upregulation and nucleus pulposus cell death caused by an imbalance in the immune microenvironment. In this review, we will treat nucleus pulposus cell senescence as a novelty point to clarify the pathophysiology of IVDD and further explore the probable relationship between senescence and immunity along with the dysregulation of the immunological microenvironment to propose new therapeutic approaches for IVDD.
Collapse
Affiliation(s)
- Chao Song
- Department of Orthopedics and Traumatology (Trauma and Bonesetting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan, China
| | - Yan Zhou
- Luzhou Longmatan District People's Hospital, Luzhou 646000, Sichuan Province, China
| | - Kang Cheng
- Department of Orthopedics and Traumatology (Trauma and Bonesetting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan, China
| | - Fei Liu
- Department of Orthopedics and Traumatology (Trauma and Bonesetting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan, China
| | - Weiye Cai
- Department of Orthopedics and Traumatology (Trauma and Bonesetting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan, China
| | - Daqian Zhou
- Department of Orthopedics and Traumatology (Trauma and Bonesetting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan, China
| | - Rui Chen
- Department of Orthopedics and Traumatology (Trauma and Bonesetting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan, China
| | - Houyin Shi
- Department of Orthopedics and Traumatology (Trauma and Bonesetting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan, China.
| | - Zhijiang Fu
- Department of Orthopedics and Traumatology (Trauma and Bonesetting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan, China.
| | - Jingwen Chen
- Department of Orthopedics and Traumatology (Trauma and Bonesetting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan, China.
| | - Zongchao Liu
- Department of Orthopedics and Traumatology (Trauma and Bonesetting), The Affiliated Hospital of Traditional Chinese Medicine of Southwest Medical University, Luzhou, Sichuan, China; Luzhou Longmatan District People's Hospital, Luzhou 646000, Sichuan Province, China.
| |
Collapse
|
26
|
Gao Z, Gao Z, Zhang H, Hou S, Zhou Y, Liu X. Targeting STING: From antiviral immunity to treat osteoporosis. Front Immunol 2023; 13:1095577. [PMID: 36741390 PMCID: PMC9891206 DOI: 10.3389/fimmu.2022.1095577] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/30/2022] [Indexed: 01/19/2023] Open
Abstract
The cGAS-STING signaling pathway can trigger innate immune responses by detecting dsDNA from outside or within the host. In addition, the cGAS-STING signaling pathway has emerged as a critical mediator of the inflammatory response and a new target for inflammatory diseases. STING activation leads to dimerization and translocation to the endoplasmic reticulum Golgi intermediate compartment or Golgi apparatus catalyzed by TBK1, triggers the production of IRF3 and NF-κB and translocates to the nucleus to induce a subsequent interferon response and pro-inflammatory factor production. Osteoporosis is a degenerative bone metabolic disease accompanied by chronic sterile inflammation. Activating the STING/IFN-β signaling pathway can reduce bone resorption by inhibiting osteoclast differentiation. Conversely, activation of STING/NF-κB leads to the formation of osteoporosis by increasing bone resorption and decreasing bone formation. In addition, activation of STING inhibits the generation of type H vessels with the capacity to osteogenesis, thereby inhibiting bone formation. Here, we outline the mechanism of action of STING and its downstream in osteoporosis and discuss the role of targeting STING in the treatment of osteoporosis, thus providing new ideas for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Zhonghua Gao
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhongguo Gao
- Department of Medical Laboratory Technology, School of Biomedical Engineering, Hubei University of Medicine, Shiyan, Hubei, China
| | - Hao Zhang
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shoubo Hou
- Department of General Practice, General Hospital of Central Theater Command, Wuhan, Hubei, China
