1
|
Amen Y, Othman A, Shimizu K. Sphingolipids in medicinal mushrooms: structural insights, biological activities, and therapeutic potential. Z NATURFORSCH C 2025:znc-2024-0206. [PMID: 40302605 DOI: 10.1515/znc-2024-0206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 04/15/2025] [Indexed: 05/02/2025]
Abstract
Edible mushrooms are well-known for their nutritional value, serving as rich sources of bioactive nutrients, mainly proteins, carbohydrates, lipids, vitamins, and minerals that are vital for human health. Lipids, integral to biological functions such as cellular structure and energy storage, play crucial roles in mushrooms' bioactivity. Sphingolipids, an important class of lipids, serve not only as structural elements in cell membranes but also act as bioactive molecules, playing key roles in cancer prevention, skin health, and infection control. Recent studies highlight their unique presence in mushrooms. Despite their relatively low abundance, sphingolipids in mushrooms are pivotal in cellular processes and offer therapeutic potential. Advances in analytical techniques have facilitated the characterization of these compounds. This review explores the structural profiles, biological activities, and therapeutic applications of sphingolipids in medicinal mushrooms, highlighting their potential in the development of functional foods and novel therapeutic agents.
Collapse
Affiliation(s)
- Yhiya Amen
- Department of Pharmacognosy, Faculty of Pharmacy, 68779 Mansoura University , Mansoura, 35516, Egypt
| | - Ahmed Othman
- Department of Pharmacognosy and Medicinal Plants, Faculty of Pharmacy, Al-Azhar University, Cairo, 11884, Egypt
| | - Kuniyoshi Shimizu
- Department of Agro-Environmental Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 819-0395, Japan
| |
Collapse
|
2
|
Qi D, Yang S, Zou W, Xu X, Wang H, Li R, Zhang S. Four Novel Rho-associated Coiled-coil Protein Kinase 1 Inhibitors Suppressing Cytoskeleton and Movement in Breast Cancer Cells. Chem Biodivers 2025:e202500258. [PMID: 40107880 DOI: 10.1002/cbdv.202500258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/12/2025] [Accepted: 03/19/2025] [Indexed: 03/22/2025]
Abstract
Rho-associated coiled-coil protein kinase 1 (ROCK1), a key downstream effector of the Rho GTP-binding protein within the Ras superfamily, regulates cellular metabolism, growth, differentiation, and signaling pathways associated with various diseases. We identified four novel ROCK1 inhibitors through virtual screening technology and enzymatic activity assays-bilobetin, SCH 772984, puerarin 6''-O-xyloside, and GSK 650394. Their IC50 values were 11.82, 12.19, 15.27, and 18.09 µM, respectively. To evaluate their ROCK1-related efficacy, we assessed their effects on the proliferation, cytoskeletal organization, migration, and invasion of MDA-MB-231 breast cancer cells. These compounds effectively reduced cell viability with IC50 values ranging from 20 to 32 µM. Additionally, a marked decrease in EdU uptake confirmed their potent inhibition of cell proliferation. Confocal fluorescence imaging revealed that suppression stems primarily from cytoskeletal disruption, thereby impairing migration and invasion, with in vitro inhibition rates of 70%-85% and 69%-86%, respectively. These findings not only enrich the types of ROCK1 inhibitors but also provide novel molecular scaffolds for the development of anti-breast cancer drugs.
Collapse
Affiliation(s)
- Danshi Qi
- School of Pharmacy, Qinghai University, Xining, China
| | - Shaohua Yang
- Department of Basic Medical Sciences, Medical College of Qinghai University, Xining, China
| | - Wenxing Zou
- School of Pharmacy, Qinghai University, Xining, China
| | - Xiaoxia Xu
- Department of Basic Medical Sciences, Medical College of Qinghai University, Xining, China
| | - Haiyan Wang
- Department of Basic Medical Sciences, Medical College of Qinghai University, Xining, China
| | - Ruilian Li
- School of Pharmacy, Qinghai University, Xining, China
| | - Shoude Zhang
- School of Pharmacy, Qinghai University, Xining, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
| |
Collapse
|
3
|
Marciniec K, Nowakowska J, Chrobak E, Bębenek E, Latocha M. Synthesis, Docking, and Machine Learning Studies of Some Novel Quinolinesulfonamides-Triazole Hybrids with Anticancer Activity. Molecules 2024; 29:3158. [PMID: 38999109 PMCID: PMC11243625 DOI: 10.3390/molecules29133158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/18/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
In the presented work, a series of 22 hybrids of 8-quinolinesulfonamide and 1,4-disubstituted triazole with antiproliferative activity were designed and synthesised. The title compounds were designed using molecular modelling techniques. For this purpose, machine-learning, molecular docking, and molecular dynamics methods were used. Calculations of the pharmacokinetic parameters (connected with absorption, distribution, metabolism, excretion, and toxicity) of the hybrids were also performed. The new compounds were synthesised via a copper-catalysed azide-alkyne cycloaddition reaction (CuAAC). 8-N-Methyl-N-{[1-(7-chloroquinolin-4-yl)-1H-1,2,3-triazol-4-yl]methyl}quinolinesulfonamide was identified in in silico studies as a potential strong inhibitor of Rho-associated protein kinase and as a compound that has an appropriate pharmacokinetic profile. The results obtained from in vitro experiments confirm the cytotoxicity of derivative 9b in four selected cancer cell lines and the lack of cytotoxicity of this derivative towards normal cells. The results obtained from silico and in vitro experiments indicate that the introduction of another quinolinyl fragment into the inhibitor molecule may have a significant impact on increasing the level of cytotoxicity toward cancer cells and indicate a further direction for future research in order to find new substances suitable for clinical applications in cancer treatment.
