1
|
Ebrahimi S, Alalikhan A, Aghaee-Bakhtiari SH, Hashemy SI. The redox modulatory effects of SP/NK1R system: Implications for oxidative stress-associated disorders. Life Sci 2022; 296:120448. [PMID: 35247438 DOI: 10.1016/j.lfs.2022.120448] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/04/2022] [Accepted: 02/26/2022] [Indexed: 02/08/2023]
Abstract
Oxidative stress which refers to redox imbalance with increased generation of reactive oxygen species (ROS) has been associated with the pathophysiology of diverse disease conditions. Recently, a close, yet not fully understood, relation between oxidative stress and neuropeptides, in particular, substance P (SP), has been reported in certain conditions. SP has been shown to affect the cellular redox environment through activation of neurokinin-1receptor (NK1R). It seems that SP/NK1R system and oxidative stress can act either synergistically or antagonistically in a context-dependent manner, thereby, influencing the pathology of various clinical disorders either destructively or protectively. Importantly, the interactions between oxidative stress and SP/NK1R system can be pharmacologically targeted. Therefore, a better understanding of the redox modulatory properties of SP/NK1R signaling will pave the way for identifying new therapeutic possibilities for attenuating oxidative stress-mediated damage. Towards this end, we performed a comprehensive search through PubMed/Medline and Scopus databases and discussed all related existing literature regarding the interplay between oxidative stress and SP/NK1R system as well as their implication in various clinical disorders, to provide a clear view and hence better management of oxidative damage.
Collapse
Affiliation(s)
- Safieh Ebrahimi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Alalikhan
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Hamid Aghaee-Bakhtiari
- Bioinformatics Research Group, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Wang M, Zhong D, Dong P, Song Y. Blocking CXCR1/2 contributes to amelioration of lipopolysaccharide-induced sepsis by downregulating substance P. J Cell Biochem 2019; 120:2007-2014. [PMID: 30160797 DOI: 10.1002/jcb.27507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 07/25/2018] [Indexed: 01/24/2023]
Abstract
OBJECTIVES C-X-C chemokine receptor types 1/2 (CXCR1/2) is known to be activated in liver damage in acute-on-chronic liver failure; however, the role in lipopolysaccharide (LPS)-induced sepsis is unknown. The current study was designed to determine whether or not CXCR1/2 blockade with reparixin ameliorates acute lung injury (ALI) by affecting neuropeptides in a LPS-induced sepsis mouse model. MATERIALS AND METHODS Male C57BL/6 mice (10 to 14-week old) were divided into sham, LPS, sham-R, and LPS-R groups. Bronchoalveolar lavage fluid (BALF) was collected and evaluated. The lung histopathology was assessed by immunocytochemistry staining. Western blot analysis was used to measure myeloperoxidase, substance P (SP), and vasoactive intestinal peptide. RESULTS LPS-induced animal models were ameliorated by cotreatment with a CXCR1/2 antagonist. Moreover, the protective effects of CXCR1/2 antagonists were attributed to the increased secretion of pro-opiomelanocortin and decreased the secretion of SP. Reparixin decreased the expression of necroptosis cell death markers induced by LPS. CONCLUSION The results of this study indicate that blockade of CXCR1/2 may represent a promising therapeutic strategy for the treatment of sepsis-associated ALI through regulation of neuropeptides and necroptosis.
