1
|
Biancani B, Carosi M, Capasso M, Rossi G, Tafuri S, Ciani F, Cotignoli C, Zinno F, Venturelli E, Galliani M, Spani F. Assessment of Oxidative Stress and Biometric Data in a Captive Colony of Hamadryas Baboons ( Papio hamadryas Linnaeus, 1758) at the Ravenna Zoo Safari (Italy). Vet Sci 2025; 12:466. [PMID: 40431559 DOI: 10.3390/vetsci12050466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2025] [Revised: 05/09/2025] [Accepted: 05/10/2025] [Indexed: 05/29/2025] Open
Abstract
This study evaluates the health of a captive colony of Hamadryas baboons at Ravenna Zoo Safari (Italy), focusing on oxidative stress markers and biometric data. Forty-eight individuals were assessed during routine veterinary procedures: males underwent vasectomy, and females were checked for pregnancy. Biometric data collected included body weight, body length, and genital measurements in males, while females were evaluated for reproductive status. Oxidative stress was measured using two tests that assess both harmful pro-oxidant levels and the body's antioxidant defenses. Results showed no significant differences in oxidative stress levels between sexes, although males and females differed in body weight. Pregnant and postpartum females exhibited higher oxidative stress, likely due to the metabolic and hormonal demands of reproduction. This supports the idea that reproductive activity increases the production of reactive oxygen species, requiring stronger antioxidant responses. In males, correlations between body weight and genital measurements suggest these could help estimate age in the absence of birth records. No link was found between oxidative stress and body weight, indicating limited age-related effects on these markers. Overall, the study highlights the importance of monitoring oxidative stress in captive primates to better understand the effects of reproduction and aging, and to improve welfare and management practices.
Collapse
Affiliation(s)
- Barbara Biancani
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80138 Napoli, Italy
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
| | - Monica Carosi
- Department of Science, Roma Tre University, 00146 Rome, Italy
| | - Michele Capasso
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80138 Napoli, Italy
| | - Giacomo Rossi
- School of Biosciences and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
| | - Simona Tafuri
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80138 Napoli, Italy
| | - Francesca Ciani
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80138 Napoli, Italy
| | | | - Francesco Zinno
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80138 Napoli, Italy
| | | | | | - Federica Spani
- Department of Science and Technology for Sustainable Development and One Health, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| |
Collapse
|
2
|
Adekunbi DA, Huber HF, Li C, Nathanielsz PW, Cox LA, Salmon AB. Differential mitochondrial bioenergetics and cellular resilience in astrocytes, hepatocytes, and fibroblasts from aging baboons. GeroScience 2024; 46:4443-4459. [PMID: 38607532 PMCID: PMC11335705 DOI: 10.1007/s11357-024-01155-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024] Open
Abstract
Biological resilience, broadly defined as the ability to recover from an acute challenge and return to homeostasis, is of growing importance to the biology of aging. At the cellular level, there is variability across tissue types in resilience and these differences are likely to contribute to tissue aging rate disparities. However, there are challenges in addressing these cell-type differences at regional, tissue, and subject level. To address this question, we established primary cells from aged male and female baboons between 13.3 and 17.8 years spanning across different tissues, tissue regions, and cell types including (1) fibroblasts from skin and from the heart separated into the left ventricle (LV), right ventricle (RV), left atrium (LA), and right atrium (RA); (2) astrocytes from the prefrontal cortex and hippocampus; and (3) hepatocytes. Primary cells were characterized by their cell surface markers and their cellular respiration was assessed with Seahorse XFe96. Cellular resilience was assessed by modifying a live-cell imaging approach; we previously reported that monitors proliferation of dividing cells following response and recovery to oxidative (50 µM-H2O2), metabolic (1 mM-glucose), and proteostasis (0.1 µM-thapsigargin) stress. We noted significant differences even among similar cell types that are dependent on tissue source and the diversity in cellular response is stressor-specific. For example, astrocytes had a higher oxygen consumption rate and exhibited greater resilience to oxidative stress (OS) than both fibroblasts and hepatocytes. RV and RA fibroblasts were less resilient to OS compared with LV and LA, respectively. Skin fibroblasts were less impacted by proteostasis stress compared to astrocytes and cardiac fibroblasts. Future studies will test the functional relationship of these outcomes to the age and developmental status of donors as potential predictive markers.
