1
|
Fekete M, Lehoczki A, Szappanos Á, Zábó V, Kaposvári C, Horváth A, Farkas Á, Fazekas-Pongor V, Major D, Lipécz Á, Csípő T, Varga JT. Vitamin D and Colorectal Cancer Prevention: Immunological Mechanisms, Inflammatory Pathways, and Nutritional Implications. Nutrients 2025; 17:1351. [PMID: 40284214 PMCID: PMC12029991 DOI: 10.3390/nu17081351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025] Open
Abstract
Vitamin D plays a crucial role in the regulation of the immune system, with immunomodulatory effects that are key in the prevention of colorectal cancer (CRC). Over the past decades, research has shown that this steroid hormone impacts much more than bone health, significantly influencing immune responses. Vitamin D enhances immune organ functions such as the spleen and lymph nodes, and boosts T-cell activity, which is essential in defending the body against tumors. Additionally, vitamin D mitigates inflammatory responses closely linked to cancer development, reducing the inflammation that contributes to CRC. It acts via vitamin D receptors (VDRs) expressed on immune cells, modulating immune responses. Adequate vitamin D levels influence gene expression related to inflammation and cell proliferation, inhibiting tumor development. Vitamin D also activates mechanisms that suppress cancer cell survival, proliferation, migration, and metastasis. Low levels of vitamin D have been associated with an increased risk of CRC, with deficiency correlating with higher disease incidence. Lifestyle factors, such as a diet high in red meat and calories but low in fiber, fruits, and vegetables, as well as physical inactivity, contribute significantly to CRC risk. Insufficient calcium and vitamin D intake are also linked to disease occurrence and poorer clinical outcomes. Maintaining optimal vitamin D levels and adequate dietary intake is crucial in preventing CRC and improving patient prognosis. This review explores the role of vitamin D in immune regulation and summarizes findings from randomized clinical trials assessing the effects of vitamin D supplementation on CRC outcomes.
Collapse
Affiliation(s)
- Mónika Fekete
- Institute of Preventive Medicine and Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (A.L.); (C.K.); (V.F.-P.); (D.M.); (Á.L.); (T.C.)
| | - Andrea Lehoczki
- Institute of Preventive Medicine and Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (A.L.); (C.K.); (V.F.-P.); (D.M.); (Á.L.); (T.C.)
- Health Sciences Division, Doctoral College, Semmelweis University, 1085 Budapest, Hungary;
| | - Ágnes Szappanos
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary;
- Department of Rheumatology and Clinical Immunology, Semmelweis University, 1023 Budapest, Hungary
| | - Virág Zábó
- Health Sciences Division, Doctoral College, Semmelweis University, 1085 Budapest, Hungary;
- Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary;
| | - Csilla Kaposvári
- Institute of Preventive Medicine and Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (A.L.); (C.K.); (V.F.-P.); (D.M.); (Á.L.); (T.C.)
| | - Alpár Horváth
- Pulmonology Center of the Reformed Church in Hungary, 2045 Törökbálint, Hungary;
| | - Árpád Farkas
- HUN-REN Centre for Energy Research, 1121 Budapest, Hungary;
| | - Vince Fazekas-Pongor
- Institute of Preventive Medicine and Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (A.L.); (C.K.); (V.F.-P.); (D.M.); (Á.L.); (T.C.)
| | - Dávid Major
- Institute of Preventive Medicine and Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (A.L.); (C.K.); (V.F.-P.); (D.M.); (Á.L.); (T.C.)
| | - Ágnes Lipécz
- Institute of Preventive Medicine and Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (A.L.); (C.K.); (V.F.-P.); (D.M.); (Á.L.); (T.C.)
| | - Tamás Csípő
- Institute of Preventive Medicine and Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (A.L.); (C.K.); (V.F.-P.); (D.M.); (Á.L.); (T.C.)
