1
|
Chen P, Yang J, Chen L, Liu C, Li Z, Long X, Wu J, Wu B, Wu J. Moscatilin Induces Ferroptosis in Clear Cell Renal Cell Carcinoma via the JAK-STAT Signaling Pathway. Chem Biol Drug Des 2025; 105:e70071. [PMID: 40070232 DOI: 10.1111/cbdd.70071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 01/22/2025] [Indexed: 03/25/2025]
Abstract
Moscatilin, a biphenyl compound derived from Dendrobium nobile, exhibits significant anti-tumor activity. However, the specific role of moscatilin in clear cell renal cell carcinoma (ccRCC) and its underlying molecular mechanisms have not been fully studied. This study aims to fill this gap by demonstrating through a series of experiments that moscatilin can effectively inhibit the proliferation and migration of ccRCC and induce its apoptosis process. More importantly, we found that moscatilin can also trigger ferroptosis in ccRCC, a process accompanied by significant increases in Fe2+, MDA (a lipid peroxidation product), and ROS (reactive oxygen species) levels, as well as decreases in mitochondrial membrane potential and GSH (glutathione) levels. These changes strongly suggest a key role for moscatilin in inducing ferroptosis. To further explore its underlying mechanism, we speculate that moscatilin may inhibit the phosphorylation level of the JAK-STAT signaling pathway, thereby blocking the function of the key protein SLC7A11 in the ferroptosis signaling pathway, which promotes the occurrence of ferroptosis. This discovery not only reveals a new mechanism of moscatilin in the treatment of ccRCC but also provides new ideas for the development of related drugs in the future. In summary, based on the important discovery that moscatilin can induce ferroptosis in ccRCC, we have reason to believe that moscatilin has the potential to become a new type of drug for the treatment of ccRCC.
Collapse
Affiliation(s)
- Pei Chen
- Department of Urology, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jin Yang
- Department of Urology, Zunyi Medical University, Zunyi, Guizhou, China
- Department of Urology, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Lin Chen
- Department of Urology, Zunyi Medical University, Zunyi, Guizhou, China
- Department of Urology, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Chenhuan Liu
- Department of Urology, Zunyi Medical University, Zunyi, Guizhou, China
- Department of Urology, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Zhihao Li
- Department of Urology, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Xiaoming Long
- Department of Urology, Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China
| | - Jinbang Wu
- Department of Urology, The Fifth Hospital of DeYang, DeYang, China
| | - Bo Wu
- Department of Urology, the Third Affiliated Hospital of Chengdu Medical College, Pidu District People's Hospital, Chengdu, China
| | - Jianjun Wu
- Department of Urology, the Third Affiliated Hospital of Chengdu Medical College, Pidu District People's Hospital, Chengdu, China
| |
Collapse
|
2
|
Pain P, Tripathi A, Pillai PP. Involvement of PDGFR-integrin interactions in the regulation of anoikis resistance in glioblastoma progression. Cell Biol Int 2025; 49:3-15. [PMID: 39523497 DOI: 10.1002/cbin.12257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 11/16/2024]
Abstract
The interactions between platelet-derived growth factor/PDGF receptor and integrin signaling are crucial for cells to respond to extracellular stimuli. Integrin interactions with PDGFR within the lipid rafts activate downstream cellular signaling pathways that regulate cell proliferation, cell migration, cell differentiation, and cell death processes. The mechanisms underlying PDGFR activation mediated receptor internalization, interactions with other cell-surface receptors, particularly extracellular matrix receptors, integrins, and how these cellular mechanisms switch on anchorage-independent cell survival, leading to anoikis resistance are discussed. The role of regulatory molecules such as noncoding RNAs, that can modulate several molecular and cellular processes, including autophagy, in the acquisition of anoikis resistance is also discussed. Overall, the review provides a new perspective on a complex interplay of regulatory cellular machineries involving autophagy, noncoding RNAs and cellular mechanisms of PDGFR activation, PDGFR-integrin interactions, and involvement of lipids rafts in the acquisition of anoikis resistance that regulates glioblastoma progression along with potential future strategies to develop novel therapeutics for glioblastoma multiforme.
Collapse
Affiliation(s)
- Pampa Pain
- Division of Neurobiology, Department of Zoology, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Ashutosh Tripathi
- Division of Neurobiology, Department of Zoology, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| | - Prakash P Pillai
- Division of Neurobiology, Department of Zoology, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, India
| |
Collapse
|
3
|
Khunsantiphong N, Thant MT, Pengdee C, Salahong T, Khine HEE, Chanvorachote P, Chaotham C, Sritularak B. A new phenanthrene with a spirolactone ring from Dendrobium ochreatum. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2024; 26:1543-1550. [PMID: 38904480 DOI: 10.1080/10286020.2024.2368831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/22/2024]
Abstract
Dendroochreatene (1), a new phenanthrene derivative with a spirolactone ring, was isolated from the whole Dendrobium ochreatum plant together with 11 known compounds (2-12). The structure of the new compound was elucidated spectroscopically and phenolic compounds were firstly reported from D. ochreatum. Moscatilin (4), major compound isolated from D. ochreatum, was found to be cytotoxic toward H460 lung-cancer cells, with an IC50 value of 147.3 ± 0.9 µM, while loddigesiinol C (7), C-α-methoxy derivative was inactive.
Collapse
Affiliation(s)
- Natthaphitcha Khunsantiphong
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - May Thazin Thant
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chattarika Pengdee
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thanarat Salahong
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Hnin Ei Ei Khine
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chatchai Chaotham
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Cancer Cell and Molecular Biology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Boonchoo Sritularak
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
4
|
Silva-Reis R, Silva VLM, Cardoso SM, Michalak I, Püsküllüoğlu M, Calina D, Sharifi-Rad J. Moscatilin, a potential therapeutic agent for cancer treatment: insights into molecular mechanisms and clinical prospects. Med Oncol 2024; 41:228. [PMID: 39153137 DOI: 10.1007/s12032-024-02467-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/29/2024] [Indexed: 08/19/2024]
Abstract
Moscatilin, a bibenzyl derivative from the Dendrobium genus, has been traditionally used in Chinese medicine. Recent studies suggest its potential as a powerful anticancer agent due to its diverse pharmacological properties.This review aims to consolidate current research on moscatilin's anticancer mechanisms, structure-activity relationships, and therapeutic potential to assess its viability for clinical use. A literature search was performed in PubMed/MedLine, Scopus, and Web of Science.The search focused on "cancer," "moscatilin," "anticancer," "bioactivity," "dendrobium," and "pharmacological properties." Relevant studies on molecular mechanisms, preclinical and clinical efficacy, and bioavailability were reviewed. Moscatilin exhibits significant anticancer effects in lung, breast, colorectal, and pancreatic cancers. It induces apoptosis via the JNK/SAPK pathway, inhibits cell proliferation, and suppresses metastasis. Structure-activity relationship studies reveal that phenolic groups and a two-carbon bridge are crucial for its efficacy. Additionally, moscatilin shows good bioavailability and a favorable safety profile, with low toxicity to healthy cells. Moscatilin demonstrates considerable potential as an anticancer agent, targeting multiple cancer progression pathways. Further clinical trials are essential to confirm its therapeutic efficacy and safety in humans.
Collapse
Affiliation(s)
- Rita Silva-Reis
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
- CITAB Inov4Agro - Institute for Innovation, Capacity Building and Sustainability of Agri-food Production, University of Trás-os-Montes and Alto Douro (UTAD), 5000-801, Vila Real, Portugal
| | - Vera L M Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Susana M Cardoso
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Izabela Michalak
- Department of Advanced Material Technologies, Faculty of Chemistry, Wrocław University of Science and Technology, Smoluchowskiego 25, Wroclaw, Poland
| | - Mirosława Püsküllüoğlu
- Department of Clinical Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Kraków Branch, Garncarska 11, Kraków, Poland
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | - Javad Sharifi-Rad
- Department of Medicine, College of Medicine, Korea University, Seoul, 02841, Republic of Korea.
- Centro de Estudios Tecnológicos y Universitarios del Golfo, Veracruz, Mexico.
| |
Collapse
|
5
|
Pote MS, Singh D, M. A A, Suchita J, Gacche RN. Cancer metastases: Tailoring the targets. Heliyon 2024; 10:e35369. [PMID: 39170575 PMCID: PMC11336595 DOI: 10.1016/j.heliyon.2024.e35369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 07/26/2024] [Indexed: 08/23/2024] Open
Abstract
Metastasis is an intricate and formidable pathophysiological process encompassing the dissemination of cancer cells from the primary tumour body to distant organs. It stands as a profound and devastating phenomenon that constitutes the primary driver of cancer-related mortality. Despite great strides of advancements in cancer research and treatment, tailored anti-metastasis therapies are either lacking or have shown limited success, necessitating a deeper understanding of the intrinsic elements driving cancer invasiveness. This comprehensive review presents a contemporary elucidation of pivotal facets within the realm of cancer metastasis, commencing with the intricate processes of homing and invasion. The process of angiogenesis, which supports tumour growth and metastasis, is addressed, along with the pre-metastatic niche, wherein the primary tumour prepares for a favorable microenvironment at distant sites for subsequent metastatic colonization. The landscape of metastasis-related genetic and epigenetic mechanisms, involvement of metastasis genes and metastasis suppressor genes, and microRNAs (miRNA) are also discussed. Furthermore, immune modulators' impact on metastasis and their potential as therapeutic targets are addressed. The interplay between cancer cells and the immune system, including immune evasion mechanisms employed by metastatic cells, is discussed, highlighting the importance of targeting immune modulation in arresting metastatic progression. Finally, this review presents promising treatment opportunities derived from the insights gained into the mechanisms of metastasis. Identifying novel therapeutic targets and developing innovative strategies to disrupt the metastatic cascade holds excellent potential for improving patient outcomes and ultimately reducing cancer-related mortality.
Collapse
Affiliation(s)
| | | | | | | | - Rajesh N. Gacche
- Department of Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra, India
| |
Collapse
|
6
|
Hai Yen P, Thuy Hang DT, Huu Tai B, Thi Cuc N, Thanh Huong PT, Thi Dung D, Thi Trang D, Van Hung N, Van Hieu T, Van Cuong P, Dinh Hoang V, Van Kiem P. Four Undescribed Stilbenoid Derivatives from the Aerial Parts of Dendrobium officinale with their α-Glucosidase and α-Amylase Inhibitory Activity. Chem Biodivers 2024; 21:e202400708. [PMID: 38590273 DOI: 10.1002/cbdv.202400708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/09/2024] [Accepted: 04/09/2024] [Indexed: 04/10/2024]
Abstract
In this study, four undescribed bibenzyl derivatives (1-4), together with seven known compounds (5-11) were isolated from the aerial parts of Dendrobium officinale. Their chemical structures were determined to be (7'S,8'S) -9''-acetyldendrocandin U (1), (7'S,8'S) -4'-methoxydendrocandin T (2), (7'R,8'S) -dendrocandin B (3), (1S,2R) -5'''-methoxydendrofindlaphenol C (4) by analyzing of the spectroscopic data including HR-ESI-MS, 1D-, and 2D-NMR spectra. The absolute configurations of compounds 1-4 were determined by the electronic circular dichroism (ECD) spectra. Compounds 1-3, 5, 10 and 11 inhibited α-glucosidase with the IC50 values ranging from 56.3 to 165.3 μM, compounds 1-3, 5, 7-10 inhibited α-amylase with the IC50 values ranging from 65.2 to 177.6 μM.
