1
|
Pradhan SP, Tejaswani P, Behera A, Sahu PK. Phytomolecules from conventional to nano form: Next-generation approach for Parkinson's disease. Ageing Res Rev 2024; 93:102136. [PMID: 38000511 DOI: 10.1016/j.arr.2023.102136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 11/19/2023] [Indexed: 11/26/2023]
Abstract
The incidence of neurodegenerative diseases is increasing exponentially worldwide. Parkinson's disease (PD) is a neurodegenerative disease caused by factors like oxidative stress, gene mutation, mitochondrial dysfunction, neurotoxins, activation of microglial inflammatory mediators, deposition of Lewy's bodies, and α- synuclein proteins in the neurons leading to neuroinflammation and neurodegeneration in the substantia nigra. Hence the development of efficacious neuro-therapy is in demand which can prevent neurodegeneration and protect the nigrostriatal pathway. One of the approaches for managing PD is reducing oxidative stress due to aging and other co-morbid diseased conditions. The phytomolecules are reported as safe and efficacious antioxidants as they contain different secondary metabolites. However, the limitations of low solubility restricted permeability through the blood-brain barrier, and low bioavailability limits their clinical evaluation and application. This review discusses the therapeutic efficacy of phytomolecules in PD and different nanotechnological approaches to improve their brain permeability.
Collapse
Affiliation(s)
- Sweta Priyadarshini Pradhan
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - P Tejaswani
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Anindita Behera
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India.
| | - Pratap Kumar Sahu
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| |
Collapse
|
2
|
Chirino-Galindo G, López-Quintero IV, Ramírez-Domínguez LB, Cabrera-Nájera LE, Estrella-Parra EA, García-Bores AM, Palomar-Morales M. Verbascoside-enriched fraction from Buddleja cordata Kunth ameliorates the effects of diabetic embryopathy in an animal model. Birth Defects Res 2021; 113:981-994. [PMID: 33750035 DOI: 10.1002/bdr2.1894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/24/2021] [Accepted: 03/14/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND The deleterious effects of diabetes mellitus (DM) over development are apparently due to an increase in oxidative stress. Some antioxidants could prevent developmental alterations produced by diabetic state. Extracts of plants of the genus Buddleja are used traditionally for Mexican indigens to ameliorate some diseases. The purpose of this work was to evaluate the effect of the extract of Buddleja cordata over diabetic embryopathy. METHODS Two experimental approaches were used: an in vivo study and an in vitro model. In the first, rats were treated with streptozotocin, streptozotocin plus methanolic extract of B. cordata, or none. Females were sacrificed at gestational day (GD) 19, and biochemical clinical parameters were measured; also, the fetuses were obtained and morphologically analyzed. In the in vitro model, a verbascoside-enriched fraction (VEF) of the extract was used in whole embryo culture in order to search for the mechanisms for embryoprotection effect over hyperglycemia-induced malformations. RESULTS In the in vivo experiments, B. cordata extract reduces the frequency and severity of fetal malformations produced by chemically induced diabetes, and additionally partially ameliorates the diabetic condition; in the in vitro model, both severity and frequency of embryo dysmorphogenesis were reduced by the VEF; also, this fraction reduces lipoperoxidation without affecting the activity of the antioxidant enzymes. CONCLUSION The results suggest that verbascoside of methanolic extract and enriched fraction can directly affect the redox state, and thus, prevents the embryotoxicity mediated by oxidative stress, in embryos of diabetic pregnancy.