Collapse
Affiliation(s)
- Miaoshu Wang
- Department of Medical Intensive Care Unit, The First People's Hospital of Wenling, Taizhou, China
| | - Danfeng Zhong
- Department of Medical Intensive Care Unit, The First People's Hospital of Wenling, Taizhou, China
| | - Ping Dong
- Department of Medical Intensive Care Unit, The First People's Hospital of Wenling, Taizhou, China
| | - Yukang Song
- Department of Medical Intensive Care Unit, The First People's Hospital of Wenling, Taizhou, China
| |
Collapse
|
3
|
Tsai WH, Wu CH, Yu HJ, Chien CT. l-Theanine inhibits proinflammatory PKC/ERK/ICAM-1/IL-33 signaling, apoptosis, and autophagy formation in substance P-induced hyperactive bladder in rats. Neurourol Urodyn 2016; 36:297-307. [PMID: 26828717 DOI: 10.1002/nau.22965] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/15/2016] [Indexed: 12/13/2022]
Abstract
AIMS Upregulation of substance P (SP) and neurokinin-1 receptor (NK1R) activation induces pro-inflammatory bladder hyperactivity through the PKC/ERK/NF-κB/ICAM-1/IL-33 signaling pathways to increase the leukocyte infiltration and adhesion leading to reactive oxygen species (ROS) production, autophagy, and apoptosis. l-Theanine is a unique non-protein-forming amino acid present in tea (Camellia sinensis [L.] O. Kuntze) with its antioxidant, anti-inflammatory, and relaxation effects to improve cognition, mood, gastric ulcer injury, and cerebral ischemia/reperfusion injury, and posttraumatic stress disorder. We explored the protective effect of l-theanine on SP-induced bladder hyperactivity. METHODS In urethane-anesthetized female Wistar rats, we explored the transcystometrogram, pelvic nerve activity, proinflammatory PKC/ERK/NF-κB/ICAM-1/IL-33 signaling, apoptosis-related Caspase 3/poly-(ADP-ribose)-polymerase (PARP), and autophagy-mediated LC3 II expression by Western blot, electrophoretic-mobility shift assay and immunohistochemistry, bladder ROS amount by a ultrasensitive chemiluminescence method, and possible ROS sources from the different leukocytes by specific stains in SP-evoked hyperactive bladder. RESULTS l-Theanine dose-dependently depressed H2 O2 and HOCl activity in vitro. In urethane-anesthetized female Wistar rats, intra-arterial SP through NK1R activation increased voiding frequency (shortened intercontraction intervals) associated with the increase in bladder nerve activity, proinflammatory PKC/ERK/NF-κB/ICAM-1/IL-33 signaling, Caspase 3/PARP-mediated apoptosis, LC3 II-mediated autophagy, ROS amount, neutrophils adhesion, CD68 (monocyte/macrophage) infiltration, and mast cells degranulation in the hyperactive bladder. Intragastrical l-theanine (15 mg/kg) twice daily for 2 weeks efficiently ameliorated all the enhanced parameters in the SP-treated hyperactive bladder. CONCLUSIONS In conclusion, l-theanine through antioxidant and anti-inflammatory actions ameliorates SP-induced bladder hyperactivity via the inhibition of proinflammatory PKC/ERK/NF-κB/ICAM-1/IL-33 signaling, oxidative stress, bladder nerve hyperactivity, apoptosis, and autophagy. Neurourol. Urodynam. 36:297-307, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Wen-Hsin Tsai
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan.,Department of Traditional Chinese Medicine, Taipei City Hospital Linsen (Chinese Medicine) Branch, Taipei, Taiwan
| | - Chung-Hsin Wu
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Hong-Jeng Yu
- Department of Urology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chiang-Ting Chien
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
4
|
He X, Zhao M, Bi X, Sun L, Yu X, Zhao M, Zang W. Novel strategies and underlying protective mechanisms of modulation of vagal activity in cardiovascular diseases. Br J Pharmacol 2015; 172:5489-500. [PMID: 25378088 PMCID: PMC4667861 DOI: 10.1111/bph.13010] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 10/21/2014] [Accepted: 10/31/2014] [Indexed: 01/14/2023] Open
Abstract