| | - János Tamás Varga
- Department of Pulmonology, Semmelweis University, 1083 Budapest, Hungary
| |
Collapse
|
2
|
Simbirtseva KY, O'Toole PW. Healthy and Unhealthy Aging and the Human Microbiome. Annu Rev Med 2025; 76:115-127. [PMID: 39531852 DOI: 10.1146/annurev-med-042423-042542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
An altered gut microbiome is a feature of many multifactorial diseases, and microbiome effects on host metabolism, immune function, and possibly neurological function are implicated. Increased biological age is accompanied by a change in the gut microbiome. However, age-related health loss does not occur uniformly across all subjects but rather depends on differential loss of gut commensals and gain of pathobionts. In this article, we summarize the known and possible effects of the gut microbiome on the hallmarks of aging and describe the most plausible mechanisms. Understanding and targeting these factors could lead to prolonging health span by rationally maintaining the gut microbiome.
Collapse
Affiliation(s)
- Kseniya Y Simbirtseva
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland;
| | - Paul W O'Toole
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland;
| |
Collapse
|
3
|
Mikó E, Sipos A, Tóth E, Lehoczki A, Fekete M, Sebő É, Kardos G, Bai P. Guideline for designing microbiome studies in neoplastic diseases. GeroScience 2024; 46:4037-4057. [PMID: 38922379 PMCID: PMC11336004 DOI: 10.1007/s11357-024-01255-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 06/12/2024] [Indexed: 06/27/2024] Open
Abstract
Oncobiosis has emerged as a key contributor to the development, and modulator of the treatment efficacy of cancer. Hereby, we review the modalities through which the oncobiome can support the progression of tumors, and the emerging therapeutic opportunities they present. The review highlights the inherent challenges and limitations faced in sampling and accurately characterizing oncobiome. Additionally, the review underscores the critical need for the standardization of microbial analysis techniques and the consistent reporting of microbiome data. We provide a suggested metadata set that should accompany microbiome datasets from oncological settings so that studies remain comparable and decipherable.
Collapse
Affiliation(s)
- Edit Mikó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem Tér 1., 4032, Debrecen, Hungary
| | - Adrienn Sipos
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem Tér 1., 4032, Debrecen, Hungary
| | - Emese Tóth
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem Tér 1., 4032, Debrecen, Hungary
- HUN-REN-DE Cell Biology and Signaling Research Group, 4032, Debrecen, Hungary
| | - Andrea Lehoczki
- Department of Hematology and Stem Cell Transplantation, South Pest Central Hospital-National Institute for Hematology and Infectious Diseases, Budapest, Hungary
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Monika Fekete
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Éva Sebő
- Breast Center, Kenézy Gyula Hospital, University of Debrecen, 4032, Debrecen, Hungary
| | - Gábor Kardos
- Department of Metagenomics, University of Debrecen, 4032, Debrecen, Hungary
- Faculty of Health Sciences, One Health Institute, University of Debrecen, 4032, Debrecen, Hungary
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Egyetem Tér 1., 4032, Debrecen, Hungary.
- HUN-REN-DE Cell Biology and Signaling Research Group, 4032, Debrecen, Hungary.
- MTA-DE Lendület Laboratory of Cellular Metabolism, 4032, Debrecen, Hungary.
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary.
- Center of Excellence, The Hungarian Academy of Sciences, Budapest, Hungary.
| |
Collapse
|
4
|
O'Toole PW. Ageing, microbes and health. Microb Biotechnol 2024; 17:e14477. [PMID: 38801344 PMCID: PMC11129672 DOI: 10.1111/1751-7915.14477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
The human gut microbiome is a modifier of the risk for many non-communicable diseases throughout the lifespan. In ageing, the effect of the microbiome appears to be more pronounced because of the lower physiological reserve. Microbial metabolites and other bioactive products act upon some of the key physiological processes involved in the Hallmarks of Ageing. Dietary interventions that delay age-related change in the microbiome have also led to delayed onset of ageing-related health loss, and improved levels of cognitive function, inflammatory status and frailty. Cross-sectional analysis of thousands of gut microbiome datasets from around the world has identified key taxa that are depleted during accelerated health loss, and other taxa that become more abundant, but these signatures differ in some geographical regions. The key challenges for research in this area are to experimentally prove that particular species or strains directly contribute to health-related ageing outcomes, and to develop practical ways of retaining or re-administering them on a population basis. The promotion of a health-associated gut microbiome in ageing mirrors the challenge of maintaining planetary microbial ecosystems in the face of anthropogenic effects and climate change. Lessons learned from acting at the individual level can inform microbiome-targeting strategies for achieving Sustainable Development Goals at a global level.