Collapse
Affiliation(s)
- Gladys Chirino-Galindo
- Laboratorio de Metabolismo de la Diabetes Mellitus, Unidad de Morfofisiología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, México, Mexico
| | - Ilse-Valeria López-Quintero
- Laboratorio de Metabolismo de la Diabetes Mellitus, Unidad de Morfofisiología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, México, Mexico
| | - Liliana-Berenice Ramírez-Domínguez
- Laboratorio de Metabolismo de la Diabetes Mellitus, Unidad de Morfofisiología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, México, Mexico
| | - Leonardo-Elías Cabrera-Nájera
- Laboratorio de Metabolismo de la Diabetes Mellitus, Unidad de Morfofisiología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, México, Mexico
| | - Edgar-Antonio Estrella-Parra
- Laboratorio de Fitoquímica, Unidad de Biología y Prototipos, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, México, Mexico
| | - Ana-María García-Bores
- Laboratorio de Fitoquímica, Unidad de Biología y Prototipos, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, México, Mexico
| | - Martín Palomar-Morales
- Laboratorio de Metabolismo de la Diabetes Mellitus, Unidad de Morfofisiología, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, México, Mexico
| |
Collapse
|
3
|
Antioxidant Effect of Hydroxytyrosol, Hydroxytyrosol Acetate and Nitrohydroxytyrosol in a Rat MPP + Model of Parkinson's Disease. Neurochem Res 2021; 46:2923-2935. [PMID: 34260002 DOI: 10.1007/s11064-021-03379-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 06/03/2021] [Accepted: 06/14/2021] [Indexed: 02/06/2023]
Abstract
3,4-Dihydroxyphenyl ethanol, known as hydroxytyrosol (HTy), is a phenylpropanoid found in diverse vegetable species. Several studies have demonstrated that HTy is a potent antioxidant. Thus, our study is aimed to evaluate the antioxidant effect of HTy and its derivatives, hydroxytyrosol acetate (HTyA) and nitrohydroxytyrosol (HTyN), in a model of oxidative stress induced by 1-methyl-4-phenylpyridinium (MPP+) in rats. Rats were administered intravenously (i.v.) in the tail with 1 mL saline solution or polyphenol compound (1.5 mg/kg) 5 min before intrastriatal infusion of 10 µg MPP+/8 µL. We found that rats injured with MPP+, pretreatment with HTy, HTyA or HTyN significantly decreased ipsilateral turns. This result was consistent with a significant preservation of striatal dopamine levels and decreased lipid fluorescence products (LFP), a marker of oxidative stress. Brain GSH/GSSG ratio, from rats pretreated with HTy or HTyN showed a significant preservation of that marker, decreased as a consequence of MPP+-induced oxidative damage. These results show an antioxidant effect of HTy, HTyA and HTyN in the MPP+ model of Parkinson's disease in the rat.
Collapse
|
4
|
Zhou H, Zhang C, Huang C. Verbascoside Attenuates Acute Inflammatory Injury Caused by an Intracerebral Hemorrhage Through the Suppression of NLRP3. Neurochem Res 2021; 46:770-777. [PMID: 33400023 DOI: 10.1007/s11064-020-03206-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 11/29/2020] [Accepted: 12/15/2020] [Indexed: 11/25/2022]
Abstract
Intracerebral hemorrhage (ICH) is a devastating cerebrovascular disease with a high mortality rate affecting individuals worldwide. After ICH, persistent inflammation results in the death of brain cells, as well as the promotion of secondary brain injury. Verbascoside (VB), an active component in herbal medicine, possesses antioxidant, anti-inflammatory and neuroprotective properties. Furthermore, previous studies have shown that VB improves recovery of neuronal function after spinal cord injury in rats. In this study, we investigated whether VB limited inflammation induced by ICH through the targeting of NLRP3, which is associated with acute inflammation and apoptosis. Administration of VB reduced neurological impairment and pathological abnormalities associated with ICH, while increasing cell viability of neurons. This was achieved through NLRP3 inhibition and microglial activation. VB treatment decreased neuronal damage when co-cultured with microglia. Furthermore, knockout of NLRP3 eliminated the ability of VB to inhibit inflammation, cell death or protect neurons. Taken together, VB suppressed the inflammatory response following ICH by inhibiting NLRP3.
Collapse
Affiliation(s)
- Hongwei Zhou
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Cheng Zhang
- Department of Neurosurgery, Zigong Third People's Hospital, Zigong, 643020, China
| | - Changren Huang
- Department of Neurosurgery, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
5
|
Monroy-Noyola A, Garciía-Alonso G, Atzori M, Salgado R, Baíez A, Miranda M, Rangel A, Guevara E, Cuevas R, Vega-Riquer J, Avila-Acevedo J. Antidepressant effect of buddleja cordata methanolic extract in chronic stress mouse model. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_554_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
6
|
Prasad EM, Hung SY. Behavioral Tests in Neurotoxin-Induced Animal Models of Parkinson's Disease. Antioxidants (Basel) 2020; 9:E1007. [PMID: 33081318 PMCID: PMC7602991 DOI: 10.3390/antiox9101007] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
Currently, neurodegenerative diseases are a major cause of disability around the world. Parkinson's disease (PD) is the second-leading cause of neurodegenerative disorder after Alzheimer's disease. In PD, continuous loss of dopaminergic neurons in the substantia nigra causes dopamine depletion in the striatum, promotes the primary motor symptoms of resting tremor, bradykinesia, muscle rigidity, and postural instability. The risk factors of PD comprise environmental toxins, drugs, pesticides, brain microtrauma, focal cerebrovascular injury, aging, and hereditary defects. The pathologic features of PD include impaired protein homeostasis, mitochondrial dysfunction, nitric oxide, and neuroinflammation, but the interaction of these factors contributing to PD is not fully understood. In neurotoxin-induced PD models, neurotoxins, for instance, 6-hydroxydopamine (6-OHDA), 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), 1-Methyl-4-phenylpyridinium (MPP+), paraquat, rotenone, and permethrin mainly impair the mitochondrial respiratory chain, activate microglia, and generate reactive oxygen species to induce autooxidation and dopaminergic neuronal apoptosis. Since no current treatment can cure PD, using a suitable PD animal model to evaluate PD motor symptoms' treatment efficacy and identify therapeutic targets and drugs are still needed. Hence, the present review focuses on the latest scientific developments in different neurotoxin-induced PD animal models with their mechanisms of pathogenesis and evaluation methods of PD motor symptoms.