Cardiovascular disease remains a major cause of disability and death worldwide. Autonomic imbalance, characterized by suppressed vagal (parasympathetic) activity and increased sympathetic activity, correlates with various pathological conditions, including heart failure, arrhythmia, ischaemia/reperfusion injury and hypertension. Conventionally, pharmacological interventions, such as β-blocker treatment, have primarily targeted suppressing sympathetic over-activation, while vagal modulation has always been neglected. Emerging evidence has documented the improvement of cardiac and vascular function mediated by the vagal nerve. Many investigators have tried to explore the effective ways to enhance vagal tone and normalize the autonomic nervous system. In this review, we attempt to give an overview of these therapeutic strategies, including direct vagal activation (electrical vagal stimulation, ACh administration and ACh receptor activation), pharmacological modulation (adenosine, cholinesterase inhibitors, statins) and exercise training. This overview provides valuable information for combination therapy, contributing to establishment of a comprehensive system on vagal modulation from the aspects of clinical application and lifestyle improvement. In addition, the mechanisms contributing to the benefits of enhancing vagal tone are diverse and have not yet been fully defined. We endeavour to outline the recent findings that advance our knowledge regarding the many favourable effects exerted by vagal activation: anti-inflammatory pathways, modulation of NOS and NO signalling, regulation of redox state, improvement of mitochondrial biogenesis and function, and potential calcium regulation. This review may help to develop novel therapeutic strategies targeting enhancing vagal activity for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Xi He
- Department of PharmacologyXi'an Jiaotong University Health Science CenterXi'anChina
| | - Ming Zhao
- Department of PharmacologyXi'an Jiaotong University Health Science CenterXi'anChina
| | - Xueyuan Bi
- Department of PharmacologyXi'an Jiaotong University Health Science CenterXi'anChina
| | - Lei Sun
- Department of PharmacologyXi'an Jiaotong University Health Science CenterXi'anChina
| | - Xiaojiang Yu
- Department of PharmacologyXi'an Jiaotong University Health Science CenterXi'anChina
| | - Mei Zhao
- Department of PharmacologyXi'an Jiaotong University Health Science CenterXi'anChina
| | - Weijin Zang
- Department of PharmacologyXi'an Jiaotong University Health Science CenterXi'anChina
| |
Collapse
|
5
|
Tsai WH, Wu CH, Cheng CH, Chien CT. Ba-Wei-Di-Huang-Wan through its active ingredient loganin counteracts substance P-enhanced NF-κB/ICAM-1 signaling in rats with bladder hyperactivity. Neurourol Urodyn 2015; 35:771-9. [DOI: 10.1002/nau.22816] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 06/08/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Wen-Hsin Tsai
- Department of Life Science; National Taiwan Normal University; Taipei Taiwan
- Department of Traditional Chinese Medicine; Taipei City Hospital Linsen (Chinese Medicine) Branch; Taipei Taiwan
| | - Chung-Hsin Wu
- Department of Life Science; National Taiwan Normal University; Taipei Taiwan
| | - Chen-Hung Cheng
- Department of Traditional Chinese Medicine; Taipei City Hospital Linsen (Chinese Medicine) Branch; Taipei Taiwan
| | - Chiang-Ting Chien
- Department of Life Science; National Taiwan Normal University; Taipei Taiwan
| |
Collapse
|
6
|
He B, Zhang Y, Kang B, Xiao J, Xie B, Wang Z. Protection of oral hydrogen water as an antioxidant on pulmonary hypertension. Mol Biol Rep 2013; 40:5513-21. [PMID: 23955545 PMCID: PMC3751215 DOI: 10.1007/s11033-013-2653-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 10/04/2012] [Indexed: 11/05/2022]
Abstract
This study aimed to explore the protective effect of hydrogen as an antioxidant on monocrotaline (MCT)-induced pulmonary hypertension (PH). Forty-eight SD rats were equally randomized into four groups: SHAM group, MCT group, MCT+Oral-H2 group and MCT+Inj-H2 group. The results showed that the mean pulmonary arterial pressure, right ventricle weight and right ventricular hypertrophy index in MCT group were significant higher than those in SHAM group; pulmonary inflammatory response, atrial natriuretic factor, 3-nitrityrosine and intercellular adhesion molecule-1 were also increased significantly in MCT group. These indexes were decreased significantly in both MCT+Oral-H2 group and MCT+Inj-H2 group, which indicate Oral-H2 and Inj-H2 have similar effects of preventing the development of PH and mitigating RV hypertrophy. The protective effect of hydrogen is associated with its antioxidative ability and action of reducing pulmonary inflammatory response. While Oral-H2 is more convenient than Inj-H2, Oral-H2 may be ideal for clinical use in future.