| | - Yunhua Zhou
- Department of Wound Repair Surgery, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,*Correspondence: Yunhua Zhou, ; Xiangjie Liu,
| | - Xiangjie Liu
- Department of Geriatrics, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China,*Correspondence: Yunhua Zhou, ; Xiangjie Liu,
| |
Collapse
|
27
|
Hypoxia-Inducible Factor-1α Protects Against Intervertebral Disc Degeneration Through Antagonizing Mitochondrial Oxidative Stress. Inflammation 2023; 46:270-284. [PMID: 36064808 PMCID: PMC9971142 DOI: 10.1007/s10753-022-01732-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/07/2022] [Accepted: 08/22/2022] [Indexed: 11/05/2022]
Abstract
Intervertebral disc degeneration (IVDD) demonstrates a gradually increased incidence and has developed into a major health problem worldwide. The nucleus pulposus is characterized by the hypoxic and avascular environment, in which hypoxia-inducible factor-1α (HIF-1α) has an important role through its participation in extracellular matrix synthesis, energy metabolism, cellular adaptation to stresses and genesis. In this study, the effects of HIF-1α on mouse primary nucleus pulposus cells (MNPCs) exposed to TNF-α were observed, the potential mechanism was explored and a rabbit IVDD model was established to verify the protective role of HIF-1α on IVDD. In vitro results demonstrated that HIF-1α could attenuate the inflammation, apoptosis and mitochondrial dysfunction induced by TNF-α in MNPCs; promote cellular anabolism; and inhibit cellular catabolism. In vivo results demonstrated that after establishment of IVDD model in rabbit, disc height and IVD extracellular matrix were decreased in a time-dependent manner, MRI analysis showed a tendency for decreased T2 values in a time-dependent manner and supplementation of HIF-1α improved histological and imaginative IVDD while downregulation of HIF-1α exacerbated this degeneration. In summary, HIF-1α protected against IVDD, possibly through reducing ROS production in the mitochondria and consequent inhibition of inflammation, metabolism disorders and apoptosis of MNPCs, which provided a potential therapeutic instrument for the treatment of IVDD diseases.
Collapse
|
28
|
Nutrition Strategies Promoting Healthy Aging: From Improvement of Cardiovascular and Brain Health to Prevention of Age-Associated Diseases. Nutrients 2022; 15:nu15010047. [PMID: 36615705 PMCID: PMC9824801 DOI: 10.3390/nu15010047] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND An increasing number of studies suggest that diet plays an important role in regulating aging processes and modulates the development of the most important age-related diseases. OBJECTIVE The aim of this review is to provide an overview of the relationship between nutrition and critical age-associated diseases. METHODS A literature review was conducted to survey recent pre-clinical and clinical findings related to the role of nutritional factors in modulation of fundamental cellular and molecular mechanisms of aging and their role in prevention of the genesis of the diseases of aging. RESULTS Studies show that the development of cardiovascular and cerebrovascular diseases, neurodegenerative diseases, cognitive impairment and dementia can be slowed down or prevented by certain diets with anti-aging action. The protective effects of diets, at least in part, may be mediated by their beneficial macro- (protein, fat, carbohydrate) and micronutrient (vitamins, minerals) composition. CONCLUSIONS Certain diets, such as the Mediterranean diet, may play a significant role in healthy aging by preventing the onset of certain diseases and by improving the aging process itself. This latter can be strengthened by incorporating fasting elements into the diet. As dietary recommendations change with age, this should be taken into consideration as well, when developing a diet tailored to the needs of elderly individuals. Future and ongoing clinical studies on complex anti-aging dietary interventions translating the results of preclinical investigations are expected to lead to novel nutritional guidelines for older adults in the near future.