Collapse
Affiliation(s)
- E. Maruthi Prasad
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, No.91, Hsueh-Shih Road, Taichung 40402, Taiwan;
| | - Shih-Ya Hung
- Graduate Institute of Acupuncture Science, College of Chinese Medicine, China Medical University, No.91, Hsueh-Shih Road, Taichung 40402, Taiwan;
- Department of Medical Research, China Medical University Hospital, No. 2, Yude Road, Taichung 40447, Taiwan
| |
Collapse
|
7
|
Bhattacharjee M, Perumal E. Potential plant-derived catecholaminergic activity enhancers for neuropharmacological approaches: A review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 55:148-164. [PMID: 30668425 DOI: 10.1016/j.phymed.2018.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/07/2018] [Accepted: 07/16/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Catecholamines (CAs) have been reported to be involved in numerous functions including central nervous system. CA release from the intra neuronal storage vesicles aid in the therapy of various neurological and neuropsychiatric disorders where the catecholaminergic neurotransmission is compromised. Bioavailability of CA at the synapse can be increased through stimulated neurotransmitter release, monoamine oxidase and CA reuptake inhibition. Plant based galenicals are reported to have similar CA enhancement activities and have been used for the management of neurological disorders. AIM To review evidence-based literature with plant extracts, bioactive compounds, and composite extracts that modulate central catecholaminergic system, thereby enhancing CA activity for beneficial neurological effect. METHODS Electronic databases such as PubMed, Scopus, and ScienceDirect were used to search scientific contributions until January 2018, using relevant keywords. Literature focusing plant-derived CA enhancing compounds, extracts and/or composite extracts were identified and summarized. In all cases, dose, route of administration, the model system and type of extract were accounted. RESULTS A total of 49 plant extracts, 31 compounds and 16 herbal formulations have shown CA activity enhancement. Stimulated CA release from the storage vesicles, monoamine oxidase and CA reuptake inhibition were the major mechanisms involved in the increase of CA bioavailability by these phytoconstituents. CONCLUSION This review provides an overview on the phytoconstituents with CA enhancement property that have been used for neuropsychiatric disorders. Such herbal remedies will provide an avenue for cost effective and easily available medication which have holistic approach towards disease management. There is also scope for alternate medicines or prototype drug development utilizing these phytomedicines for treating neurodegenerative diseases. However, hurdles are to be met for analyzing the mode and mechanism of action associated with these phytomedicines and their proper scientific documentation.
Collapse
Affiliation(s)
- Monojit Bhattacharjee
- Defence Research and Development Organisation - Bharathiar University Center for Life Sciences (DRDO-BU CLS), Bharathiar University Campus, Coimbatore, Tamil Nadu 641046, India
| | - Ekambaram Perumal
- Defence Research and Development Organisation - Bharathiar University Center for Life Sciences (DRDO-BU CLS), Bharathiar University Campus, Coimbatore, Tamil Nadu 641046, India; Molecular Toxicology Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu 641046, India.
| |
Collapse
|
8
|
Moreno-Galarza N, Mendieta L, Palafox-Sánchez V, Herrando-Grabulosa M, Gil C, Limón DI, Aguilera J. Peripheral Administration of Tetanus Toxin Hc Fragment Prevents MPP+ Toxicity In Vivo. Neurotox Res 2018; 34:47-61. [DOI: 10.1007/s12640-017-9853-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 12/08/2017] [Accepted: 12/11/2017] [Indexed: 01/13/2023]
|
9
|
Efficacy of Phytogenic Feed Additive on Performance, Production and Health Status of Monogastric Animals – A Review. ANNALS OF ANIMAL SCIENCE 2017. [DOI: 10.1515/aoas-2016-0079] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The growing concerns of consumers on the use of antibiotic as a growth promoter in livestock feed have fueled the interest in alternative products. In the recent years a group of natural products known as phytogenics has been a focus of several studies. Phytogenics are a heterogeneous group of feed additives originating from plants and consist of herbs, spices, fruit, and other plant parts. These feed additives are reported to have a wide range of activities including antimicrobial, anthelminthic, antioxidant, growth enhancer, and immune modulator. Besides these properties they are also reported to stimulate feed intake and endogenous secretion and enhance production. They include many different bio-active ingredients such as alkaloids, bitters, flavonoids, glycosides, mucilage, saponins, tannins phenolics, polyphenols, terpenoids, polypeptide, thymol, cineole, linalool, anethole, allicin, capsaicin, allylisothiocyanate, and piperine. These feed additives have been tested in the form of extracts, cold pressed oils, essential oils in a number of animals but the results are variable. Therefore, their application as feed additive has been limited, largely owing to their inconsistent efficacy and lack of full understanding of the modes of action. The future of these feed additives depend on the characteristics of herbs, the knowledge on their major and minor constituents, the in-depth knowledge on their mode of action and their value based on the safety to animal and their products. The aim of this review is to summarize on the current knowledge on the use of phytogenic as a feed additive in monogastric animals.