Collapse
Affiliation(s)
- Bin He
- Department of Anesthesiology and SICU, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Kongjiang Road 1665, Shanghai, 200092, China.
| | | | | | | | | | | |
Collapse
|
7
|
Carey JL, Dunn C, Gaspari RJ. Central respiratory failure during acute organophosphate poisoning. Respir Physiol Neurobiol 2013; 189:403-10. [PMID: 23933009 DOI: 10.1016/j.resp.2013.07.022] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 07/25/2013] [Accepted: 07/26/2013] [Indexed: 01/30/2023]
Abstract
Organophosphate (OP) pesticide poisoning is a global health problem with over 250,000 deaths per year. OPs affect neuronal signaling through acetylcholine (Ach) neurotransmission via inhibition of acetylcholinesterase (AChE), leading to accumulation of Ach at the synaptic cleft and excessive stimulation at post-synaptic receptors. Mortality due to OP agents is attributed to respiratory dysfunction, including central apnea. Cholinergic circuits are integral to many aspects of the central control of respiration, however it is unclear which mechanisms predominate during acute OP intoxication. A more complete understanding of the cholinergic aspects of both respiratory control as well as neural modification of pulmonary function is needed to better understand OP-induced respiratory dysfunction. In this article, we review the physiologic mechanisms of acute OP exposure in the context of the known cholinergic contributions to the central control of respiration. We also discuss the potential central cholinergic contributions to the known peripheral physiologic effects of OP intoxication.
Collapse
Affiliation(s)
- Jennifer L Carey
- Department of Emergency Medicine, UMASS Memorial Medical Center, United States.
| | | | | |
Collapse
|
8
|
Chien CT, Lee HM, Wu CCJ, Li PC. Inhibitory effect of botulinum toxin type A on the NANC system in rat respiratory models of neurogenic inflammation. Arch Biochem Biophys 2012; 524:106-13. [PMID: 22659492 DOI: 10.1016/j.abb.2012.05.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 05/18/2012] [Accepted: 05/23/2012] [Indexed: 10/28/2022]
Abstract
This study investigated whether botulinum toxin type A (BTX-A) inhibits respiratory neurogenic inflammation in the non-adrenergic, non-cholinergic (NANC) transmitter system in rats. Neurogenic inflammation models were induced in Sprague Dawley (SD) rats through bilateral cerebral artery occlusion (BCAO) for different times (0, 30 and 60 min) or by stimulation with capsaicin at different doses (5 or 15 g/kg). Pre-Bötzinger Complex-Spikes and the expression of substance P, synaptosomal-associated protein-25 (SNAP-25), and reactive oxygen species (ROS) were detected with or without pretreatment of rats with BTX-A (15 or 30 U/kg). BCAO reduced pre-Bot C spike activity (spike/s) and increased the breath rate (breaths/s) in an unstable pattern in comparison to controls, while pretreatment with BTX-A slightly reduced this phenomenon. Pretreatment with BTX-A inhibited BCAO- or capsaicin-induced increases in expression of SNAP-25, substance P, and ROS in a dose-dependent manner in brainstem and lung tissue. BTX-A exerts a suppressive effect on neurogenic inflammation via non-adrenergic, non-cholinergic transmitters. These results add to the body of evidence elucidating the non-cholinergic effects of BTX-A in the context of neurogenic inflammation.