Collapse
|
29
|
Hydroxytyrosol Ameliorates Intervertebral Disc Degeneration and Neuropathic Pain by Reducing Oxidative Stress and Inflammation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2240894. [PMID: 36388163 PMCID: PMC9646310 DOI: 10.1155/2022/2240894] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/27/2022] [Accepted: 09/22/2022] [Indexed: 12/01/2022]
Abstract
Low back pain (LBP) seriously affects human quality of life. Intervertebral disc degeneration (IVDD) is the main pathological factor that leads to LBP, but the pathological mechanism underlying IVDD has not been fully elucidated. Neuropathic pain caused by IVDD is an important pathological factor affecting people's daily lives. Therefore, it is very important to identify therapeutic drugs to ameliorate IVDD and secondary neuropathic pain. Hydroxytyrosol (HT) is a natural compound derived from olive leaves and oil and has anti-inflammatory, antioxidant, and antitumor activities and other properties. In this study, TNF-α-stimulated human nucleus pulposus cells (HNPCs) were used to simulate the local inflammatory microenvironment observed in IVDD in vitro to explore the role of HT in alleviating various pathological processes associated with IVDD. A rat needle puncture model was used to further explore the role of HT in alleviating IVDD. Lipopolysaccharide (LPS) was used to stimulate microglia in vitro to comprehensively explore the role of HT in alleviating neuropathic pain, and a rat model involving chronic compression of the dorsal root ganglion (CCD) was established to simulate the neuropathic pain caused by IVDD. This study suggests that HT reduces the expression of cyclooxygenase-2 (COX-2), inducible nitric oxide synthase (iNOS), the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome, a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS-4) and matrix metalloproteinase-13 (MMP-13); inhibits the production of mitochondrial reactive oxygen species (ROS); and maintains mitochondrial homeostasis. Thus, HT appears to reduce the rate of apoptosis and mitigate the loss of major intervertebral disc components by inhibiting the nuclear factor kappa-B (NF-κB) signaling pathway. Moreover, HT inhibited the secretion of COX-2, tumor necrosis factor-α (TNF-α), interleukin (IL)-6, IL-1β, and iNOS and activation of the NLRP3 inflammasome in microglia by inhibiting the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) and extracellular regulated protein kinase (ERK) signaling pathways. In conclusion, HT plays a protective role against IVDD and secondary neuropathic pain by inhibiting the NF-κB, PI3K/AKT, and ERK signaling pathways.
Collapse
|
30
|
Zhu Z, He Z, Tang T, Wang F, Chen H, Li B, Chen G, Wang J, Tian W, Chen D, Wu X, Liu X, Zhou Z, Liu S. Integrative Bioinformatics Analysis Revealed Mitochondrial Dysfunction-Related Genes Underlying Intervertebral Disc Degeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1372483. [PMID: 36267810 PMCID: PMC9578809 DOI: 10.1155/2022/1372483] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/15/2022] [Indexed: 11/25/2022]
Abstract
Objective Mitochondrial dysfunction plays an important role in intervertebral disc degeneration (IDD). We aim to explore the pathways and key genes that cause mitochondrial dysfunction during IDD and to further reveal the pathogenesis of IDD based on bioinformatic analyses. Methods Datasets GSE70362 and GSE124272 were downloaded from the Gene Expression Omnibus. Differentially expressed genes (DEGs) of mitochondrial dysfunction between IDD patients and healthy controls were screened by package limma package. Critical genes were identified by adopting gene ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG) pathways, and protein-protein interaction (PPI) networks. We collected both degenerated and normal disc tissues obtained surgically, and we performed western blot and qPCR to verify the key DEGs identified in intervertebral disc tissues. Results In total, 40 cases of IDD and 24 healthy controls were included. We identified 152 DEGs, including 67 upregulated genes and 85 downregulated genes. Four genes related to mitochondrial dysfunction (SOX9, FLVCR1, NR5A1 and UCHL1) were screened out. Of them, SOX9, FLVCR1, and UCHL1 were down-regulated in peripheral blood and intervertebral disc tissues of IDD patients, while NR5A1 was up-regulated. The analysis of immune infiltration showed the concentrations of mast cells activated were significantly the highest in IDD patients. Compared with the control group, the level of T cells CD4 memory resting was the lowest in the patients. In addition, 24 cases of IDD tissues and 12 cases of normal disc tissues were obtained to verify the results of bioinformatics analysis. Both western blot and qPCR results were consistent with the results of bioinformatics analysis. Conclusion We identified four genes (SOX9, FLVCR1, NR5A1 and UCHL1) associated with mitochondrial dysfunction that play an important role in the progress of disc degeneration. The identification of these differential genes may provide new insights for the diagnosis and treatment of IDD.