Collapse
Affiliation(s)
- Krzysztof Marciniec
- Department of Organic Chemistry, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland; (J.N.); (E.C.); (E.B.)
| | - Justyna Nowakowska
- Department of Organic Chemistry, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland; (J.N.); (E.C.); (E.B.)
| | - Elwira Chrobak
- Department of Organic Chemistry, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland; (J.N.); (E.C.); (E.B.)
| | - Ewa Bębenek
- Department of Organic Chemistry, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland; (J.N.); (E.C.); (E.B.)
| | - Małgorzata Latocha
- Department of Molecular Biology, Jagiellońska 4, 41-200 Sosnowiec, Poland;
| |
Collapse
|
4
|
Ahmad MF, A. Alsayegh A, Ahmad FA, Akhtar MS, Alavudeen SS, Bantun F, Wahab S, Ahmed A, Ali M, Elbendary EY, Raposo A, Kambal N, H. Abdelrahman M. Ganoderma lucidum: Insight into antimicrobial and antioxidant properties with development of secondary metabolites. Heliyon 2024; 10:e25607. [PMID: 38356540 PMCID: PMC10865332 DOI: 10.1016/j.heliyon.2024.e25607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 12/15/2023] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
Ganoderma lucidum is a versatile mushroom. Polysaccharides and triterpenoids are the major bioactive compounds and have been used as traditional medicinal mushrooms since ancient times. They are currently used as nutraceuticals and functional foods. G. lucidum extracts and their bioactive compounds have been used as an alternative to antioxidants and antimicrobial agents. Secondary metabolites with many medicinal properties make it a possible substitute that could be applied as immunomodulatory, anticancer, antimicrobial, anti-oxidant, anti-inflammatory, and anti-diabetic. The miraculous properties of secondary metabolites fascinate researchers for their development and production. Recent studies have paid close attention to the different physical, genetic, biochemical, and nutritional parameters that potentiate the production of secondary metabolites. This review is an effort to collect biologically active constituents from G. lucidum that reveal potential actions against diseases with the latest improvement in a novel technique to get maximum production of secondary metabolites. Studies are going ahead to determine the efficacy of numerous compounds and assess the valuable properties achieved by G. lucidum in favor of antimicrobial and antioxidant outcomes.
Collapse
Affiliation(s)
- Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Science, Jazan University, Jazan, 45142, Saudi Arabia
| | - Abdulrahman A. Alsayegh
- Department of Clinical Nutrition, College of Applied Medical Science, Jazan University, Jazan, 45142, Saudi Arabia
| | - Fakhruddin Ali Ahmad
- Department of Basic and Applied Science, School of Engineering and Science, G.D Goenka University, Gru Gram, 122103, Haryana, India
| | - Md Sayeed Akhtar
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, AlFara, Abha, 62223, Saudi Arabia
| | - Sirajudeen S. Alavudeen
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, AlFara, Abha, 62223, Saudi Arabia
| | - Farkad Bantun
- Department of Microbiology and Parasitology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Shadma Wahab
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Awais Ahmed
- Department of Management, Shri JJT University, Rajasthan, Post code; 333010, India
| | - M. Ali
- Department of Pharmacognosy, CBS College of Pharmacy & Technology (Pt. B. D. Sharma University of Health Sciences), Chandpur, Faridabad, Haryana, 121101, India
| | - Ehab Y. Elbendary
- Department of Clinical Nutrition, College of Applied Medical Science, Jazan University, Jazan, 45142, Saudi Arabia
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades Tecnologias, Campo Grande 376, 1749-024, Lisboa, Portugal
| | - Nahla Kambal
- Department of Clinical Nutrition, College of Applied Medical Science, Jazan University, Jazan, 45142, Saudi Arabia
| | - Mohamed H. Abdelrahman
- College of Applied Medical Sciences, Medical Laboratory Sciences, Jazan University, Jazan, 45142, Saudi Arabia
| |
Collapse
|
5
|
Xu X, Yao L. Recent advances in the development of Rho kinase inhibitors (2015-2021). Med Res Rev 2024; 44:406-421. [PMID: 37265266 DOI: 10.1002/med.21980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/27/2023] [Accepted: 05/23/2023] [Indexed: 06/03/2023]
Abstract
Rho-associated coiled-coil kinases (ROCKs) are key downstream effectors of small GTPases. ROCK plays a central role in diverse cellular events with accumulating evidence supporting the concept that ROCK is important in tumor development and progression. Numerous ROCK inhibitors have been investigated for their therapeutic potential in the treatment of cancers. In this article, we review recent research progress on ROCK inhibitors, especially those with potential for the treatment of cancers, reported in the literature from 2015 to 2021. Most ROCK inhibitors show potent in vitro and in vivo antitumor activities and have potential in the treatment of cancers.