Collapse
Affiliation(s)
- Pham Hai Yen
- Institute of Marine Biochemistry, VAST, 18 Hoang Quoc Viet, Cau Giay, 10072, Hanoi, Vietnam
| | - Dan Thi Thuy Hang
- Institute of Marine Biochemistry, VAST, 18 Hoang Quoc Viet, Cau Giay, 10072, Hanoi, Vietnam
| | - Bui Huu Tai
- Institute of Marine Biochemistry, VAST, 18 Hoang Quoc Viet, Cau Giay, 10072, Hanoi, Vietnam
| | - Nguyen Thi Cuc
- Institute of Marine Biochemistry, VAST, 18 Hoang Quoc Viet, Cau Giay, 10072, Hanoi, Vietnam
| | - Phan Thi Thanh Huong
- Institute of Marine Biochemistry, VAST, 18 Hoang Quoc Viet, Cau Giay, 10072, Hanoi, Vietnam
| | - Duong Thi Dung
- Institute of Marine Biochemistry, VAST, 18 Hoang Quoc Viet, Cau Giay, 10072, Hanoi, Vietnam
| | - Do Thi Trang
- Institute of Marine Biochemistry, VAST, 18 Hoang Quoc Viet, Cau Giay, 10072, Hanoi, Vietnam
| | - Nguyen Van Hung
- Institute of Marine Biochemistry, VAST, 18 Hoang Quoc Viet, Cau Giay, 10072, Hanoi, Vietnam
| | - Tran Van Hieu
- Institute of Marine Biochemistry, VAST, 18 Hoang Quoc Viet, Cau Giay, 10072, Hanoi, Vietnam
| | - Pham Van Cuong
- Institute of Marine Biochemistry, VAST, 18 Hoang Quoc Viet, Cau Giay, 10072, Hanoi, Vietnam
| | - Vu Dinh Hoang
- School of Chemistry and Life Sciences, Hanoi University of Science and Technology, 10000, Hanoi, Vietnam
| | - Phan Van Kiem
- Institute of Marine Biochemistry, VAST, 18 Hoang Quoc Viet, Cau Giay, 10072, Hanoi, Vietnam
| |
Collapse
|
7
|
Huang P, Zhang X, Prabhu JS, Pandey V. Therapeutic vulnerabilities in triple negative breast cancer: Stem-like traits explored within molecular classification. Biomed Pharmacother 2024; 174:116584. [PMID: 38613998 DOI: 10.1016/j.biopha.2024.116584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024] Open
Abstract
Triple Negative Breast Cancer (TNBC) is the most aggressive type of breast cancer (BC). Despite advances in the clinical management of TNBC, recurrence-related mortality remains a challenge. The stem-like phenotype of TNBC plays a significant role in the persistence of minimal disease residue after therapy. Individuals exhibiting stem-like characteristics are particularly prone to inducing malignant relapse accompanied by strong resistance. Therefore, stem-like traits have been broadly proposed as therapeutic vulnerabilities to treat TNBC and reduce recurrence. However, heterogeneity within TNBC often generally restricts the stability of the therapeutic efficacy. To understand the heterogeneity and manage TNBC more precisely, multiple TNBC subtyping categories have been reported, providing the basis for profile-according therapeutic regimens. To provide more insight into targeting stem-like traits to ablate TNBC and reduce recurrence in the context of heterogeneity, this paper reviewed the molecular subtyping of TNBC, identified the consensus subtypes with distinct stem-like phenotypes, characterized the stemness hierarchy of TNBC, outlined the biological models for stem-like TNBC subtypes, summarized the therapeutic vulnerabilities in stem-like traits of the subtypes, and proposed potential therapeutic regimens targeting stem-like characteristics to improve TNBC prognosis.
Collapse
Affiliation(s)
- Peng Huang
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xi Zhang
- Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Jyothi S Prabhu
- Division of Molecular Medicine, St. John's Research Institute, St. John's Medical College, Bangalore, India
| | - Vijay Pandey
- Tsinghua Berkeley Shenzhen Institute, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
8
|
Khan AQ, Hasan A, Mir SS, Rashid K, Uddin S, Steinhoff M. Exploiting transcription factors to target EMT and cancer stem cells for tumor modulation and therapy. Semin Cancer Biol 2024; 100:1-16. [PMID: 38503384 DOI: 10.1016/j.semcancer.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
Transcription factors (TFs) are essential in controlling gene regulatory networks that determine cellular fate during embryogenesis and tumor development. TFs are the major players in promoting cancer stemness by regulating the function of cancer stem cells (CSCs). Understanding how TFs interact with their downstream targets for determining cell fate during embryogenesis and tumor development is a critical area of research. CSCs are increasingly recognized for their significance in tumorigenesis and patient prognosis, as they play a significant role in cancer initiation, progression, metastasis, and treatment resistance. However, traditional therapies have limited effectiveness in eliminating this subset of cells, allowing CSCs to persist and potentially form secondary tumors. Recent studies have revealed that cancer cells and tumors with CSC-like features also exhibit genes related to the epithelial-to-mesenchymal transition (EMT). EMT-associated transcription factors (EMT-TFs) like TWIST and Snail/Slug can upregulate EMT-related genes and reprogram cancer cells into a stem-like phenotype. Importantly, the regulation of EMT-TFs, particularly through post-translational modifications (PTMs), plays a significant role in cancer metastasis and the acquisition of stem cell-like features. PTMs, including phosphorylation, ubiquitination, and SUMOylation, can alter the stability, localization, and activity of EMT-TFs, thereby modulating their ability to drive EMT and stemness properties in cancer cells. Although targeting EMT-TFs holds potential in tackling CSCs, current pharmacological approaches to do so directly are unavailable. Therefore, this review aims to explore the role of EMT- and CSC-TFs, their connection and impact in cellular development and cancer, emphasizing the potential of TF networks as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| | - Adria Hasan
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Kursi Road, Lucknow 226026, India; Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, Lucknow 226026, India
| | - Snober S Mir
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Kursi Road, Lucknow 226026, India; Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow 226026, India
| | - Khalid Rashid
- Department of Urology,Feinberg School of Medicine, Northwestern University, 303 E Superior Street, Chicago, IL 60611, USA
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow 226026, India; Laboratory Animal Research Center, Qatar University, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Department of Medicine, Weill Cornell Medicine Qatar, Qatar Foundation-Education City, Doha 24144, Qatar; Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; College of Medicine, Qatar University, Doha 2713, Qatar
| |
Collapse
|
9
|
Kongkatitham V, Dehlinger A, Chaotham C, Likhitwitayawuid K, Böttcher C, Sritularak B. Diverse modulatory effects of bibenzyls from Dendrobium species on human immune cell responses under inflammatory conditions. PLoS One 2024; 19:e0292366. [PMID: 38300920 PMCID: PMC10833532 DOI: 10.1371/journal.pone.0292366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/18/2023] [Indexed: 02/03/2024] Open
Abstract
Dendrobium plants are widely used in traditional Chinese medicine. Their secondary metabolites such as bibenzyls and phenanthrenes show various pharmacological benefits such as immunomodulation and inhibitory effects on cancer cell growth. However, our previous study also showed that some of these promising compounds (i.e., gigantol and cypripedin) also induced the expression of inflammatory cytokines including TNF in human monocytes, and thus raising concerns about the use of these compounds in clinical application. Furthermore, the effects of these compounds on other immune cell populations, apart from monocytes, remain to be investigated. In this study, we evaluated immunomodulatory effects of seven known bibenzyl compounds purified from Dendrobium species in human peripheral blood mononuclear cells (PBMCs) that were stimulated with lipopolysaccharide (LPS). Firstly, using flow cytometry, moscatilin (3) and crepidatin (4) showed the most promising dose-dependent immunomodulatory effects among all seven bibenzyls, determined by significant reduction of TNF expression in LPS-stimulated CD14+ monocytes. Only crepidatin at the concentration of 20 μM showed a significant cytotoxicity, i.e., an increased cell death in late apoptotic state. In addition, deep immune profiling using high-dimensional single-cell mass cytometry (CyTOF) revealed broad effects of Dendrobium compounds on diverse immune cell types. Our findings suggest that to precisely evaluate therapeutic as well as adverse effects of active natural compounds, a multi-parameter immune profiling targeting diverse immune cell population is required.
Collapse
Affiliation(s)
- Virunh Kongkatitham
- Pharmaceutical Sciences and Technology Program, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Adeline Dehlinger
- Experimental and Clinical Research Center, a Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Chatchai Chaotham
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Kittisak Likhitwitayawuid
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Chotima Böttcher
- Experimental and Clinical Research Center, a Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Boonchoo Sritularak
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Natural Products for Ageing and Chronic Diseases, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
10
|
Carrera-Aguado I, Marcos-Zazo L, Carrancio-Salán P, Guerra-Paes E, Sánchez-Juanes F, Muñoz-Félix JM. The Inhibition of Vessel Co-Option as an Emerging Strategy for Cancer Therapy. Int J Mol Sci 2024; 25:921. [PMID: 38255995 PMCID: PMC10815934 DOI: 10.3390/ijms25020921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Vessel co-option (VCO) is a non-angiogenic mechanism of vascularization that has been associated to anti-angiogenic therapy. In VCO, cancer cells hijack the pre-existing blood vessels and use them to obtain oxygen and nutrients and invade adjacent tissue. Multiple primary tumors and metastases undergo VCO in highly vascularized tissues such as the lungs, liver or brain. VCO has been associated with a worse prognosis. The cellular and molecular mechanisms that undergo VCO are poorly understood. Recent studies have demonstrated that co-opted vessels show a quiescent phenotype in contrast to angiogenic tumor blood vessels. On the other hand, it is believed that during VCO, cancer cells are adhered to basement membrane from pre-existing blood vessels by using integrins, show enhanced motility and a mesenchymal phenotype. Other components of the tumor microenvironment (TME) such as extracellular matrix, immune cells or extracellular vesicles play important roles in vessel co-option maintenance. There are no strategies to inhibit VCO, and thus, to eliminate resistance to anti-angiogenic therapy. This review summarizes all the molecular mechanisms involved in vessel co-option analyzing the possible therapeutic strategies to inhibit this process.