Collapse
Affiliation(s)
- Zhengya Zhu
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Zhongyuan He
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Orthopaedic Research Institute/Department of Spinal Surgery, The First Affiliated Hospital of sun Yat-Sen University, Guangzhou 510080, China
| | - Tao Tang
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Orthopaedic Research Institute/Department of Spinal Surgery, The First Affiliated Hospital of sun Yat-Sen University, Guangzhou 510080, China
| | - Fuan Wang
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Orthopaedic Research Institute/Department of Spinal Surgery, The First Affiliated Hospital of sun Yat-Sen University, Guangzhou 510080, China
| | - Hongkun Chen
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Baoliang Li
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Orthopaedic Research Institute/Department of Spinal Surgery, The First Affiliated Hospital of sun Yat-Sen University, Guangzhou 510080, China
| | - Guoliang Chen
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Orthopaedic Research Institute/Department of Spinal Surgery, The First Affiliated Hospital of sun Yat-Sen University, Guangzhou 510080, China
| | - Jianmin Wang
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
| | - Wei Tian
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Orthopaedics and Traumatology, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Dafu Chen
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Orthopaedics and Traumatology, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Xinbao Wu
- Laboratory of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials, Beijing Research Institute of Orthopaedics and Traumatology, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Xizhe Liu
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Orthopaedic Research Institute/Department of Spinal Surgery, The First Affiliated Hospital of sun Yat-Sen University, Guangzhou 510080, China
| | - Zhiyu Zhou
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Orthopaedic Research Institute/Department of Spinal Surgery, The First Affiliated Hospital of sun Yat-Sen University, Guangzhou 510080, China
| | - Shaoyu Liu
- Innovation Platform of Regeneration and Repair of Spinal Cord and Nerve Injury, Department of Orthopaedic Surgery, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518107, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, Orthopaedic Research Institute/Department of Spinal Surgery, The First Affiliated Hospital of sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
31
|
Lu L, Xiong Y, Lin Z, Chu X, Panayi AC, Hu Y, Zhou J, Mi B, Liu G. Advances in the therapeutic application and pharmacological properties of kinsenoside against inflammation and oxidative stress-induced disorders. Front Pharmacol 2022; 13:1009550. [PMID: 36267286 PMCID: PMC9576948 DOI: 10.3389/fphar.2022.1009550] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/13/2022] [Indexed: 11/19/2022] Open
Abstract
Extensive research has implicated inflammation and oxidative stress in the development of multiple diseases, such as diabetes, hepatitis, and arthritis. Kinsenoside (KD), a bioactive glycoside component extracted from the medicinal plant Anoectochilus roxburghii, has been shown to exhibit potent anti-inflammatory and anti-oxidative abilities. In this review, we summarize multiple effects of KD, including hepatoprotection, pro-osteogenesis, anti-hyperglycemia, vascular protection, immune regulation, vision protection, and infection inhibition, which are partly responsible for suppressing inflammation signaling and oxidative stress. The protective action of KD against dysfunctional lipid metabolism is also associated with limiting inflammatory signals, due to the crosstalk between inflammation and lipid metabolism. Ferroptosis, a process involved in both inflammation and oxidative damage, is potentially regulated by KD. In addition, we discuss the physicochemical properties and pharmacokinetic profiles of KD. Advances in cultivation and artificial synthesis techniques are promising evidence that the shortage in raw materials required for KD production can be overcome. In addition, novel drug delivery systems can improve the in vivo rapid clearance and poor bioavailability of KD. In this integrated review, we aim to offer novel insights into the molecular mechanisms underlying the therapeutic role of KD and lay solid foundations for the utilization of KD in clinical practice.