Collapse
Affiliation(s)
- Xiangrong Xu
- Yantai University Hospital, Yantai University, Yantai, China
| | - Lei Yao
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| |
Collapse
|
6
|
Zhao ZZ, Ji BY, Wang ZZ, Si YY, Sun YJ, Chen H, Feng WS, Zheng XK, Liu JK. Lanostane triterpenoids with anti-proliferative and anti-inflammatory activities from medicinal mushroom Ganoderma lingzhi. PHYTOCHEMISTRY 2023; 213:113791. [PMID: 37454886 DOI: 10.1016/j.phytochem.2023.113791] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/30/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Eight previously undescribed lanostane triterpenoids and nine known ones were identified from the fruiting bodies of Ganoderma lingzhi S.H. Wu, Y. Cao & Y.C. Dai. Their structures were determined based on spectroscopic data and quantum chemical calculations. Structurally, ganoderane GL-1, featuring a hydrogenated tetramethyls-phenanthraquinone, represents the first example in lanostane nor-triterpenoid group. Biologically, ganoderanes GL-2 and GL-3, distinguished by the presence of a rare "1,11-epoxy" moiety, exhibited significant inhibition against nitric oxide production induced by lipopolysaccharide in RAW264.7 macrophage cells, while ganoderanes GL-4 and GL-8 exhibited bifunctional activities of anti-proliferation and anti-inflammation.
Collapse
Affiliation(s)
- Zhen-Zhu Zhao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Bao-Yu Ji
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Zhen-Zhen Wang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Ying-Ying Si
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yan-Jun Sun
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Hui Chen
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Wei-Sheng Feng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Xiao-Ke Zheng
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Ji-Kai Liu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, 430074, China.
| |
Collapse
|
7
|
You Y, Zhu K, Wang J, Liang Q, Li W, Wang L, Guo B, Zhou J, Feng X, Shi J. ROCK inhibitor: Focus on recent updates. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
8
|
Kong DX, Ma QY, Yang L, Xie QY, Deng CY, Dai HF, Hua Y, Zhao YX. Two lanostane triterpenoids with α-glucosidase inhibitory activity from the fruiting bodies of Ganoderma weberianum. Nat Prod Res 2022:1-7. [PMID: 35289692 DOI: 10.1080/14786419.2022.2050911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A new oxygenated lanostane-type triterpenoid, 20S,24S-epoxy-lanosta-7,9(11)-dien-3β,15α,25R,26-tetraol (1), together with three known compounds (2-4) were isolated from the fruiting bodies of Ganoderma weberianum. Extensive NMR spectrometry and HRESIMS analysis, as well as NMR and ECD calculations elucidated the structure of the new compound. 27-nor-3β-hydroxylanosta-7,9(11),23E-trien-25-one (2) showed superior α-glucosidase inhibitory activity with IC50 value of 122.1 μM to that of positive control acarbose (304.6 μM).