Collapse
Affiliation(s)
- Daniel A Adekunbi
- Department of Molecular Medicine and Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA
| | - Hillary F Huber
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Cun Li
- Department of Animal Science, Texas Pregnancy and Life-Course Health Research Center, University of Wyoming, Laramie, WY, USA
| | - Peter W Nathanielsz
- Department of Animal Science, Texas Pregnancy and Life-Course Health Research Center, University of Wyoming, Laramie, WY, USA
| | - Laura A Cox
- Center for Precision Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Adam B Salmon
- Department of Molecular Medicine and Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA.
- Geriatric Research Education and Clinical Center, Audie L. Murphy Hospital, Southwest Veterans Health Care System, San Antonio, TX, USA.
| |
Collapse
|
3
|
Huber HF, Li C, Xie D, Gerow KG, Register TC, Shively CA, Cox LA, Nathanielsz PW. Female baboon adrenal zona fasciculata and zona reticularis regulatory and functional proteins decrease across the life course. GeroScience 2024; 46:3405-3417. [PMID: 38311700 PMCID: PMC11009170 DOI: 10.1007/s11357-024-01080-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/09/2024] [Indexed: 02/06/2024] Open
Abstract
Debate exists on life-course adrenocortical zonal function trajectories. Rapid, phasic blood steroid concentration changes, such as circadian rhythms and acute stress responses, complicate quantification. To avoid pitfalls and account for life-stage changes in adrenocortical activity indices, we quantified zonae fasciculata (ZF) and reticularis (ZR) across the life-course, by immunohistochemistry of key regulatory and functional proteins. In 28 female baboon adrenals (7.5-22.1 years), we quantified 12 key proteins involved in cell metabolism, division, proliferation, steroidogenesis (including steroid acute regulatory protein, StAR), oxidative stress, and glucocorticoid and mitochondrial function. Life-course abundance of ten ZF proteins decreased with age. Cell cycle inhibitor and oxidative stress markers increased. Seven of the 12 proteins changed in the same direction for ZR and ZF. Importantly, ZF StAR decreased, while ZR StAR was unchanged. Findings indicate ZF function decreased, and less markedly ZR function, with age. Causes and aging consequences of these changes remain to be determined.
Collapse
Affiliation(s)
- Hillary Fries Huber
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 W. Military, San Antonio, TX, 78227, USA.
| | - Cun Li
- Texas Pregnancy & Life-Course Health Research Center, Animal Science, University of Wyoming, Laramie, WY, USA
| | - Dongbin Xie
- Texas Pregnancy & Life-Course Health Research Center, Animal Science, University of Wyoming, Laramie, WY, USA
| | | | - Thomas C Register
- Pathology-Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Carol A Shively
- Pathology-Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Laura A Cox
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 W. Military, San Antonio, TX, 78227, USA
- Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Peter W Nathanielsz
- Southwest National Primate Research Center, Texas Biomedical Research Institute, 8715 W. Military, San Antonio, TX, 78227, USA
- Texas Pregnancy & Life-Course Health Research Center, Animal Science, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
4
|
Adekunbi DA, Huber HF, Li C, Nathanielsz PW, Cox LA, Salmon AB. Differential mitochondrial bioenergetics and cellular resilience in astrocytes, hepatocytes, and fibroblasts from aging baboons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579010. [PMID: 38370705 PMCID: PMC10871288 DOI: 10.1101/2024.02.06.579010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Biological resilience, broadly defined as ability to recover from acute challenge and return to homeostasis, is of growing importance to the biology of aging. At the cellular level, there is variability across tissue types in resilience and these differences likely to contribute to tissue aging rate disparities. However, there are challenges in addressing these cell-type differences at regional, tissue and subject level. To address this question, we established primary cells from aged male and female baboons between 13.3-17.8 years spanning across different tissues, tissue regions, and cell types including: (1) fibroblasts from skin and from heart separated into left ventricle (LV), right ventricle (RV), left atrium (LA) and right atrium (RA), (2) astrocytes from the prefrontal cortex and hippocampus and (3) hepatocytes. Primary cells were characterized by their cell surface markers and their cellular respiration assessed with Seahorse XFe96. Cellular resilience was assessed by modifying a live-cell imaging approach we previously reported that monitors proliferation of dividing cells following response and recovery to oxidative (50µM-H2O2), metabolic (1mM-glucose) and proteostasis (0.1µM-thapsigargin) stress. We noted significant differences even among similar cell types that are dependent on tissue source and the diversity in cellular response is stressor specific. For example, astrocytes were more energetic and exhibited greater resilience to oxidative stress (OS) than both fibroblasts and hepatocytes. RV and RA fibroblasts were less resilient to OS compared with LV and LA respectively. Skin fibroblasts were less impacted by proteostasis stress compared to astrocytes and cardiac fibroblasts. Future studies will test the functional relationship of these outcomes to age and developmental status of donors as potential predictive markers.