Collapse
Affiliation(s)
- Li Lu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yuan Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Ze Lin
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Xiangyu Chu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Adriana C. Panayi
- Division of Plastic Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Hand-, Plastic and Reconstructive Surgery, Microsurgery, Burn Trauma Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Yiqiang Hu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Juan Zhou
- Department of Cardiology, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, China
| | - Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
- *Correspondence: Bobin Mi, ; Guohui Liu,
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
- *Correspondence: Bobin Mi, ; Guohui Liu,
| |
Collapse
|
32
|
The Nrf2 antioxidant defense system in intervertebral disc degeneration: Molecular insights. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:1067-1075. [PMID: 35978054 PMCID: PMC9440120 DOI: 10.1038/s12276-022-00829-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 05/15/2022] [Accepted: 05/18/2022] [Indexed: 02/07/2023]
Abstract
Intervertebral disc degeneration (IDD) is a common degenerative musculoskeletal disorder and is recognized as a major contributor to discogenic lower back pain. However, the molecular mechanisms underlying IDD remain unclear, and therapeutic strategies for IDD are currently limited. Oxidative stress plays pivotal roles in the pathogenesis and progression of many age-related diseases in humans, including IDD. Nuclear factor E2-related factor 2 (Nrf2) is a master antioxidant transcription factor that protects cells against oxidative stress damage. Nrf2 is negatively modulated by Kelch-like ECH-associated protein 1 (Keap1) and exerts important effects on IDD progression. Accumulating evidence has revealed that Nrf2 can facilitate the transcription of downstream antioxidant genes in disc cells by binding to antioxidant response elements (AREs) in promoter regions, including heme oxygenase-1 (HO-1), glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), and NADPH quinone dehydrogenase 1 (NQO1). The Nrf2 antioxidant defense system regulates cell apoptosis, senescence, extracellular matrix (ECM) metabolism, the inflammatory response of the nucleus pulposus (NP), and calcification of the cartilaginous endplates (EP) in IDD. In this review, we aim to discuss the current knowledge on the roles of Nrf2 in IDD systematically. Insights into the activity of a protein that regulates gene expression and protects cells against oxidative stress could yield novel treatments for lower back pain. Intervertebral disc degeneration (IDD) is a common cause of lower back pain, but the molecular mechanisms underlying IDD are unclear, meaning treatment options are limited. Oxidative stress is implicated in IDD, and scientists have begun exploring the role of nuclear factor E2-related factor 2 (Nrf2), a master regulator of the body’s antioxidant responses, in regulating IDD progression. In a review of recent research, Weishi Li at Peking University Third Hospital, Beijing, China, and co-workers point out that boosting the activity of Nrf2-related signaling pathways alleviates oxidative stress in intervertebral disc cells. The researchers suggest that therapies based on non-coding RNAs may prove valuable in activating Nrf2 in IDD patients.
Collapse
|
33
|
Li J, Yu C, Ni S, Duan Y. Identification of Core Genes and Screening of Potential Targets in Intervertebral Disc Degeneration Using Integrated Bioinformatics Analysis. Front Genet 2022; 13:864100. [PMID: 35711934 PMCID: PMC9196128 DOI: 10.3389/fgene.2022.864100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/22/2022] [Indexed: 12/27/2022] Open
Abstract
Background: Intervertebral disc degeneration (IDD), characterized by diverse pathological changes, causes low back pain (LBP). However, prophylactic and delaying treatments for IDD are limited. The aim of our study was to investigate the gene network and biomarkers of IDD and suggest potential therapeutic targets. Methods: Differentially expressed genes (DEGs) associated with IDD were identified by analyzing the mRNA, miRNA, and lncRNA expression profiles of IDD cases from the Gene Expression Omnibus (GEO). The protein–protein interaction (PPI) network, Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis as well as miRNA–lncRNA–mRNA networks were conducted. Moreover, we obtained 71 hub genes and performed a comprehensive analysis including GO, KEGG, gene set enrichment analysis (GSEA), gene set variation analysis (GSVA), Disease Ontology (DO), methylation analysis, receiver operating characteristic (ROC) curve analysis, immune infiltration analysis, and potential drug identification. We finally used qRT-PCR to verify 13 significant DEGs in normal and degenerative nucleus pulposus cells (NPCs). Results: We identified 305 DEGs closely related to IDD. The GO and KEGG analyses indicated that changes in IDD are significantly associated with enrichment of the inflammatory and immune response. GSEA analysis suggested that cell activation involved in the inflammatory immune response amide biosynthetic process was the key for the development of IDD. The GSVA suggested that DNA repair, oxidative phosphorylation, peroxisome, IL-6-JAK-STAT3 signaling, and apoptosis were crucial in the development of IDD. Among the 71 hub genes, the methylation levels of 11 genes were increased in IDD. A total of twenty genes showed a high functional similarity and diagnostic value in IDD. The result of the immune cell infiltration analysis indicated that seven genes were closely related to active natural killer cells. The most relevant targeted hub genes for potential drug or molecular compounds were MET and PIK3CD. Also, qRT-PCR results showed that ARHGAP27, C15orf39, DEPDC1, DHRSX, MGAM, SLC11A1, SMC4, and LINC00887 were significantly downregulated in degenerative NPCs; H19, LINC00685, mir-185-5p, and mir-4306 were upregulated in degenerative NPCs; and the expression level of mir-663a did not change significantly in normal and degenerative NPCs. Conclusion: Our findings may provide new insights into the functional characteristics and mechanism of IDD and aid the development of IDD therapeutics.