Collapse
Affiliation(s)
- De Xian Kong
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, PR China
| | - Qing Yun Ma
- Haikou Key Laboratory for Research and Utilization of Tropical Natural Products, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou, PR China
| | - Li Yang
- Haikou Key Laboratory for Research and Utilization of Tropical Natural Products, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou, PR China
| | - Qing Yi Xie
- Haikou Key Laboratory for Research and Utilization of Tropical Natural Products, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou, PR China.,Hainan Institute for Tropical Agricultural Resources, CATAS, Haikou, PR China
| | - Chun Ying Deng
- Guizhou institute of biology, Guizhou Academy of Sciences, Guiyang, PR China
| | - Hao Fu Dai
- Haikou Key Laboratory for Research and Utilization of Tropical Natural Products, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou, PR China
| | - Yan Hua
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, PR China
| | - You Xing Zhao
- Haikou Key Laboratory for Research and Utilization of Tropical Natural Products, Institute of Tropical Bioscience and Biotechnology, CATAS, Haikou, PR China
| |
Collapse
|
9
|
|
10
|
Zhang MG, Lee JY, Gallo RA, Tao W, Tse D, Doddapaneni R, Pelaez D. Therapeutic targeting of oncogenic transcription factors by natural products in eye cancer. Pharmacol Res 2017; 129:365-374. [PMID: 29203441 DOI: 10.1016/j.phrs.2017.11.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/15/2017] [Accepted: 11/30/2017] [Indexed: 02/08/2023]
Abstract
Carcinogenesis has a multifactorial etiology, and the underlying molecular pathogenesis is still not entirely understood, especially for eye cancers. Primary malignant intraocular neoplasms are relatively rare, but delayed detection and inappropriate management contribute to poor outcomes. Conventional treatment, such as orbital exenteration, chemotherapy, or radiotherapy, alone results in high mortality for many of these malignancies. Recent sequential multimodal therapy with a combination of high-dose chemotherapy, followed by appropriate surgery, radiotherapy, and additional adjuvant chemotherapy has helped dramatically improve management. Transcription factors are proteins that regulate gene expression by modulating the synthesis of mRNA. Since transcription is a dominant control point in the production of many proteins, transcription factors represent key regulators for numerous cellular functions, including proliferation, differentiation, and apoptosis, making them compelling targets for drug development. Natural compounds have been studied for their potential to be potent yet safe chemotherapeutic drugs. Since the ancient times, plant-derived bioactive molecules have been used to treat dreadful diseases like cancer, and several refined pharmaceutics have been developed from these compounds. Understanding targeting mechanisms of oncogenic transcription factors by natural products can add to our oncologic management toolbox. This review summarizes the current findings of natural products in targeting specific oncogenic transcription factors in various types of eye cancer.
Collapse
Affiliation(s)
- Michelle G Zhang
- Dr Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - John Y Lee
- Dr Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Ryan A Gallo
- Dr Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Wensi Tao
- Dr Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - David Tse
- Dr Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Ravi Doddapaneni
- Dr Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| | - Daniel Pelaez
- Dr Nasser Al-Rashid Orbital Vision Research Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Department of Biomedical Engineering, University of Miami College of Engineering, Coral Gables, FL, 33146, USA.
| |
Collapse
|
11
|
Chen C, Li Q, Wang Q, Lu D, Zhang H, Wang J, Fu R. Transcriptional profiling provides new insights into the role of nitric oxide in enhancing Ganoderma oregonense resistance to heat stress. Sci Rep 2017; 7:15694. [PMID: 29146915 PMCID: PMC5691203 DOI: 10.1038/s41598-017-15340-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 10/26/2017] [Indexed: 12/18/2022] Open
Abstract
Ganoderma is well known for its use in traditional Chinese medicine and is widely cultivated in China, Korea, and Japan. Increased temperatures associated with global warming are negatively influencing the growth and development of Ganoderma. Nitric oxide is reported to play an important role in alleviating fungal heat stress (HS). However, the transcriptional profiling of Ganoderma oregonense in response to HS, as well as the transcriptional response regulated by NO to cope with HS has not been reported. We used RNA-Seq technology to generate large-scale transcriptome data from G. oregonense mycelia subjected to HS (32 °C) and exposed to concentrations of exogenous NO. The results showed that heat shock proteins (HSPs), "probable stress-induced proteins", and unigenes involved in "D-amino-acid oxidase activity" and "oxidoreductase activity" were significantly up-regulated in G. oregonense subjected to HS (P < 0.05). The significantly up-regulated HSPs, "monooxygenases", "alcohol dehydrogenase", and "FAD/NAD(P)-binding domain-containing proteins" (P < 0.05) regulated by exogenous NO may play important roles in the enhanced HS tolerance of G. oregonense. These results provide insights into the transcriptional response of G. oregonense to HS and the mechanism by which NO enhances the HS tolerance of fungi at the gene expression level.
Collapse
Affiliation(s)
- Cheng Chen
- Institute of plant protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, P.R. China
| | - Qiang Li
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, Sichuan, P.R. China.,Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, P.R. China
| | - Qiangfeng Wang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610061, Sichuan, P.R. China
| | - Daihua Lu
- Institute of plant protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, P.R. China
| | - Hong Zhang
- Institute of plant protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, P.R. China. .,Sichuan Academy of Agricultural Sciences, 20 # Jingjusi Rd, Chengdu, 610066, Sichuan, China.
| | - Jian Wang
- Institute of plant protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, P.R. China
| | - Rongtao Fu
- Institute of plant protection, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, P.R. China
| |
Collapse
|