Collapse
Affiliation(s)
- Chiang-Ting Chien
- Department of Life Science, National Taiwan Normal University, Taipei, Taiwan, ROC
| | | | | | | |
Collapse
|
9
|
Li PC, Chen WC, Chang LC, Lin SC. Substance P acts via the neurokinin receptor 1 to elicit bronchoconstriction, oxidative stress, and upregulated ICAM-1 expression after oil smoke exposure. Am J Physiol Lung Cell Mol Physiol 2008; 294:L912-20. [PMID: 18326823 DOI: 10.1152/ajplung.00443.2007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study aimed to 1) assess whether substance P (SP) acts via neurokinin (NK)-1 and NK-2 receptors to stimulate neurogenic inflammation (indicated by formation of ICAM-1 expression and oxidative stress) following oil smoke exposure (OSE) in rats; and 2) determine if pretreatment with antioxidants ameliorates the deleterious effects of OSE. Rats were pretreated with NK-1 receptor antagonist CP-96345, NK-2 receptor antagonist SR-48968, vitamin C, or catechins. OSE was for 30-120 min. Rats were killed 0-8 h later. Total lung resistance (RL), airway smooth muscle activity (ASMA), lung ICAM-1 expression, neurogenic plasma extravasation (via India ink and Evans blue dye), bronchoalveolar lavage fluid SP concentrations, and reactive oxygen species formation [via lucigenin- and luminal-amplified chemiluminescence (CL)] were assessed. Lung histology was performed. SP concentrations increased significantly in nonpretreated rats following OSE in a dose-dependent manner. RL and total ASMA increased over time after OSE. Vitamin C and catechin pretreatments were associated with significantly reduced lucigenin CL 2 and 4 h after OSE. Pretreatment with catechins significantly reduced luminal CL counts 4 and 8 h after OSE. Evans blue levels were significantly reduced following 60 and 120 min of OSE in catechin- and CP-96345-pretreated rats. ICAM-1 protein expression was significantly decreased in all pretreatment groups after OSE. Thickening of the alveolar capillary membrane, focal hemorrhaging, interstitial pneumonitis, and peribronchiolar inflammation were apparent in OSE lungs. These findings suggest that SP acts via the NK-1 receptor to provoke neurogenic inflammation, oxidative stress, and ICAM-1 expression after OSE in rats.
Collapse
Affiliation(s)
- Ping-Chia Li
- Dept. of Occupational Therapy, I-Shou Univ., No. 8 E-Da Road, Jiau-Shu Tsuen, Yan-Chau Shiang, Kaohsiung County 824, Tainan City, Republic of China (Taiwan).
| | | | | | | |
Collapse
|
10
|
The vignette for V13N5 Issue. J Biomed Sci 2006. [DOI: 10.1007/s11373-006-9112-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
11
|
Chen WC, Shih CC, Lu WA, Li PC, Chen CJ, Hayakawa S, Shimizu K, Chien CT. Combination of Wu Lin San and Shan Zha ameliorates substance P-induced hyperactive bladder via the inhibition of neutrophil NADPH oxidase activity. Neurosci Lett 2006; 402:7-11. [PMID: 16632195 DOI: 10.1016/j.neulet.2006.03.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2006] [Revised: 02/24/2006] [Accepted: 03/16/2006] [Indexed: 12/27/2022]
Abstract
Substance P (SP) via neurokinin type 1 receptor activates leukocytes to produce burst release of reactive oxygen species (ROS) and increases leukocytes adhesion to the vessels in the inflamed bladder. Activation of neutrophil nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity may contribute to the neutrophil ROS production. We explored the therapeutic effect of traditional Chinese formula for urinary dysfunction, Wu Lin San (WLS), and a modified formula WLS plus Shan Zha (WLSSZ) on SP-induced bladder hyperactivity. We evaluated WLS, Shan Zha, and WLSSZ effect on neutrophils NADPH oxidase activity in SP-stimulated neutrophils in vitro, and isovolumetric cystometrogram and ROS activity in vivo in anesthetized rat bladder with SP stimulation. Our results showed that WLS, Shan Zha, and WLSSZ inhibited SP-induced NADPH oxidase activity in an order WLSSZ>Shan Zha>WLS. Exogenous SP enhanced systemic vasodilation, bladder hyperactivity and bladder ROS. One week of oral administration of WLS or WLSSZ significantly reduced SP-induced bladder ROS amount and leukocyte accumulation and ameliorated the hyperactive bladder response. The therapeutic action was better in WLSSZ than in WLS. Our results indicate that a modified formula Wu Lin San plus Shan Zha can potentially ameliorate SP-induced neurogenic inflammation possibly via the inhibition of leukocyte NADPH oxidase activity.
Collapse
Affiliation(s)
- Wang-Chuan Chen
- Department of Traditional Chinese Medicine, Ren-Ai Branch, Taipei City Hospital, Taipei, and Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|