Collapse
Affiliation(s)
- Iván Carrera-Aguado
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (I.C.-A.); (L.M.-Z.); (P.C.-S.); (E.G.-P.); (F.S.-J.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Laura Marcos-Zazo
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (I.C.-A.); (L.M.-Z.); (P.C.-S.); (E.G.-P.); (F.S.-J.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Patricia Carrancio-Salán
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (I.C.-A.); (L.M.-Z.); (P.C.-S.); (E.G.-P.); (F.S.-J.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Elena Guerra-Paes
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (I.C.-A.); (L.M.-Z.); (P.C.-S.); (E.G.-P.); (F.S.-J.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - Fernando Sánchez-Juanes
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (I.C.-A.); (L.M.-Z.); (P.C.-S.); (E.G.-P.); (F.S.-J.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| | - José M. Muñoz-Félix
- Departamento de Bioquímica y Biología Molecular, Universidad de Salamanca, 37007 Salamanca, Spain; (I.C.-A.); (L.M.-Z.); (P.C.-S.); (E.G.-P.); (F.S.-J.)
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain
| |
Collapse
|
11
|
Li Z, Yang J, Chen L, Chen P, Liu C, Long X, Chen B, Long J. Moscatilin Reverses EMT Progression and its Resulting Enhanced Invasion and Migration by Affecting the TGF-β Signaling Pathway in Bladder Cancer. Anticancer Agents Med Chem 2024; 24:1074-1084. [PMID: 38808719 DOI: 10.2174/0118715206307769240522075729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/28/2024] [Accepted: 05/10/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Bladder cancer metastasis is an essential process in the progression of muscle-invasive bladder cancer. EMT plays a crucial role in facilitating the spread of cancer cells. Identifying compounds that can inhibit these abilities of cancer cells is a significant international endeavor. OBJECTIVE To explore the migration and invasion effect of Moscatilin on the bladder and clarify the mechanism of action Methods: The anti-bladder cancer effect of Moscatilin was observed by a cell proliferation experiment. The migration and invasion of bladder cancer cells inhibited by Moscatilin were detected by Transwell and Wound healing. The effects of Moscatilin on EMT-related proteins E-cadherin, N-cadherin, Snail1, Vimentin, and TGF-β signaling pathways were detected by Western blot, and nucleic acid levels were verified by qPCR. RESULTS Our study revealed that Moscatilin reduced the viability of bladder cancer cells in vitro and impeded their migration and invasion in experimental settings. Furthermore, we observed that Moscatilin decreased the activation levels of active proteins, specifically Smad3, Samd2, and MMP2. Additionally, we found that moscatilin significantly reduced the expression level of TGF-β and was also capable of reversing the overexpression effect of TGF-β. Treatment with Moscatilin also led to significant inhibition of interstitial cell markers Ncadherin and Snail1, which are associated with EMT. CONCLUSION These findings indicate that Moscatilin impedes the migration and invasion of bladder cancer cells by influencing cell survival, modulating TGF-β/Smad signaling, and inhibiting EMT.
Collapse
Affiliation(s)
- Zhihao Li
- College of Pharmacy, Chengdu University, Chengdu, China
| | - Jin Yang
- Clinical Medical College and Affiliated Hospital, Chengdu University, Chengdu, China
| | - Lin Chen
- Clinical Medical College and Affiliated Hospital, Chengdu University, Chengdu, China
| | - Pei Chen
- Clinical Medical College and Affiliated Hospital, Chengdu University, Chengdu, China
| | - Chenhuan Liu
- Clinical Medical College and Affiliated Hospital, Chengdu University, Chengdu, China
| | - Xiaoming Long
- Clinical Medical College and Affiliated Hospital, Chengdu University, Chengdu, China
| | - Bo Chen
- Clinical Medical College and Affiliated Hospital, Chengdu University, Chengdu, China
| | - Jun Long
- Clinical Medical College and Affiliated Hospital, Chengdu University, Chengdu, China
| |
Collapse
|
12
|
Choudhary N, Bawari S, Burcher JT, Sinha D, Tewari D, Bishayee A. Targeting Cell Signaling Pathways in Lung Cancer by Bioactive Phytocompounds. Cancers (Basel) 2023; 15:3980. [PMID: 37568796 PMCID: PMC10417502 DOI: 10.3390/cancers15153980] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Lung cancer is a heterogeneous group of malignancies with high incidence worldwide. It is the most frequently occurring cancer in men and the second most common in women. Due to its frequent diagnosis and variable response to treatment, lung cancer was reported as the top cause of cancer-related deaths worldwide in 2020. Many aberrant signaling cascades are implicated in the pathogenesis of lung cancer, including those involved in apoptosis (B cell lymphoma protein, Bcl-2-associated X protein, first apoptosis signal ligand), growth inhibition (tumor suppressor protein or gene and serine/threonine kinase 11), and growth promotion (epidermal growth factor receptor/proto-oncogenes/phosphatidylinositol-3 kinase). Accordingly, these pathways and their signaling molecules have become promising targets for chemopreventive and chemotherapeutic agents. Recent research provides compelling evidence for the use of plant-based compounds, known collectively as phytochemicals, as anticancer agents. This review discusses major contributing signaling pathways involved in the pathophysiology of lung cancer, as well as currently available treatments and prospective drug candidates. The anticancer potential of naturally occurring bioactive compounds in the context of lung cancer is also discussed, with critical analysis of their mechanistic actions presented by preclinical and clinical studies.
Collapse
Affiliation(s)
- Neeraj Choudhary
- Department of Pharmacognosy, GNA School of Pharmacy, GNA University, Phagwara 144 401, India
| | - Sweta Bawari
- Amity Institute of Pharmacy, Amity University, Noida 201 301, India
| | - Jack T. Burcher
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| | - Dona Sinha
- Department of Receptor Biology and Tumor Metastasis, Chittaranjan National Cancer Institute, Kolkata 700 026, India
| | - Devesh Tewari
- Department of Pharmacognosy and Phytochemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi 110 017, India
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL 34211, USA
| |
Collapse
|
13
|
Kulkarni AS, Dash A, Shingare RD, Chand J, Manhas D, Singh A, Nandi U, Goswami A, Srinivasa Reddy D. Identification of new modulator of DNA repairing pathways based on natural product (±)-peharmaline A. Bioorg Med Chem 2023; 91:117365. [PMID: 37392722 DOI: 10.1016/j.bmc.2023.117365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 05/04/2023] [Accepted: 05/27/2023] [Indexed: 07/03/2023]
Abstract
The complex heterogenic environment of tumour mass often leads to drug resistance and facilitate chemo insensitivity triggering more malignant phenotypes among cancer patients. Major DNA-damaging cancer drugs have been consistently proven unsuccessful in terms of elevating chemo-resistance. (±)-peharmaline A, a hybrid natural product isolated from seeds of Peganum harmala L. possesses significant cytotoxic activities. Herein, we have described the design, and synthesis of a novel library of close and simplified analogues around the anticancer natural product (±)-peharmaline A and investigated their cytotoxic activities, which led to the identification of three structurally simplified lead compounds exhibiting better potency than parent natural product. Among them, demethoxy analogue of peharmaline A was further investigated for its anticancer potential eliciting demethoxy analogue as potent DNA-damage inducing agent attenuating the expression of the proteins responsible for the DNA damage repair. Therefore, this demethoxy analogue warrants detailed investigations for the confirmations of the molecular mechanism-based studies responsible for its anticancer activity. ______________________________________________________________________________.
Collapse
Affiliation(s)
- Akshay S Kulkarni
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anshurekha Dash
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India; Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Rahul D Shingare
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jagdish Chand
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Diksha Manhas
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India; Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Aman Singh
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India
| | - Utpal Nandi
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India; Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Anindya Goswami
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India; Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India.
| | - D Srinivasa Reddy
- Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411008, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
14
|
Yang J, Kuang MT, Yang L, Huang W, Hu JM. Modern interpretation of the traditional application of Shihu - A comprehensive review on phytochemistry and pharmacology progress of Dendrobium officinale. JOURNAL OF ETHNOPHARMACOLOGY 2023; 302:115912. [PMID: 36351476 DOI: 10.1016/j.jep.2022.115912] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/20/2022] [Accepted: 11/01/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The traditional Chinese medicine (TCM) "Shihu" has a long history of medicinal use in China from some species of Dendrobium. D. officinale is a major source of "Shihu" and is widely cultivated in south of China and listed separately as "Tiepi Shihu" by the Chinese Pharmacopoeia in now time. Traditionally, D. officinale has been widely used in daily health care and the treatment of diabetes and gastrointestinal diseases. AIM OF THIS REVIEW In order to better develop and utilize D. officinale, we conducted this systematic review of previous studies, showed clear structure of all isolates from D. officinale together with pharmacological progress, hoping to provide references for further research and utilization. In addition, specific display of the chemical components and the research progress of related activities can help to better understand the traditional records and modern pharmaceutical applications of the plant medicine. MATERIALS AND METHODS Information on phytochemistry and pharmacological studies of D. officinale was collected from various scientific databases including Web of Science, SciFinder, ACS, Springer, Scopus, PubMed, ScienceDirect, Google Scholar and CNKI. RESULTS More than 180 compounds isolated from D. officinale, including bibenzyls, phenols, phenylpropanoids, lignans, flavonoids and polysaccharides are listed in this review. Furthermore, modern pharmacological researches such as hypoglycemia, immune regulation, antioxidant, cardiovascular regulation and gastrointestinal protection are summarized. CONCLUSION Based on the summary of the research work of D. officinale, we systematically show the chemical composition of the plant, and concluded the relationship of those composition with plant habitat together with the relationship between the structure of chemical components and pharmacological activity. Moreover, we suggest that some of small molecule compounds could also be quality control of D. officinale besides polysaccharides.