Collapse
Affiliation(s)
- Paul W. O'Toole
- School of MicrobiologyUniversity College CorkCorkIreland
- APC Microbiome IrelandUniversity College CorkCorkIreland
| |
Collapse
|
5
|
Fekete M, Lehoczki A, Major D, Fazekas-Pongor V, Csípő T, Tarantini S, Csizmadia Z, Varga JT. Exploring the Influence of Gut-Brain Axis Modulation on Cognitive Health: A Comprehensive Review of Prebiotics, Probiotics, and Symbiotics. Nutrients 2024; 16:789. [PMID: 38542700 PMCID: PMC10975805 DOI: 10.3390/nu16060789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 04/01/2024] Open
Abstract
Recent research exploring the relationship between the gut and the brain suggests that the condition of the gut microbiota can influence cognitive health. A well-balanced gut microbiota may help reduce inflammation, which is linked to neurodegenerative conditions. Prebiotics, probiotics, and symbiotics are nutritional supplements and functional food components associated with gastrointestinal well-being. The bidirectional communication of the gut-brain axis is essential for maintaining homeostasis, with pre-, pro-, and symbiotics potentially affecting various cognitive functions such as attention, perception, and memory. Numerous studies have consistently shown that incorporating pre-, pro-, and symbiotics into a healthy diet can lead to improvements in cognitive functions and mood. Maintaining a healthy gut microbiota can support optimal cognitive function, which is crucial for disease prevention in our fast-paced, Westernized society. Our results indicate cognitive benefits in healthy older individuals with probiotic supplementation but not in healthy older individuals who have good and adequate levels of physical activity. Additionally, it appears that there are cognitive benefits in patients with mild cognitive impairment and Alzheimer's disease, while mixed results seem to arise in younger and healthier individuals. However, it is important to acknowledge that individual responses may vary, and the use of these dietary supplements should be tailored to each individual's unique health circumstances and needs.
Collapse
Affiliation(s)
- Mónika Fekete
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (A.L.); (D.M.); (V.F.-P.); (T.C.); (S.T.)
| | - Andrea Lehoczki
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (A.L.); (D.M.); (V.F.-P.); (T.C.); (S.T.)
- National Institute for Haematology and Infectious Diseases, Department of Haematology and Stem Cell Transplantation, South Pest Central Hospital, 1097 Budapest, Hungary
| | - Dávid Major
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (A.L.); (D.M.); (V.F.-P.); (T.C.); (S.T.)
| | - Vince Fazekas-Pongor
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (A.L.); (D.M.); (V.F.-P.); (T.C.); (S.T.)
| | - Tamás Csípő
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (A.L.); (D.M.); (V.F.-P.); (T.C.); (S.T.)
| | - Stefano Tarantini
- Department of Public Health, Faculty of Medicine, Semmelweis University, 1089 Budapest, Hungary; (M.F.); (A.L.); (D.M.); (V.F.-P.); (T.C.); (S.T.)
- Department of Neurosurgery, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Health Promotion Sciences, College of Public Health, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA
- Peggy and Charles Stephenson Oklahoma Cancer Center, Oklahoma City, OK 73104, USA
| | - Zoltán Csizmadia
- Faculty of Health Sciences, University of Pécs, 7621 Pécs, Hungary;
| | - János Tamás Varga
- Department of Pulmonology, Semmelweis University, 1083 Budapest, Hungary
| |
Collapse
|