Collapse
Affiliation(s)
- Jianjun Li
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Cheng Yu
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Songjia Ni
- Department of Orthopaedic Trauma, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yang Duan
- Department of Spine Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
34
|
Liang B, Zhang XX, Li R, Zhu YC, Tian XJ, Gu N. Guanxin V alleviates acute myocardial infarction by restraining oxidative stress damage, apoptosis, and fibrosis through the TGF-β1 signalling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154077. [PMID: 35395567 DOI: 10.1016/j.phymed.2022.154077] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 03/08/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Oxidative stress, apoptosis, and fibrosis have important roles in acute myocardial infarction, which is the main cause of global morbidity and mortality. Guanxin V significantly ameliorates acute myocardial infarction, the underlying mechanism, however, is still unclear. PURPOSE In this study, we detected the anti-oxidative, anti-apoptotic, and anti-fibrosis effects of Guanxin V on acute myocardial infarction. METHODS We used left anterior descending coronary artery ligation to construct an acute myocardial infarction model. Cardiac function, heart weight, infarction size, and histopathology were measured. Cardiomyocytes were treated with hydrogen peroxide to build an in vitro model. Cell apoptosis, fibrosis, and reactive oxygen species-related markers were tested. We observed the mitochondrial ultrastructure through transmission electron microscopy. The levels of collagens and TGF-β1 signalling were measured. The lentiviral vector containing the full-length TGF-β1 sequence was administered to investigate the rescue role of Guanxin V. RESULTS Guanxin V significantly decreased apoptosis and inhibited oxidative stress damage and fibrosis in acute myocardial infarction. Hydrogen peroxide could stimulate cardiomyocytes to produce reactive oxygen species and Guanxin V could significantly reverse hydrogen peroxide-induced cell damage, inhibit oxidative stress damage, apoptosis, and fibrosis, and enhance mitochondrial dynamic balance. Mechanistically, Guanxin V attenuated oxidative stress damage, apoptosis, and fibrosis induced by the TGF-β1 signalling pathway activation. CONCLUSIONS Guanxin V effectively relieved apoptosis, oxidative stress damage, and fibrosis through down-regulating the TGF-β1 signalling pathway, which enhances the knowledge of the cellular and molecular mechanism of Guanxin V in treating acute myocardial infarction.
Collapse
Affiliation(s)
- Bo Liang
- Nanjing University of Chinese Medicine, Nanjing, China.
| | | | - Rui Li
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Yong-Chun Zhu
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiao-Jie Tian
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| | - Ning Gu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
35
|
Bettiol NB, Regalo SCH, Cecilio FA, Gonçalves LMN, de Vasconcelos PB, Lopes CGG, Andrade LM, Regalo IH, Siéssere S, Palinkas M. Intervertebral Disc Degeneration: Functional Analysis of Bite Force and Masseter and Temporal Muscles Thickness. Prague Med Rep 2022; 123:101-112. [PMID: 35507943 DOI: 10.14712/23362936.2022.11] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Intervertebral disc degeneration is a pathological condition associated with the intervertebral disc and is related to functional alterations in the human body. This study aimed to evaluate the maximum molar bite force and masseter and temporal muscles thickness in individuals with intervertebral disc degeneration. Thirty-two individuals were divided into two groups: those with degeneration of intervertebral discs (n=16) and those without degeneration (n=16). The maximum molar bite force (on the right and left sides) was measured using a dynamometer. Masseter and temporal muscle thickness during mandibular task rest and dental clenching in maximum voluntary contraction were analysed using ultrasound. Significant differences in the left molar bite force (p=0.04) were observed between the groups (Student's t-test, p<0.05). The intervertebral disc degeneration group had a lower maximum molar bite force. No significant differences in muscle thickness were observed between the masseter and temporal muscles in either group. However, based on clinical observations, the group with intervertebral disc degeneration presented less masseter muscle thickness and greater temporal muscle thickness in both mandibular tasks. Degenerative disease of the intervertebral discs promoted morphofunctional changes in the stomatognathic system, especially in maximum molar bite force and masticatory muscle thickness. This study provides insight into the interaction between spinal pathology and the stomatognathic system, which is important for healthcare professionals who treat patients with functional degeneration.