Collapse
Affiliation(s)
- Jie Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Science, Beijing, 100049, China
| | - Meng-Ting Kuang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Bio-Innovation Center of DR PLANT, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Liu Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Bio-Innovation Center of DR PLANT, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Wei Huang
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jiang-Miao Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; Bio-Innovation Center of DR PLANT, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China; University of Chinese Academy of Science, Beijing, 100049, China.
| |
Collapse
|
15
|
Lei P, Chen Q, Chen H, Zhou Y, Jin L, Wang W, Chen F. Synthesis of Bibenzyl Derivatives via Visible-Light-Promoted 1,5-Hydrogen Atom Transfer/Radical Coupling Reactions of N-Fluorocarboxamides. CHINESE J ORG CHEM 2023. [DOI: 10.6023/cjoc202206057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
16
|
Wang J, Luo Z, Lin L, Sui X, Yu L, Xu C, Zhang R, Zhao Z, Zhu Q, An B, Wang Q, Chen B, Leung ELH, Wu Q. Anoikis-Associated Lung Cancer Metastasis: Mechanisms and Therapies. Cancers (Basel) 2022; 14:cancers14194791. [PMID: 36230714 PMCID: PMC9564242 DOI: 10.3390/cancers14194791] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/25/2022] [Accepted: 09/27/2022] [Indexed: 12/08/2022] Open
Abstract
Simple Summary Anoikis is a programmed cell death process resulting from the loss of interaction between cells and the extracellular matrix. Therefore, it is necessary to overcome anoikis when tumor cells acquire metastatic potential. In lung cancer, the composition of the extracellular matrix, cell adhesion-related membrane proteins, cytoskeletal regulators, and epithelial–mesenchymal transition are involved in the process of anoikis, and the initiation of apoptosis signals is a critical step in anoikis. Inversely, activation of growth signals counteracts anoikis. This review summarizes the regulators of lung cancer-related anoikis and explores potential drug applications targeting anoikis. Abstract Tumor metastasis occurs in lung cancer, resulting in tumor progression and therapy failure. Anoikis is a mechanism of apoptosis that combats tumor metastasis; it inhibits the escape of tumor cells from the native extracellular matrix to other organs. Deciphering the regulators and mechanisms of anoikis in cancer metastasis is urgently needed to treat lung cancer. Several natural and synthetic products exhibit the pro-anoikis potential in lung cancer cells and in vivo models. These products include artonin E, imperatorin, oroxylin A, lupalbigenin, sulforaphane, renieramycin M, avicequinone B, and carbenoxolone. This review summarizes the current understanding of the molecular mechanisms of anoikis regulation and relevant regulators involved in lung cancer metastasis and discusses the therapeutic potential of targeting anoikis in the treatment of lung cancer metastasis.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
- Northeast Asia Research Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130117, China
| | - Zhijie Luo
- The First Clinical Medical College, The First Hospital Affiliated, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Lizhu Lin
- The First Clinical Medical College, The First Hospital Affiliated, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xinbing Sui
- School of Pharmacy, Department of Medical Oncology, Hangzhou Normal University, Hangzhou 311121, China
| | - Lili Yu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Cong Xu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Ruonan Zhang
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Ziming Zhao
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Qianru Zhu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Bo An
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Qiao Wang
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Bi Chen
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Elaine Lai-Han Leung
- Cancer Center, Faculty of Health Science, MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau 999078, China
- Correspondence: (E.L.-H.L.); (Q.W.)
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong University of Technology, Guangzhou 510006, China
- Zhuhai MUST Science and Technology Research Institute, Zhuhai 519031, China
- Correspondence: (E.L.-H.L.); (Q.W.)
| |
Collapse
|
17
|
Jones C, Dziadowicz S, Suite S, Eby A, Chen WC, Hu G, Hazlehurst LA. Emergence of Resistance to MTI-101 Selects for a MET Genotype and Phenotype in EGFR Driven PC-9 and PTEN Deleted H446 Lung Cancer Cell Lines. Cancers (Basel) 2022; 14:3062. [PMID: 35804837 PMCID: PMC9264848 DOI: 10.3390/cancers14133062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/31/2022] [Accepted: 06/20/2022] [Indexed: 12/04/2022] Open
Abstract
MTI-101 is a first-in-class cyclic peptide that kills cells via calcium overload in a caspase-independent manner. Understanding biomarkers of response is critical for positioning a novel therapeutic toward clinical development. Isogenic MTI-101-acquired drug-resistant lung cancer cell line systems (PC-9 and H446) coupled with differential RNA-SEQ analysis indicated that downregulated genes were enriched in the hallmark gene set for epithelial-to-mesenchymal transition (EMT) in both MTI-101-acquired resistant cell lines. The RNA-SEQ results were consistent with changes in the phenotype, including a decreased invasion in Matrigel and expression changes in EMT markers (E-cadherin, vimentin and Twist) at the protein level. Furthermore, in the EGFR-driven PC-9 cell line, selection for resistance towards MTI-101 resulted in collateral sensitivity toward EGFR inhibitors. MTI-101 treatment showed synergistic activity with the standard of care agents erlotinib, osimertinib and cisplatin when used in combination in PC-9 and H446 cells, respectively. Finally, in vivo data indicate that MTI-101 treatment selects for increased E-cadherin and decreased vimentin in H446, along with a decreased incident of bone metastasis in the PC-9 in vivo model. Together, these data indicate that chronic MTI-101 treatment can lead to a change in cell state that could potentially be leveraged therapeutically to reduce metastatic disease.
Collapse
Affiliation(s)
- Clark Jones
- Department of Pharmaceutical Sciences, School of Pharmacy West Virginia University, Morgantown, WV 26505, USA;
| | - Sebastian Dziadowicz
- Department of Microbiology, Immunology and Cell Biology School of Medicine, West Virginia University, Morgantown, WV 26501, USA; (S.D.); (G.H.)
| | - Samuel Suite
- Modulation Therapeutics Inc., Morgantown, WV 26506, USA;
| | - Ashley Eby
- Cancer Institute, West Virginia University, Morgantown, WV 26501, USA; (A.E.); (W.-C.C.)
| | - Wei-Chih Chen
- Cancer Institute, West Virginia University, Morgantown, WV 26501, USA; (A.E.); (W.-C.C.)
| | - Gangqing Hu
- Department of Microbiology, Immunology and Cell Biology School of Medicine, West Virginia University, Morgantown, WV 26501, USA; (S.D.); (G.H.)
- Cancer Institute, West Virginia University, Morgantown, WV 26501, USA; (A.E.); (W.-C.C.)
| | - Lori A. Hazlehurst
- Department of Pharmaceutical Sciences, School of Pharmacy West Virginia University, Morgantown, WV 26505, USA;
- Cancer Institute, West Virginia University, Morgantown, WV 26501, USA; (A.E.); (W.-C.C.)
| |
Collapse
|
18
|
Pujari I, Sengupta R, Babu VS. Docking and ADMET studies for investigating the anticancer potency of Moscatilin on APC10/DOC1 and PKM2 against five clinical drugs. J Genet Eng Biotechnol 2021; 19:161. [PMID: 34665359 PMCID: PMC8526629 DOI: 10.1186/s43141-021-00256-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 09/26/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Moscatilin is a bibenzyl derivative (stilbenoid), mainly found in Dendrobium species. This plant-derived chemical is a potential cytotoxic anticancer drug that acts against different cancer types. The present study compared the structural interactions of Moscatilin along with five clinically relevant drugs against two target proteins, viz., Anaphase-Promoting Complex subunit 10/Death of Cyclase 1 and Pyruvate Kinase Muscle isozyme M2 in silico. Out of five clinical ligands, four were plant-derived compounds, viz., Resveratrol, Paclitaxel, Shikonin, and Colchicine. The synthetic chemotherapeutic agent, Mitomycin-C, was used as a ligand to compare the mechanistic insights. The objective of the study was to determine the anticancer potency of Moscatilin in silico. RESULTS Moscatilin was found to have an advantage over other drugs of interest due to its structural simplicity and folding bridge connecting the bibenzyl structures. Moscatilin exhibited dual function by exclusively affecting the cancer cells, creating instabilities in biochemical and molecular cascades. CONCLUSIONS The study demonstrates that Moscatilin is has a multi-antimetastatic function. Moscatilin interaction with APC10/DOC1 indicated that the drug is involved with post-replicative inhibition, and with PKM2 showed glycolytic pathway inhibition in cancer cells. Moscatilin can function as an effective cell cycle inhibitor.
Collapse
Affiliation(s)
- Ipsita Pujari
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, 576104, India
| | - Ritobrata Sengupta
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, 576104, India
| | - Vidhu Sankar Babu
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, 576104, India.
| |
Collapse
|
19
|
Nonpanya N, Sanookpan K, Joyjamras K, Wichadakul D, Sritularak B, Chaotham C, Chanvorachote P. Norcycloartocarpin targets Akt and suppresses Akt-dependent survival and epithelial-mesenchymal transition in lung cancer cells. PLoS One 2021; 16:e0254929. [PMID: 34383763 PMCID: PMC8360371 DOI: 10.1371/journal.pone.0254929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/06/2021] [Indexed: 12/24/2022] Open
Abstract
In searching for novel targeted therapeutic agents for lung cancer treatment, norcycloartocarpin from Artocarpus gomezianus was reported in this study to promisingly interacted with Akt and exerted the apoptosis induction and epithelial-to-mesenchymal transition suppression. Selective cytotoxic profile of norcycloartocarpin was evidenced with approximately 2-fold higher IC50 in normal dermal papilla cells (DPCs) compared with human lung cancer A549, H460, H23, and H292 cells. We found that norcycloartocarpin suppressed anchorage-independent growth, cell migration, invasion, filopodia formation, and decreased EMT in a dose-dependent manner at 24 h, which were correlated with reduced protein levels of N-cadherin, Vimentin, Slug, p-FAK, p-Akt, as well as Cdc42. In addition, norcycloartocarpin activated apoptosis caspase cascade associating with restoration of p53, down-regulated Bcl-2 and augmented Bax in A549 and H460 cells. Interestingly, norcycloartocarpin showed potential inhibitory role on protein kinase B (Akt) the up-stream dominant molecule controlling EMT and apoptosis. Computational molecular docking analysis further confirmed that norcycloartocarpin has the best binding affinity of -12.52 kcal/mol with Akt protein at its critical active site. As Akt has recently recognized as an attractive molecular target for therapeutic approaches, these findings support its use as a plant-derived anticancer agent in cancer therapy.
Collapse
Affiliation(s)
- Nongyao Nonpanya
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Kittipong Sanookpan
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Keerati Joyjamras
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Graduate Program of Pharmaceutical Sciences and Technology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Duangdao Wichadakul
- Department of Computer Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Boonchoo Sritularak
- Departments of Pharmacognosy and Pharmaceutical Botany, Chulalongkorn University, Bangkok, Thailand
| | - Chatchai Chaotham
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Pithi Chanvorachote
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
20
|
Datta A, Deng S, Gopal V, Yap KCH, Halim CE, Lye ML, Ong MS, Tan TZ, Sethi G, Hooi SC, Kumar AP, Yap CT. Cytoskeletal Dynamics in Epithelial-Mesenchymal Transition: Insights into Therapeutic Targets for Cancer Metastasis. Cancers (Basel) 2021; 13:1882. [PMID: 33919917 PMCID: PMC8070945 DOI: 10.3390/cancers13081882] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 12/14/2022] Open
Abstract
In cancer cells, a vital cellular process during metastasis is the transformation of epithelial cells towards motile mesenchymal cells called the epithelial to mesenchymal transition (EMT). The cytoskeleton is an active network of three intracellular filaments: actin cytoskeleton, microtubules, and intermediate filaments. These filaments play a central role in the structural design and cell behavior and are necessary for EMT. During EMT, epithelial cells undergo a cellular transformation as manifested by cell elongation, migration, and invasion, coordinated by actin cytoskeleton reorganization. The actin cytoskeleton is an extremely dynamic structure, controlled by a balance of assembly and disassembly of actin filaments. Actin-binding proteins regulate the process of actin polymerization and depolymerization. Microtubule reorganization also plays an important role in cell migration and polarization. Intermediate filaments are rearranged, switching to a vimentin-rich network, and this protein is used as a marker for a mesenchymal cell. Hence, targeting EMT by regulating the activities of their key components may be a potential solution to metastasis. This review summarizes the research done on the physiological functions of the cytoskeleton, its role in the EMT process, and its effect on multidrug-resistant (MDR) cancer cells-highlight some future perspectives in cancer therapy by targeting cytoskeleton.