Collapse
Affiliation(s)
- Daniel A Adekunbi
- Department of Molecular Medicine and Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Hillary F Huber
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Cun Li
- Texas Pregnancy and Life-course Health Research Center, Department of Animal Science, University of Wyoming, Laramie, Wyoming, USA
| | - Peter W Nathanielsz
- Texas Pregnancy and Life-course Health Research Center, Department of Animal Science, University of Wyoming, Laramie, Wyoming, USA
| | - Laura A Cox
- Center for Precision Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Adam B Salmon
- Department of Molecular Medicine and Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- Geriatric Research Education and Clinical Center, Audie L. Murphy Hospital, Southwest Veterans Health Care System, San Antonio, Texas, USA
| |
Collapse
|
5
|
Zambrano E, Reyes-Castro LA, Rodríguez-González GL, Chavira R, Lomas-Soria C, Gerow KG, Nathanielsz PW. Developmental Programming-Aging Interactions Have Sex-Specific and Developmental Stage of Exposure Outcomes on Life Course Circulating Corticosterone and Dehydroepiandrosterone (DHEA) Concentrations in Rats Exposed to Maternal Protein-Restricted Diets. Nutrients 2023; 15:nu15051239. [PMID: 36904238 PMCID: PMC10005360 DOI: 10.3390/nu15051239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/05/2023] Open
Abstract
The steroids corticosterone and dehydroepiandrosterone (DHEA) perform multiple life course functions. Rodent life-course circulating corticosterone and DHEA trajectories are unknown. We studied life course basal corticosterone and DHEA in offspring of rats fed protein-restricted (10% protein, R) or control (20% protein, C), pregnancy diet first letter, and/or lactation second letter, producing four offspring groups-CC, RR, CR, and RC. We hypothesize that 1. maternal diet programs are sexually dimorphic, offspring life course steroid concentrations, and 2. an aging-related steroid will fall. Both changes differ with the plastic developmental period offspring experienced R, fetal life or postnatally, pre-weaning. Corticosterone was measured by radioimmunoassay and DHEA by ELISA. Steroid trajectories were evaluated by quadratic analysis. Female corticosterone was higher than male in all groups. Male and female corticosterone were highest in RR, peaked at 450 days, and fell thereafter. DHEA declined with aging in all-male groups. DHEA: corticosterone fell in three male groups but increased in all-female groups with age. In conclusion, life course and sexually dimorphic steroid developmental programming-aging interactions may explain differences in steroid studies at different life stages and between colonies experiencing different early-life programming. These data support our hypotheses of sex and programming influences and aging-related fall in rat life course serum steroids. Life course studies should address developmental programming-aging interactions.
Collapse
Affiliation(s)
- Elena Zambrano
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Luis A. Reyes-Castro
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Guadalupe L. Rodríguez-González
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Roberto Chavira
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
| | - Consuelo Lomas-Soria
- Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico
- CONACyT-Cátedras, Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición SZ, Mexico City 14080, Mexico
| | - Kenneth G. Gerow
- Department of Statistics, University of Wyoming, Laramie, WY 82071, USA
| | - Peter W. Nathanielsz
- Wyoming Center for Pregnancy and Life Course Health Research, Department of Animal Science, University of Wyoming, Laramie, WY 82071, USA
- Correspondence:
| |
Collapse
|
6
|
Adekunbi DA, Nathanielsz PW, Salmon AB. Cellular resilience and baboon aging. Aging (Albany NY) 2021; 13:24482-24484. [PMID: 34845113 PMCID: PMC8660624 DOI: 10.18632/aging.203728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 11/26/2021] [Indexed: 11/25/2022]
Affiliation(s)
- Daniel A. Adekunbi
- Texas Pregnancy and Life-Course Health Research Center, Department of Animal Science, University of Wyoming, Laramie, WY 82071, USA
| | - Peter W. Nathanielsz
- Texas Pregnancy and Life-Course Health Research Center, Department of Animal Science, University of Wyoming, Laramie, WY 82071, USA
| | - Adam B. Salmon
- Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|