Collapse
Affiliation(s)
- Nicole Barbosa Bettiol
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Simone Cecilio Hallak Regalo
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil.,Department of Neuroscience and Behavioral Sciences, Faculty of Medicine of Ribeirão Preto, University of São Paulo; National Institute and Technology - Translational Medicine (INCT.TM), São Paulo, Brazil
| | - Flávia Argentato Cecilio
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | | | - Paulo Batista de Vasconcelos
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Claire Genoveze Gauch Lopes
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Lilian Mendes Andrade
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Isabela Hallak Regalo
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Selma Siéssere
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil.,Department of Neuroscience and Behavioral Sciences, Faculty of Medicine of Ribeirão Preto, University of São Paulo; National Institute and Technology - Translational Medicine (INCT.TM), São Paulo, Brazil
| | - Marcelo Palinkas
- Department of Basic and Oral Biology, School of Dentistry of Ribeirão Preto, University of São Paulo, São Paulo, Brazil. .,Department of Neuroscience and Behavioral Sciences, Faculty of Medicine of Ribeirão Preto, University of São Paulo; National Institute and Technology - Translational Medicine (INCT.TM), São Paulo, Brazil.
| |
Collapse
|
36
|
Zhang C, Peng X, Wang F, Xie Z, Chen L, Wu X. Update on the Correlation Between Mitochondrial Dysfunction and Intervertebral Disk Degeneration. DNA Cell Biol 2022; 41:257-261. [PMID: 35235409 DOI: 10.1089/dna.2021.1012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Low back pain (LBP) is a common disorder in orthopedic outpatients, affecting people of all ages, and some patients may develop chronic LBP. As a complex organelle, mitochondria are not only energy workstations but also regulate cell senescence, apoptosis, and homeostasis. Mitochondrial dysfunction promotes disk degeneration by affecting a variety of pathophysiological processes, including oxidative stress, mitophagy, mitochondrial homeostasis, cellular senescence, and cell death. We review the molecular mechanisms underlying the relationship between mitochondrial dysfunction and intervertebral disk degeneration (IDD) to provide a theoretical basis for IDD treatment using pharmacological or tissue-engineering approaches.
Collapse
Affiliation(s)
- Cong Zhang
- Department of Spine Surgery, School of Medicine, Southeast University, Zhongda Hospital, Nanjing, China.,Surgery Research Center, School of Medicine, Southeast University, Nanjing, China
| | - Xin Peng
- Department of Spine Surgery, School of Medicine, Southeast University, Zhongda Hospital, Nanjing, China.,Surgery Research Center, School of Medicine, Southeast University, Nanjing, China
| | - Feng Wang
- Department of Spine Surgery, School of Medicine, Southeast University, Zhongda Hospital, Nanjing, China
| | - Zhiyang Xie
- Department of Spine Surgery, School of Medicine, Southeast University, Zhongda Hospital, Nanjing, China
| | - Lu Chen
- Department of Spine Surgery, School of Medicine, Southeast University, Zhongda Hospital, Nanjing, China
| | - Xiaotao Wu
- Department of Spine Surgery, School of Medicine, Southeast University, Zhongda Hospital, Nanjing, China.,Surgery Research Center, School of Medicine, Southeast University, Nanjing, China
| |
Collapse
|
37
|
Zhu YC, Liang B, Gu N. Cellular and Molecular Mechanism of Traditional Chinese Medicine on Ventricular Remodeling. Front Cardiovasc Med 2021; 8:753095. [PMID: 34926607 PMCID: PMC8671630 DOI: 10.3389/fcvm.2021.753095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/25/2021] [Indexed: 12/24/2022] Open
Abstract
Ventricular remodeling is related to the renin-angiotensin-aldosterone system, immune system, and various cytokines involved in inflammation, apoptosis, and cell signal regulation. Accumulated studies have shown that traditional Chinese medicine can significantly inhibit the process of ventricular remodeling, which may be related to the mechanism mentioned above. Here, we conducted a system overview to critically review the cellular and molecular mechanism of traditional Chinese medicine on ventricular remodeling. We mainly searched PubMed for basic research about the anti-ventricular remodeling of traditional Chinese medicine in 5 recent years, and then objectively summarized these researches. We included more than 25 kinds of Chinese herbal medicines including Qi-Li-Qian-Xin, Qi-Shen-Yi-Qi Pill, Xin-Ji-Er-Kang Formula, and Yi-Qi-Wen-Yang Decoction, and found that they can inhibit ventricular remodeling effectively through multi-components and multi-action targets, which are promoting the clinical application of traditional Chinese medicine.