Collapse
Affiliation(s)
- Arpita Datta
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (A.D.); (S.D.); (V.G.); (K.C.-H.Y.); (C.E.H.); (M.L.L.); (M.S.O.); (S.C.H.)
| | - Shuo Deng
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (A.D.); (S.D.); (V.G.); (K.C.-H.Y.); (C.E.H.); (M.L.L.); (M.S.O.); (S.C.H.)
| | - Vennila Gopal
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (A.D.); (S.D.); (V.G.); (K.C.-H.Y.); (C.E.H.); (M.L.L.); (M.S.O.); (S.C.H.)
| | - Kenneth Chun-Hong Yap
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (A.D.); (S.D.); (V.G.); (K.C.-H.Y.); (C.E.H.); (M.L.L.); (M.S.O.); (S.C.H.)
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore;
| | - Clarissa Esmeralda Halim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (A.D.); (S.D.); (V.G.); (K.C.-H.Y.); (C.E.H.); (M.L.L.); (M.S.O.); (S.C.H.)
| | - Mun Leng Lye
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (A.D.); (S.D.); (V.G.); (K.C.-H.Y.); (C.E.H.); (M.L.L.); (M.S.O.); (S.C.H.)
| | - Mei Shan Ong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (A.D.); (S.D.); (V.G.); (K.C.-H.Y.); (C.E.H.); (M.L.L.); (M.S.O.); (S.C.H.)
| | - Tuan Zea Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117593, Singapore;
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore;
- Cancer Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Shing Chuan Hooi
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (A.D.); (S.D.); (V.G.); (K.C.-H.Y.); (C.E.H.); (M.L.L.); (M.S.O.); (S.C.H.)
- Cancer Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore;
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117593, Singapore;
- Cancer Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
- National University Cancer Institute, National University Health System, Singapore 119074, Singapore
| | - Celestial T. Yap
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore; (A.D.); (S.D.); (V.G.); (K.C.-H.Y.); (C.E.H.); (M.L.L.); (M.S.O.); (S.C.H.)
- Cancer Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
- National University Cancer Institute, National University Health System, Singapore 119074, Singapore
| |
Collapse
|
21
|
Erianthridin suppresses non-small-cell lung cancer cell metastasis through inhibition of Akt/mTOR/p70 S6K signaling pathway. Sci Rep 2021; 11:6618. [PMID: 33758209 PMCID: PMC7987990 DOI: 10.1038/s41598-021-85675-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/04/2021] [Indexed: 01/31/2023] Open
Abstract
Cancer metastasis is a major cause of the high mortality rate in lung cancer patients. The cytoskeletal rearrangement and degradation of extracellular matrix are required to facilitate cell migration and invasion and the suppression of these behaviors is an intriguing approach to minimize cancer metastasis. Even though Erianthridin (ETD), a phenolic compound isolated from the Thai orchid Dendrobium formosum exhibits various biological activities, the molecular mechanism of ETD for anti-cancer activity is unclear. In this study, we found that noncytotoxic concentrations of ETD (≤ 50 μM) were able to significantly inhibit cell migration and invasion via disruption of actin stress fibers and lamellipodia formation. The expression of matrix metalloproteinase-2 (MMP-2) and MMP-9 was markedly downregulated in a dose-dependent manner after ETD treatment. Mechanistic studies revealed that protein kinase B (Akt) and its downstream effectors mammalian target of rapamycin (mTOR) and p70 S6 kinase (p70S6K) were strongly attenuated. An in silico study further demonstrated that ETD binds to the protein kinase domain of Akt with both hydrogen bonding and van der Waals interactions. In addition, an in vivo tail vein injection metastasis study demonstrated a significant effect of ETD on the suppression of lung cancer cell metastasis. This study provides preclinical information regarding ETD, which exhibits promising antimetastatic activity against non-small-cell lung cancer through Akt/mTOR/p70S6K-induced actin reorganization and MMPs expression.
Collapse
|
22
|
Yu CL, Weng MS, Chen WC, Chien KT, Chi CW, Chung CH, Huang CW, Wang PC, Chen CC, Tsai AC, Liu SC, Wang SW. Moscatilin Inhibits Metastatic Behavior of Human Hepatocellular Carcinoma Cells: A Crucial Role of uPA Suppression via Akt/NF-κB-Dependent Pathway. Int J Mol Sci 2021; 22:ijms22062930. [PMID: 33805784 PMCID: PMC8002083 DOI: 10.3390/ijms22062930] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/05/2021] [Accepted: 03/10/2021] [Indexed: 12/28/2022] Open
Abstract
Hepatocellular carcinoma (HCC) frequently shows early invasion into blood vessels as well as intrahepatic metastasis. Innovations of novel small-molecule agents to block HCC invasion and subsequent metastasis are urgently needed. Moscatilin is a bibenzyl derivative extracted from the stems of a traditional Chinese medicine, orchid Dendrobium loddigesii. Although moscatilin has been reported to suppress tumor angiogenesis and growth, the anti-metastatic property of moscatilin has not been elucidated. The present results revealed that moscatilin inhibited metastatic behavior of HCC cells without cytotoxic fashion in highly invasive human HCC cell lines. Furthermore, moscatilin significantly suppressed the activity of urokinase plasminogen activator (uPA), but not matrix metalloproteinase (MMP)-2 and MMP-9. Interestingly, moscatilin-suppressed uPA activity was through down-regulation the protein level of uPA, and did not impair the uPA receptor and uPA inhibitory molecule (PAI-1) expressions. Meanwhile, the mRNA expression of uPA was inhibited via moscatilin in a concentration-dependent manner. In addition, the expression of phosphorylated Akt, rather than ERK1/2, was inhibited by moscatilin treatment. The expression of phosphor-IκBα, and -p65, as well as κB-luciferase activity were also repressed after moscatilin treatment. Transfection of constitutively active Akt (Myr-Akt) obviously restored the moscatilin-inhibited the activation of NF-κB and uPA, and cancer invasion in HCC cells. Taken together, these results suggest that moscatilin impedes HCC invasion and uPA expression through the Akt/NF-κB signaling pathway. Moscatilin might serve as a potential anti-metastatic agent against the disease progression of human HCC.
Collapse
Affiliation(s)
- Chen-Lin Yu
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City 252, Taiwan; (C.-L.Y.); (C.-W.H.)
- Department of Medicine, MacKay Medical College, New Taipei City 252, Taiwan; (W.-C.C.); (C.-H.C.)
| | - Meng-Shih Weng
- Department of Nutritional Science, Fu Jen Catholic University, New Taipei City 252, Taiwan;
| | - Wei-Cheng Chen
- Department of Medicine, MacKay Medical College, New Taipei City 252, Taiwan; (W.-C.C.); (C.-H.C.)
- Department of Orthopedic Surgery, MacKay Memorial Hospital, Taipei 104, Taiwan;
| | - Kai-Ting Chien
- Department of Orthopedic Surgery, MacKay Memorial Hospital, Taipei 104, Taiwan;
| | - Chih-Wen Chi
- Department of Medical Research, MacKay Memorial Hospital, New Taipei City 252, Taiwan;
| | - Ching-Hu Chung
- Department of Medicine, MacKay Medical College, New Taipei City 252, Taiwan; (W.-C.C.); (C.-H.C.)
| | - Chia-Wen Huang
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City 252, Taiwan; (C.-L.Y.); (C.-W.H.)
| | - Po-Chuan Wang
- Department of Gastroenterology, Hsinchu MacKay Memorial Hospital, Hsinchu City 300, Taiwan;
| | - Chien-Chih Chen
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei 104, Taiwan;
| | - An-Chi Tsai
- Pharmacological Institutes, College of Medicine, National Taiwan University, Taipei 104, Taiwan;
| | - Shih-Chia Liu
- Department of Orthopedic Surgery, MacKay Memorial Hospital, Taipei 104, Taiwan;
- Correspondence: (S.-C.L.); (S.-W.W.); Tel.: +886-2-25433535 (S.-C.L.); +886-2-26360303 (S.-W.W.)
| | - Shih-Wei Wang
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City 252, Taiwan; (C.-L.Y.); (C.-W.H.)
- Department of Medicine, MacKay Medical College, New Taipei City 252, Taiwan; (W.-C.C.); (C.-H.C.)
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Correspondence: (S.-C.L.); (S.-W.W.); Tel.: +886-2-25433535 (S.-C.L.); +886-2-26360303 (S.-W.W.)
| |
Collapse
|
23
|
Que ZJ, Yang Y, Liu HT, Shang-Guan WJ, Yu P, Zhu LH, Li HG, Liu HM, Tian JH. Jinfukang regulates integrin/Src pathway and anoikis mediating circulating lung cancer cells migration. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113473. [PMID: 33068649 DOI: 10.1016/j.jep.2020.113473] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/30/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Metastasis is the main cause of death in lung cancer patients. Circulating tumor cells (CTCs) may be an important target of metastasis intervention. Previous studies have shown that Jinfukang could prevent the recurrence and metastasis of lung cancer, and we have established a circulating lung tumor cell line CTC-TJH-01. However, whether Jinfukang inhibition of lung cancer metastasis is related to CTCs is still unknown. AIM OF THE STUDY To further explore the mechanism of Jinfukang in anti-metastasis of lung cancer from the perspective of intervention of CTCs. MATERIALS AND METHODS CTC-TJH-01 and H1975 cells were treated with Jinfukang. Cell viability was detected by CCK8, and the cell apoptosis was detected by flow cytometry. Transwell was used to detected cell migration and invasion. Cell anoikis was detected by anoikis detection kit. Protein expression was analysis by Western blot. RESULTS Jinfukang could inhibit the proliferation, migration and invasion of CTC-TJH-01 and H1975 cells. Besides, Jinfukang could also induce anoikis in CTC-TJH-01 and H1975 cells. Analysis of the mRNA expression profile showed ECM-receptor interaction and focal adhesion were regulated by Jinfukang. Moreover, it was also find that Jinfukang significantly inhibited integrin/Src pathway in CTC-TJH-01 and H1975 cells. When suppress the expression of integrin with ATN-161, it could promote Jinfukang to inhibit migration and induce anoikis in CTC-TJH-01 and H1975 cells. CONCLUSIONS Our results indicate that the migration and invasion of CTCs are inhibited by Jinfukang, and the mechanism may involve the suppression of integrin/Src axis to induce anoikis. These data suggest that Jinfukang exerts anti-metastatic effects in lung cancer may through anoikis.