Collapse
|
10
|
The Role of Reactive Oxygen Species in the Pathogenesis of Alzheimer's Disease, Parkinson's Disease, and Huntington's Disease: A Mini Review. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:8590578. [PMID: 28116038 PMCID: PMC5223034 DOI: 10.1155/2016/8590578] [Citation(s) in RCA: 333] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 10/06/2016] [Accepted: 11/13/2016] [Indexed: 11/18/2022]
Abstract
Neurodegenerative diseases affect not only the life quality of aging populations, but also their life spans. All forms of neurodegenerative diseases have a massive impact on the elderly. The major threat of these brain diseases includes progressive loss of memory, Alzheimer's disease (AD), impairments in the movement, Parkinson's disease (PD), and the inability to walk, talk, and think, Huntington's disease (HD). Oxidative stress and mitochondrial dysfunction are highlighted as a central feature of brain degenerative diseases. Oxidative stress, a condition that occurs due to imbalance in oxidant and antioxidant status, has been known to play a vital role in the pathophysiology of neurodegenerative diseases including AD, PD, and HD. A large number of studies have utilized oxidative stress biomarkers to investigate the severity of these neurodegenerative diseases and medications are available, but these only treat the symptoms. In traditional medicine, a large number of medicinal plants have been used to treat the symptoms of these neurodegenerative diseases. Extensive studies scientifically validated the beneficial effect of natural products against neurodegenerative diseases using suitable animal models. This short review focuses the role of oxidative stress in the pathogenesis of AD, PD, and HD and the protective efficacy of natural products against these diseases.
Collapse
|
11
|
Bukhari IA, Gilani AH, Meo SA, Saeed A. Analgesic, anti-inflammatory and anti-platelet activities of Buddleja crispa. Altern Ther Health Med 2016; 16:79. [PMID: 26911873 PMCID: PMC4766657 DOI: 10.1186/s12906-016-1021-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/27/2016] [Indexed: 11/10/2022]
Abstract
Background Buddleja crispa Benth (Buddlejaceae) is a dense shrub; several species of genus Buddleja have been used in the management of various health conditions including pain and inflammation. The present study was aimed to investigate the analgesic, anti-inflammatory and anti-platelet properties of B. crispa. Methods Male rats (220–270 gm,) and mice (25–30 gm) were randomly divided into different groups (n = 6). Various doses of plant extract of B. crispa, its fractions and pure compounds isolated from the plant were administered intraperitoneally (i.p). The analgesic, anti-inflammatory and anti-platelet activities were assessed using acetic acid and formalin-induced nociception in mice, carrageenan-induced rat paw edema and arachidonic acid-induced platelets aggregation tests. Results The intraperitoneal administration of the methanolic extract (50 and 100 mg/kg), hexane fraction (10 and 25 mg/kg i.p) exhibited significant inhibition (P < 0.01) of the acetic acid-induced writhing in mice and attenuated formalin-induced reaction time of animals in second phase of the test. Pure compounds BdI-2, BdI-H3 and BH-3 isolated from B. crispa produced significant (P < 0.01) analgesic activity in acetic acid-induced and formalin tests. The crude extract of B. crispa (50–200 mg/kg i.p.) and its hexane fraction inhibited carrageenan-induced rat paw edema with maximum inhibition of 65 and 71 % respectively (P < 0.01). The analgesic and anti-inflammatory effect of the plant extract and isolated pure compounds were comparable to diclofenac sodium. B. crispa plant extract (0.5–2.5 mg/mL) produced significant anti-platelet effect (P < 0.01) with maximum inhibition of 78 % at 2.5 mg/ml. Conclusion The findings from our present study suggest that B. crispa possesses analgesic, anti-inflammatory and anti-platelet properties. B. crispa could serve a potential novel source of compounds effective in pain and inflammatory conditions.
Collapse
|
12
|
LIU JS, XIAO QL, GE D, ZHANG YY, ZHANG WZ, XU Z, LIU C, WANG LD. A Microfluidic Chip with Integrated Microelectrodes for Real-time Dopamine Detection. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2015. [DOI: 10.1016/s1872-2040(15)60836-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|