Collapse
Affiliation(s)
- Yong-Chun Zhu
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Bo Liang
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Ning Gu
- Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
38
|
Li C, Bai Q, Lai Y, Tian J, Li J, Sun X, Zhao Y. Advances and Prospects in Biomaterials for Intervertebral Disk Regeneration. Front Bioeng Biotechnol 2021; 9:766087. [PMID: 34746112 PMCID: PMC8569141 DOI: 10.3389/fbioe.2021.766087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Low-back and neck-shoulder pains caused by intervertebral disk degeneration are highly prevalent among middle-aged and elderly people globally. The main therapy method for intervertebral disk degeneration is surgical intervention, including interbody fusion, disk replacement, and diskectomy. However, the stress changes caused by traditional fusion surgery are prone to degeneration of adjacent segments, while non-fusion surgery has problems, such as ossification of artificial intervertebral disks. To overcome these drawbacks, biomaterials that could endogenously regenerate the intervertebral disk and restore the biomechanical function of the intervertebral disk is imperative. Intervertebral disk is a fibrocartilaginous tissue, primarily comprising nucleus pulposus and annulus fibrosus. Nucleus pulposus (NP) contains high water and proteoglycan, and its main function is absorbing compressive forces and dispersing loads from physical activities to other body parts. Annulus fibrosus (AF) is a multilamellar structure that encloses the NP, comprises water and collagen, and supports compressive and shear stress during complex motion. Therefore, different biomaterials and tissue engineering strategies are required for the functional recovery of NP and AF based on their structures and function. Recently, great progress has been achieved on biomaterials for NP and AF made of functional polymers, such as chitosan, collagen, polylactic acid, and polycaprolactone. However, scaffolds regenerating intervertebral disk remain unexplored. Hence, several tissue engineering strategies based on cell transplantation and growth factors have been extensively researched. In this review, we summarized the functional polymers and tissue engineering strategies of NP and AF to endogenously regenerate degenerative intervertebral disk. The perspective and challenges of tissue engineering strategies using functional polymers, cell transplantation, and growth factor for generating degenerative intervertebral disks were also discussed.
Collapse
Affiliation(s)
- Chunxu Li
- Department of Orthopaedics, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Qiushi Bai
- Department of Orthopaedics, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yuxiao Lai
- Centre for Translational Medicine Research and Development, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jingjing Tian
- Medical Science Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Jiahao Li
- Department of Orthopaedics, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaodan Sun
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Yu Zhao
- Department of Orthopaedics, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
39
|
An energetics perspective on geroscience: mitochondrial protonmotive force and aging. GeroScience 2021; 43:1591-1604. [PMID: 33864592 DOI: 10.1007/s11357-021-00365-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
Mitochondria are organelles that provide energy to cells through ATP production. Mitochondrial dysfunction has long been postulated to mediate cellular declines that drive biological aging. Many well-characterized hallmarks of aging may involve underlying energetic defects that stem from loss of mitochondrial function with age. Why and how mitochondrial function declines with age is an open question and one that has been difficult to answer. Mitochondria are powered by an electrochemical gradient across the inner mitochondrial membrane known as the protonmotive force (PMF). This gradient decreases with age in several experimental models. However, it is unclear if a diminished PMF is a cause or a consequence of aging. Herein, we briefly review and define mitochondrial function, we summarize how PMF changes with age in several models, and we highlight recent studies that implicate PMF in aging biology. We also identify barriers that must be addressed for the field to progress. Emerging technology permits more precise in vivo study of mitochondria that will allow better understanding of cause and effect in metabolic models of aging. Once cause and effect can be discerned more precisely, energetics approaches to combat aging may be developed to prevent or reverse functional decline.
Collapse
|