Collapse
Affiliation(s)
- Zu-Jun Que
- Institute of Traditional Chinese Medicine Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Yun Yang
- Department of Oncology, Shanghai Traditional Chinese Medicine-Intergrated Hospital, Shanghai, China.
| | - Hai-Tao Liu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Wen-Ji Shang-Guan
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Pan Yu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Li-Hua Zhu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - He-Gen Li
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| | - Huai-Min Liu
- Department of Integrative Oncology, Affiliated Cancer Hospital of Zhengzhou University, Henan Province, China.
| | - Jian-Hui Tian
- Institute of Traditional Chinese Medicine Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
24
|
Chakraborty S, Mir KB, Seligson ND, Nayak D, Kumar R, Goswami A. Integration of EMT and cellular survival instincts in reprogramming of programmed cell death to anastasis. Cancer Metastasis Rev 2021; 39:553-566. [PMID: 32020420 DOI: 10.1007/s10555-020-09866-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Apoptosis is a tightly controlled, coordinated cellular event responsible for inducing programmed cell death to rid the body of defective or unfit cells. Inhibition of apoptosis is, therefore, an essential process for cancer cells to harness. Genomic variants in apoptotic-controlling genes are highly prevalent in cancer and have been identified to induce pro-proliferation and pro-survival pathways, rendering cancer cells resistant to apoptosis. Traditional understanding of apoptosis defines it as an irreversible process; however, growing evidence suggests that apoptosis is a reversible process from which cells can escape, even after the activation of its most committed stages. The mechanism invoked to reverse apoptosis has been termed anastasis and poses challenges for the development and utilization of chemotherapeutic agents. Anastasis has also been identified as a mechanism by which cells can recover from apoptotic lesions and revert back to its previous functioning state. In this review, we intend to focus the attention of the reader on the comprehensive role of survival, metastasis, and epithelial mesenchymal transition (EMT), as well as DNA damage repair mechanisms in promoting anastasis. Additionally, we will emphasize the mechanistic consequences of anastasis on drug resistance and recent rational therapeutic approaches designed to combat this resistance.
Collapse
Affiliation(s)
- Souneek Chakraborty
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India.,Academy of Scientific & Innovative Research (AcSIR), CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Khalid Bashir Mir
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India.,Academy of Scientific & Innovative Research (AcSIR), CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India
| | - Nathan D Seligson
- Department of Pharmacotherapy and Translational Research, The University of Florida, Jacksonville, FL, USA.,Department of Hematology and Oncology, Nemours Children's Specialty Care, Jacksonville, FL, USA
| | - Debasis Nayak
- College of Pharmacy, The Ohio State University, 540 Riffe Building, 496 West 12th Ave, Columbus, OH, 43210, USA
| | - Rakesh Kumar
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, 182320, India
| | - Anindya Goswami
- Cancer Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India. .,Academy of Scientific & Innovative Research (AcSIR), CSIR- Indian Institute of Integrative Medicine, Canal Road, Jammu, 180001, India.
| |
Collapse
|
25
|
Li Z, Paulin D, Lacolley P, Coletti D, Agbulut O. Vimentin as a target for the treatment of COVID-19. BMJ Open Respir Res 2020; 7:7/1/e000623. [PMID: 32913008 PMCID: PMC7482103 DOI: 10.1136/bmjresp-2020-000623] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/18/2022] Open
Abstract
We and others propose vimentin as a possible cellular target for the treatment of COVID-19. This innovative idea is so recent that it requires further attention and debate. The significant role played by vimentin in virus-induced infection however is well established: (1) vimentin has been reported as a co-receptor and/or attachment site for SARS-CoV; (2) vimentin is involved in viral replication in cells; (3) vimentin plays a fundamental role in both the viral infection and the consequent explosive immune-inflammatory response and (4) a lower vimentin expression is associated with the inhibition of epithelial to mesenchymal transition and fibrosis. Moreover, the absence of vimentin in mice makes them resistant to lung injury. Since vimentin has a twofold role in the disease, not only being involved in the viral infection but also in the associated life-threatening lung inflammation, the use of vimentin-targeted drugs may offer a synergistic advantage as compared with other treatments not targeting vimentin. Consequently, we speculate here that drugs which decrease the expression of vimentin can be used for the treatment of patients with COVID-19 and advise that several Food and Drug Administration-approved drugs be immediately tested in clinical trials against SARS-CoV-2, thus broadening therapeutic options for this type of viral infection.
Collapse
Affiliation(s)
- Zhenlin Li
- Biological Adaptation and Ageing, CNRS UMR 8256, Inserm U1164, Sorbonne Université, Institut de Biologie Paris-Seine, Paris, France
| | - Denise Paulin
- Biological Adaptation and Ageing, CNRS UMR 8256, Inserm U1164, Sorbonne Université, Institut de Biologie Paris-Seine, Paris, France
| | - Patrick Lacolley
- Inserm, UMR_S 1116, DCAC, Université de Lorraine, Nancy, Lorraine, France
| | - Dario Coletti
- Biological Adaptation and Ageing, CNRS UMR 8256, Inserm U1164, Sorbonne Université, Institut de Biologie Paris-Seine, Paris, France.,Department of Anatomy, Histology, Forensic Medicine & Orthopedics, Histology & Medical Embryology Section, Sapienza University of Rome, Roma, Lazio, Italy
| | - Onnik Agbulut
- Biological Adaptation and Ageing, CNRS UMR 8256, Inserm U1164, Sorbonne Université, Institut de Biologie Paris-Seine, Paris, France
| |
Collapse
|
26
|
Khoonrit P, Mirdogan A, Dehlinger A, Mekboonsonglarp W, Likhitwitayawuid K, Priller J, Böttcher C, Sritularak B. Immune modulatory effect of a novel 4,5-dihydroxy-3,3´,4´-trimethoxybibenzyl from Dendrobium lindleyi. PLoS One 2020; 15:e0238509. [PMID: 32870935 PMCID: PMC7462310 DOI: 10.1371/journal.pone.0238509] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 08/18/2020] [Indexed: 12/18/2022] Open
Abstract
Dendrobium bibenzyls and phenanthrenes such as chrysotoxine, cypripedin, gigantol and moscatilin have been reported to show promising inhibitory effects on lung cancer growth and metastasis in ex vivo human cell line models, suggesting their potential for clinical application in patients with lung cancer. However, it remains to be determined whether these therapeutic effects can be also seen in primary human cells and/or in vivo. In this study, we comparatively investigated the immune modulatory effects of bibenzyls and phenanthrenes, including a novel Dendrobium bibenzyl derivative, in primary human monocytes. All compounds were isolated and purified from a Thai orchid Dendrobium lindleyi Steud, a new source of therapeutic compounds with promising potential of tissue culture production. We detected increased frequencies of TNF- and IL-6-expressing monocytes after treatment with gigantol and cypripedin, whereas chrysotoxine and moscatilin did not alter the expression of these cytokines in monocytes. Interestingly, the new 4,5-dihydroxy-3,3′,4′-trimethoxybibenzyl derivative showed dose-dependent immune modulatory effects in lipopolysaccharide (LPS)-treated CD14lo and CD14hi monocytes. Together, our findings show immune modulatory effects of the new bibenzyl derivative from Dendrobium lindleyi on different monocyte sub-populations. However, therapeutic consequences of these different monocyte populations on human diseases including cancer remain to be investigated.
Collapse
Affiliation(s)
- Pichayatri Khoonrit
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Alp Mirdogan
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité –Universitätsmedizin Berlin, Berlin, Germany
| | - Adeline Dehlinger
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité –Universitätsmedizin Berlin, Berlin, Germany
| | - Wanwimon Mekboonsonglarp
- Scientific and Technological Research Equipment Centre, Chulalongkorn University, Bangkok, Thailand
| | - Kittisak Likhitwitayawuid
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Josef Priller
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité –Universitätsmedizin Berlin, Berlin, Germany
| | - Chotima Böttcher
- Department of Neuropsychiatry and Laboratory of Molecular Psychiatry, Charité –Universitätsmedizin Berlin, Berlin, Germany
- * E-mail: (CB); (BS)
| | - Boonchoo Sritularak
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Natural Products for Ageing and Chronic Diseases Research Unit, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- * E-mail: (CB); (BS)
| |
Collapse
|
27
|
Emerging role of phytochemicals in targeting predictive, prognostic, and diagnostic biomarkers of lung cancer. Food Chem Toxicol 2020; 144:111592. [PMID: 32702507 DOI: 10.1016/j.fct.2020.111592] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023]
Abstract
Lung-cancer is the foremost cause of cancer in humans worldwide, of which 80-85% cases are composed of non-small cell lung carcinoma. All treatment decisions depend on the pattern of biomarkers selection to enhance the response to the targeted therapies. Although advanced treatments are available for lung-cancer, the disease treatment remains not adequate. There are several synthetic chemotherapeutic agents available for the treatment of lung cancer. However, due to their toxic effect, survival rate is still 15-18%. Besides, medicinal plants are a huge reservoir of natural products that provide protective effects against lung cancer. Likewise, successful studies of potential phytochemicals in targeting lung-cancer biomarkers have created a novel paradigm for the discovery of potent drugs against lung-cancer. Hence, to defeat severe toxicity and resistance towards the synthetic drugs, detailed studies are required regarding the available phytochemicals and targets responsible for the treatment of lung-cancer. The present review provides a comprehensive information about the lung-cancer biomarkers under the classification of predictive, prognostic, and diagnostic type. Moreover, it discusses and enlists the phytochemicals with mode of action against different biomarkers, effective doses in in vitro, in vivo, and clinical studies, the limitations associated with usage of phytochemicals as a drug to prevent/cure lung-cancer and the latest techniques employed to overcome such issues.
Collapse
|
28
|
Shi YB, Li J, Lai XN, Jiang R, Zhao RC, Xiong LX. Multifaceted Roles of Caveolin-1 in Lung Cancer: A New Investigation Focused on Tumor Occurrence, Development and Therapy. Cancers (Basel) 2020; 12:cancers12020291. [PMID: 31991790 PMCID: PMC7073165 DOI: 10.3390/cancers12020291] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/13/2020] [Accepted: 01/22/2020] [Indexed: 12/26/2022] Open
Abstract
Lung cancer is one of the most common and malignant cancers with extremely high morbidity and mortality in both males and females. Although traditional lung cancer treatments are fast progressing, there are still limitations. Caveolin-1 (Cav-1), a main component of caveolae, participates in multiple cellular events such as immune responses, endocytosis, membrane trafficking, cellular signaling and cancer progression. It has been found tightly associated with lung cancer cell proliferation, migration, apoptosis resistance and drug resistance. In addition to this, multiple bioactive molecules have been confirmed to target Cav-1 to carry on their anti-tumor functions in lung cancers. Cav-1 can also be a predictor for lung cancer patients’ prognosis. In this review, we have summarized the valuable research on Cav-1 and lung cancer in recent years and discussed the multifaceted roles of Cav-1 on lung cancer occurrence, development and therapy, hoping to provide new insights into lung cancer treatment.
Collapse
Affiliation(s)
- Yu-Bo Shi
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (Y.-B.S.); (J.L.); (X.-N.L.); (R.-C.Z.)
- Queen Mary School, Jiangxi Medical College of Nanchang University, Nanchang 330006, China;
| | - Jun Li
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (Y.-B.S.); (J.L.); (X.-N.L.); (R.-C.Z.)
- Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Xing-Ning Lai
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (Y.-B.S.); (J.L.); (X.-N.L.); (R.-C.Z.)
- Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Rui Jiang
- Queen Mary School, Jiangxi Medical College of Nanchang University, Nanchang 330006, China;
| | - Rui-Chen Zhao
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (Y.-B.S.); (J.L.); (X.-N.L.); (R.-C.Z.)
- Queen Mary School, Jiangxi Medical College of Nanchang University, Nanchang 330006, China;
| | - Li-Xia Xiong
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (Y.-B.S.); (J.L.); (X.-N.L.); (R.-C.Z.)
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Nanchang 330006, China
- Correspondence: ; Tel.: +86-791-8636-0556
| |
Collapse
|
29
|
Ueno M, Kawai M, Park JY, Hirono S, Okada KI, Hayami S, Wang HJ, Yamaue H. Prognostic Analysis of Hepatocellular Carcinoma With Hepatitis C Virus Infection Using Epithelial-Mesenchymal Transition Gene Profiles. J Surg Res 2019; 245:302-308. [PMID: 31421377 DOI: 10.1016/j.jss.2019.07.077] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/24/2019] [Accepted: 07/19/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND Epithelial-mesenchymal transition genes have prognostic influence on hepatocellular carcinoma (HCC). Previously, the following four epithelial-mesenchymal transition-related genes were considered to be significantly influential: E-cadherin (CDH1), inhibitor of DNA binding 2 (ID2), matrix metalloproteinase 9 (MMP9), and transcription factor 3 (TCF3). A prognostic prediction model, NRISK4 = (-0.333 × [CDH1] - 0.400 × [ID2] + 0.339 × [MMP9] + 0.387 × [TCF3]) was constructed, but from patients with HCC with predominantly hepatitis B virus infection. We therefore aim to validate if this model also fits patients with HCC and hepatitis C virus (HCV) infection. METHODS We collected HCC tissue samples from 67 patients with HCV infection. Discrimination of the NRISK4 was re-estimated using receiver operating curve analysis and we redefined the appropriate cutoff value. Using this cutoff value, patients were divided into two groups (high/low risk patients) and we compared their clinicopathological factors and prognosis. RESULTS Area under the curve of NRISK4 prediction was 0.70 and an appropriate cutoff value was 3.19 in this cohort. Patients were divided into high- (n = 25) and low-risk (n = 42) patients for prognosis. There were no significant differences in tumor factors between the two groups. Cancer-specific survival rates at 5 y after surgery on high- and low-risk patients were 45% and 68%, respectively (P = 0.02). At 2 y after surgery, recurrence rates were 68% and 37% among high- and low-risk patients, respectively (P = 0.01). Aggressive recurrences were highly observed in the high-risk patients (P = 0.01). CONCLUSIONS NRISK4 model could also successfully validate prognosis of patients with HCC with HCV infection similarly to in the previous report of patients with hepatitis B virus infection, especially in the early period after surgery.
Collapse
Affiliation(s)
- Masaki Ueno
- Second Department of Surgery, Wakayama Medical University, Wakayama, Japan
| | - Manabu Kawai
- Second Department of Surgery, Wakayama Medical University, Wakayama, Japan
| | | | - Seiko Hirono
- Second Department of Surgery, Wakayama Medical University, Wakayama, Japan
| | - Ken-Ichi Okada
- Second Department of Surgery, Wakayama Medical University, Wakayama, Japan
| | - Shinya Hayami
- Second Department of Surgery, Wakayama Medical University, Wakayama, Japan
| | - Hee-Jung Wang
- Department of Surgery, Ajou University School of Medicine, Suwon, Korea
| | - Hiroki Yamaue
- Second Department of Surgery, Wakayama Medical University, Wakayama, Japan.
| |
Collapse
|
30
|
Huang JM, Huang FI, Yang CR. Moscatilin Ameliorates Tau Phosphorylation and Cognitive Deficits in Alzheimer's Disease Models. JOURNAL OF NATURAL PRODUCTS 2019; 82:1979-1988. [PMID: 31291099 DOI: 10.1021/acs.jnatprod.9b00375] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease and a common cause of dementia, manifesting as progressive memory loss and cognitive decline. Moscatilin, which reportedly reduces fever and is anti-inflammatory, is the bibenzyl extract from Dendrobium loddigesii. This study aimed to examine whether moscatilin ameliorates tau phosphorylation and cognitive deficits in AD models. The first in vitro AD-like model was developed by cotransfection with the pCAX FLAG APP and pRK5-EGFP-Tau P301L plasmids, resulting in the neuronal overexpression of amyloid precursor protein (APP) and tau P301L, a tauopathy-associated tau. The second model was developed by using okadaic acid to induce tau protein phosphorylation. Spatial memory/cognition was assessed using water maze and elevated plus maze tests in a scopolamine-induced mouse model, and brain slices were evaluated further by immunohistochemistry (IHC). Moscatilin significantly reduced phospho-tau expression in a concentration-dependent manner, decreased tau aggregation, and reduced apoptosis. These results indicated that moscatilin reversed tauopathy through GSK3β inactivation and inhibition of oxidative stress. Furthermore, in vivo data demonstrated that moscatilin ameliorated learning and memory impairments in mice, while IHC and Western blot results of the mouse brain confirmed that moscatilin decreased tau phosphorylation. Our novel findings suggest that moscatilin has neuroprotective effects against AD.
Collapse
Affiliation(s)
- Jou-Man Huang
- School of Pharmacy, College of Medicine , National Taiwan University , Taipei 10050 , Taiwan
| | - Fang-I Huang
- School of Pharmacy, College of Medicine , National Taiwan University , Taipei 10050 , Taiwan
| | - Chia-Ron Yang
- School of Pharmacy, College of Medicine , National Taiwan University , Taipei 10050 , Taiwan
| |
Collapse
|
31
|
Alpha-mangostin, an active compound in Garcinia mangostana, abrogates anoikis-resistance in human hepatocellular carcinoma cells. Toxicol In Vitro 2018; 53:222-232. [PMID: 30195041 DOI: 10.1016/j.tiv.2018.09.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 02/06/2023]
Abstract
Anoikis-resistance is a critical step in cancer progression, especially during the process of metastasis. During this phase, the cancer phenotype that causes cell survival in detachment conditions, drug resistance, and epithelial-to-mesenchymal transition (EMT) is altered. Inhibition of anoikis-resistance can potentially be the molecular target in cancer therapy. Alpha-mangostin, an active compound in Garcinia mangostana, has been reported for its cell-death induction and its chemosensitizing and anti-metastatic properties in many cancer cell types, such as ovarian cancer, lung cancer, and hepatocellular carcinoma. We, therefore, have investigated whether alpha-mangostin could sensitize anoikis in human hepatocellular carcinoma (HepG2). The established anoikis-resistant HepG2 displayed more aggressive malignant behaviors, including rapid proliferation, doxorubicin resistance, up-regulated anti-apoptotic protein levels, and EMT phenotype. Alpha-mangostin significantly sensitized anoikis in HepG2 through the inhibition of cell survival by induced caspase-9, caspase-8 and caspase-3 activities, increased pro-apoptotic protein (Bax, Bim, t-Bid) levels, and decreased anti-apoptotic protein (c-FLIP, Mcl-1) levels. Besides, alpha-mangostin significantly reduced cell re-adhesion and migration, matrix metalloproteinases-2 (MMP-2) and MMP-9 secretions, and EMT-involved protein (N-cadherin, αV, β1 integrin, and vimentin) expressions. AKT and ERK signaling pathways were dramatically suppressed, which indicated that alpha-mangostin inhibited anoikis-resistance via the inhibition of these pathways in HepG2. These findings support the development of alpha-mangostin to be used in the treatment of anoikis-resistant liver cancer.
Collapse
|
32
|
Cypripedin, a phenanthrenequinone from Dendrobium densiflorum, sensitizes non-small cell lung cancer H460 cells to cisplatin-mediated apoptosis. J Nat Med 2018; 72:503-513. [PMID: 29426985 DOI: 10.1007/s11418-018-1176-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Accepted: 01/17/2018] [Indexed: 12/13/2022]
Abstract
The life-threatening potential of lung cancer has increased over the years due to its acquisition of chemotherapeutic resistance, especially to cisplatin, a first-line therapy. In response to this development, researchers have turned their attention to several compounds derived from natural origins, including cypripedin (CYP), a phenanthrenequinone substance extracted from Dendrobium densiflorum. The aim of the present study was to investigate the ability of CYP to induce apoptosis and enhance cisplatin-mediated death of human lung cancer NCI-H460 cells using cell viability and apoptosis assays. The induction of apoptosis by CYP was observed at a concentration of > 50 μM with the appearance of morphological changes, including DNA condensation and chromatin fragmentation. Together with, CYP was able to activate caspase-3 and downregulate the anti-apoptotic proteins Bcl-2 and Bcl-xL. Also, a non-cytotoxic dose of CYP synergistically potentiated the effect of cisplatin in non-small cell lung cancer line H460 cells, which clearly exhibited the apoptotic phenotype. Western blot analysis revealed that the underlying mechanism involved the downregulation of anti-apoptotic Bcl-xL, whereas the levels of other apoptotic regulatory proteins were not altered. This study provides interesting information on the potent effect of CYP as a chemotherapeutic sensitizer that could be further developed to improve the clinical outcomes of lung cancer patients.
Collapse
|
33
|
Petpiroon N, Sritularak B, Chanvorachote P. Phoyunnanin E inhibits migration of non-small cell lung cancer cells via suppression of epithelial-to-mesenchymal transition and integrin αv and integrin β3. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:553. [PMID: 29284478 PMCID: PMC5747023 DOI: 10.1186/s12906-017-2059-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/12/2017] [Indexed: 01/17/2023]
Abstract
BACKGROUND The conversion of the epithelial phenotype of cancer cells into cells with a mesenchymal phenotype-so-called epithelial-mesenchymal transition (EMT)-has been shown to enhance the capacity of the cells to disseminate throughout the body. EMT is therefore becoming a potential target for anti-cancer drug discovery. Here, we showed that phoyunnanin E, a compound isolated from Dendrobium venustum, possesses anti-migration activity and addressed its mechanism of action. METHODS The cytotoxic and proliferative effects of phoyunnanin E on human non-small cell lung cancer-derived H460, H292, and A549 cells and human keratinocyte HaCaT cells were investigated by MTT assay. The effect of phoyunnanin E on EMT was evaluated by determining the colony formation and EMT markers. The migration and invasion of H460, H292, A549 and HaCaT cells was evaluated by wound healing assay and transwell invasion assay, respectively. EMT markers, integrins and migration-associated proteins were examined by western blot analysis. RESULTS Phoyunnanin E at the concentrations of 5 and 10 μM, which are non-toxic to H460, H292, A549 and HaCaT cells showed good potential to inhibit the migratory activity of three types of human lung cancer cells. The anti-migration effect of phoyunnanin E was shown to relate to the suppressed EMT phenotypes, including growth in anchorage-independent condition, cell motility, and EMT-specific protein markers (N-cadherin, vimentin, slug, and snail). In addition to EMT suppression, we found that phoyunnanin E treatment with 5 and 10 μM could decrease the cellular level of integrin αv and integrin β3, these integrins are frequently up-regulated in highly metastatic tumor cells. We further characterized the regulatory proteins in cell migration and found that the cells treated with phoyunnanin E exhibited a significantly lower level of phosphorylated focal adhesion kinase (p-FAK) and phosphorylated ATP-dependent tyrosine kinase (p-AKT), and their downstream effectors (including Ras-related C3 botulinum (Rac-GTP); Cell division cycle 42 (Cdc42); and Ras homolog gene family, member A (Rho-GTP)) in comparison to those of the non-treated control. CONCLUSIONS We have determined for the first time that phoyunnanin E could inhibit the motility of lung cancer cells via the suppression of EMT and metastasis-related integrins. This new information could support further development of this compound for anti-metastasis approaches.
Collapse
|
34
|
Otsuki Y, Saya H, Arima Y. Prospects for new lung cancer treatments that target EMT signaling. Dev Dyn 2017; 247:462-472. [PMID: 28960588 DOI: 10.1002/dvdy.24596] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 09/21/2017] [Accepted: 09/21/2017] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is the most common cancer worldwide. Treatment options for lung cancer include surgery, radiation therapy, chemotherapy, molecularly targeted therapy including epidermal growth factor receptor or anaplastic lymphoma kinase inhibitors, and immunotherapy. These treatments can be administered alone or in combination. Despite therapeutic advances, however, lung cancer remains the leading cause of cancer death. Recent studies have indicated that epithelial-mesenchymal transition (EMT) is associated with malignancy in various types of cancer, and activation of EMT signaling in cancer cells is widely considered to contribute to metastasis, recurrence, or therapeutic resistance. In this review, we provide an overview of the role of EMT in the progression of lung cancer. We also discuss the prospects for new therapeutic strategies that target EMT signaling in lung cancer. Developmental Dynamics 247:462-472, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yuji Otsuki
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Yoshimi Arima
- Division of Gene Regulation, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
35
|
Wu N, He C, Zhu B, Jiang J, Chen Y, Ma T. 3-Phosphoinositide Dependent Protein Kinase-1 (PDK-1) Promotes Migration and Invasion in Gastric Cancer Cells Through Activating the NF-κB Pathway. Oncol Res 2017; 25:1153-1159. [PMID: 28109078 PMCID: PMC7841078 DOI: 10.3727/096504017x14845839228545] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Gastric cancer (GC) is one of the most common cancers and the second leading cause of cancer deaths in the world. Many factors have been reported regarding the progression and development of GC. In this study, we aimed to investigate the correlation of 3-phosphoinositide dependent protein kinase-1 (PDK-1) with cell viability, migration, and invasion of GC. The expression of PDK-1 was measured in different GC cell lines. Thereafter, the expression of PDK-1 was interfered by small hairpin RNA (shRNA) and then incubated with or without the inhibitor of nuclear factor-κB (NF-κB) pyrrolidine dithiocarbamate (PDTC). We then investigated the effects of PDK-1 aberrant expression on GC cell viability, migration, invasion, and the epithelial-mesenchymal transition (EMT) progress. The results showed that PDK-1 was highly expressed in GC cells, and PDK-1 promoted cell viability, migration, invasion, and EMT in GC. Moreover, we confirmed that PDK-1 activated the phosphatidylinositol 3-hydroxy kinase (PI3K)/AKT and NF-κB signaling pathways. However, administration of PDTC reversed the effects of overexpression of PDK-1 on cell migration and invasion. All these findings suggest that PDK-1 may be involved in progression of GC and could be a new therapeutic target for this disease.
Collapse
Affiliation(s)
- Ning Wu
- *Department of Oncology, Shanghai Pudong New Area Gongli Hospital, Shanghai, P.R. China
| | - Changyu He
- †Department of Oncology, Ruijin Hospital Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Bohui Zhu
- *Department of Oncology, Shanghai Pudong New Area Gongli Hospital, Shanghai, P.R. China
| | - Jinling Jiang
- †Department of Oncology, Ruijin Hospital Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| | - Yiwen Chen
- *Department of Oncology, Shanghai Pudong New Area Gongli Hospital, Shanghai, P.R. China
| | - Tao Ma
- †Department of Oncology, Ruijin Hospital Shanghai Jiaotong University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
36
|
Saranya J, Shilpa G, Raghu KG, Priya S. Morus alba Leaf Lectin (MLL) Sensitizes MCF-7 Cells to Anoikis by Inhibiting Fibronectin Mediated Integrin-FAK Signaling through Ras and Activation of P 38 MAPK. Front Pharmacol 2017; 8:34. [PMID: 28223935 PMCID: PMC5293820 DOI: 10.3389/fphar.2017.00034] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 01/17/2017] [Indexed: 12/12/2022] Open
Abstract
Lectins are a unique class of carbohydrate binding proteins/glycoproteins, and many of them possess anticancer properties. They can induce cell cycle arrest and apoptosis, inhibit protein synthesis, telomerase activity and angiogenesis in cancer cells. In the present study, we have demonstrated the effect of Morus alba leaf lectin (MLL) on anoikis induction in MCF-7 cells. Anoikis induction in cancer cells has a significant role in preventing early stage metastasis. MLL treatment in monolayers of MCF-7 cells caused significant detachment of cells in a time and concentration dependent manner. The detached cells failed to re-adhere and grew even to culture plates coated with different matrix proteins. DNA fragmentation, membrane integrity studies, annexin V staining, caspase 9 activation and upregulation of Bax/Bad confirmed that the detached cells underwent apoptosis. Upregulation of matrix metalloproteinase 9 (MMP-9) caused a decrease in fibronectin (FN) production which facilitated the cells to detach by blocking the FN mediated downstream signaling. On treatment with MLL, we have observed downregulation of integrin expression, decreased phosphorylation of focal adhesion kinase (FAK), loss in FAK-integrin interaction and active Ras. MLL treatment downregulated the levels of phosphorylated Akt and PI3K. Also, we have studied the effect of MLL on two stress activated protein kinases p38 MAPK and JNK. p38 MAPK activation was found to be elevated, but there was no change in the level of JNK. Thus our study substantiated the possible antimetastatic effect of MLL by inducing anoikis in MCF-7 cells by activation of caspase 9 and proapoptotic Bax/Bad by blockage of FN mediated integrin/FAK signaling and partly by activation of p38 MAPK.
Collapse
Affiliation(s)
- Jayaram Saranya
- Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology Thiruvananthapuram, India
| | - Ganesan Shilpa
- Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and TechnologyThiruvananthapuram, India; Academy of Scientific and Innovative ResearchNew Delhi, India
| | - Kozhiparambil G Raghu
- Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and TechnologyThiruvananthapuram, India; Academy of Scientific and Innovative ResearchNew Delhi, India
| | - Sulochana Priya
- Agro-Processing and Technology Division, CSIR-National Institute for Interdisciplinary Science and TechnologyThiruvananthapuram, India; Academy of Scientific and Innovative ResearchNew Delhi, India
| |
Collapse
|
37
|
Targeting Epithelial-Mesenchymal Transition (EMT) to Overcome Drug Resistance in Cancer. Molecules 2016; 21:molecules21070965. [PMID: 27455225 PMCID: PMC6273543 DOI: 10.3390/molecules21070965] [Citation(s) in RCA: 565] [Impact Index Per Article: 62.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/16/2016] [Accepted: 07/19/2016] [Indexed: 12/24/2022] Open
Abstract
Epithelial–mesenchymal transition (EMT) is known to play an important role in cancer progression, metastasis and drug resistance. Although there are controversies surrounding the causal relationship between EMT and cancer metastasis, the role of EMT in cancer drug resistance has been increasingly recognized. Numerous EMT-related signaling pathways are involved in drug resistance in cancer cells. Cells undergoing EMT show a feature similar to cancer stem cells (CSCs), such as an increase in drug efflux pumps and anti-apoptotic effects. Therefore, targeting EMT has been considered a novel opportunity to overcome cancer drug resistance. This review describes the mechanism by which EMT contributes to drug resistance in cancer cells and summarizes new advances in research in EMT-associated drug resistance.
Collapse
|
38
|
Diederich M, Cerella C. Non-canonical programmed cell death mechanisms triggered by natural compounds. Semin Cancer Biol 2016; 40-41:4-34. [PMID: 27262793 DOI: 10.1016/j.semcancer.2016.06.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 05/31/2016] [Accepted: 06/01/2016] [Indexed: 12/11/2022]
Abstract
Natural compounds are the fundament of pharmacological treatments and more than 50% of all anticancer drugs are of natural origins or at least derived from scaffolds present in Nature. Over the last 25 years, molecular mechanisms triggered by natural anticancer compounds were investigated. Emerging research showed that molecules of natural origins are useful for both preventive and therapeutic purposes by targeting essential hallmarks and enabling characteristics described by Hanahan and Weinberg. Moreover, natural compounds were able to change the differentiation status of selected cell types. One of the earliest response of cells treated by pharmacologically active compounds is the change of its morphology leading to ultra-structural perturbations: changes in membrane composition, cytoskeleton integrity, alterations of the endoplasmic reticulum, mitochondria and of the nucleus lead to formation of morphological alterations that are a characteristic of both compound and cancer type preceding cell death. Apoptosis and autophagy were traditionally considered as the most prominent cell death or cell death-related mechanisms. By now multiple other cell death modalities were described and most likely involved in response to chemotherapeutic treatment. It can be hypothesized that especially necrosis-related phenotypes triggered by various treatments or evolving from apoptotic or autophagic mechanisms, provide a more efficient therapeutic outcome depending on cancer type and genetic phenotype of the patient. In fact, the recent discovery of multiple regulated forms of necrosis and the initial elucidation of the corresponding cell signaling pathways appear nowadays as important tools to clarify the immunogenic potential of non-canonical forms of cell death induction.
Collapse
Affiliation(s)
- Marc Diederich
- Department of Pharmacy, College of Pharmacy, Seoul National University, Seoul 151-742, South Korea.
| | - Claudia Cerella
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, 9, rue Edward Steichen, L-2540 Luxembourg, Luxembourg
| |
Collapse
|