1
|
Sura MB, Cheng YX. Medicinal plant resin natural products: structural diversity and biological activities. Nat Prod Rep 2024; 41:1471-1542. [PMID: 38787644 DOI: 10.1039/d4np00007b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Covering: up to the mid of 2023Plants secrete defense resins rich in small-molecule natural products under abiotic and biotic stresses. This comprehensive review encompasses the literature published up to mid-2023 on medicinal plant resin natural products from six main contributor genera, featuring 275 citations that refer to 1115 structurally diverse compounds. The scope of this review extends to include essential information such as the racemic nature of metabolites found in different species of plant resins, source of resins, and revised structures. Additionally, we carefully analyze the reported biological activities of resins, organizing them based on the their structures. The findings offer important insights into the relationship between their structure and activity. Furthermore, this detailed examination can be valuable for researchers and scientists in the field of medicinal plant resin natural products and will promote continued exploration and progress in this area.
Collapse
Affiliation(s)
- Madhu Babu Sura
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China.
| | - Yong-Xian Cheng
- Guangdong Provincial Key Laboratory of Chinese Medicine Ingredients and Gut Microbiomics, School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
2
|
Mayer MG, Fischer T. Microglia at the blood brain barrier in health and disease. Front Cell Neurosci 2024; 18:1360195. [PMID: 38550920 PMCID: PMC10976855 DOI: 10.3389/fncel.2024.1360195] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/23/2024] [Indexed: 01/24/2025] Open
Abstract
The blood brain barrier (BBB) plays a crucial role in maintaining brain homeostasis by selectively preventing the entry of substances from the peripheral blood into the central nervous system (CNS). Comprised of endothelial cells, pericytes, and astrocytes, this highly regulated barrier encompasses the majority of the brain's vasculature. In addition to its protective function, the BBB also engages in significant crosstalk with perivascular macrophages (MΦ) and microglia, the resident MΦ of the brain. These interactions play a pivotal role in modulating the activation state of cells comprising the BBB, as well as MΦs and microglia, themselves. Alterations in systemic metabolic and inflammatory states can promote endothelial cell dysfunction, reducing the integrity of the BBB and potentially allowing peripheral blood factors to leak into the CNS compartment. This may mediate activation of perivascular MΦs, microglia, and astrocytes, and initiate further immune responses within the brain parenchyma, suggesting neuroinflammation can be triggered by signaling from the periphery, without primary injury or disease originating within the CNS. The intricate interplay between the periphery and the CNS through the BBB highlights the importance of understanding the role of microglia in mediating responses to systemic challenges. Despite recent advancements, our understanding of the interactions between microglia and the BBB is still in its early stages, leaving a significant gap in knowledge. However, emerging research is shedding light on the involvement of microglia at the BBB in various conditions, including systemic infections, diabetes, and ischemic stroke. This review aims to provide a comprehensive overview of the current research investigating the intricate relationship between microglia and the BBB in health and disease. By exploring these connections, we hope to advance our understanding of the role of brain immune responses to systemic challenges and their impact on CNS health and pathology. Uncovering these interactions may hold promise for the development of novel therapeutic strategies for neurological conditions that involve immune and vascular mechanisms.
Collapse
Affiliation(s)
- Meredith G. Mayer
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
| | - Tracy Fischer
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA, United States
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, United States
| |
Collapse
|
3
|
Liu Y, Mi Y, Wang Y, Meng Q, Xu L, Liu Y, Zhou D, Wang Y, Liang D, Li W, Li N, Hou Y. Loureirin C inhibits ferroptosis after cerebral ischemia reperfusion through regulation of the Nrf2 pathway in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 113:154729. [PMID: 36878093 DOI: 10.1016/j.phymed.2023.154729] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 01/14/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Ischemic stroke (IS) is considered as a serious cerebral vascular disease. Ferroptosis is a novel type of regulated cell death (RCD), that closely related to the occurrence and progress of IS. Loureirin C, a type of dihydrochalcone compound derived from the Chinese Dragon's blood (CDB). The effective components extracted from CDB have shown neuroprotective effects in ischemia reperfusion models. However, the role of Loureirin C in mice after IS is not well understood. Thus, it is worth to identify the effect and mechanism of Loureirin C on IS. PURPOSE The present research aims to prove the existence of ferroptosis in IS and explore whether Loureirin C can inhibit ferroptosis by regulating nuclear factor E2 related factor 2 (Nrf2) pathway in mice and exert neuroprotective effects on IS models. METHODS Middle cerebral artery occlusion and reperfusion (MCAO/R) model was established to evaluate the occurrence of ferroptosis and the potential Loureirin C brain-protective effect in vivo. The analysis of free iron, glutamate content, reactive oxygen species (ROS) and lipid peroxidation levels, along with transmission electron microscope (TEM) was applied to prove the existence of ferroptosis. The function of Loureirin C on Nrf2 nuclear translocation was verified by immunofluorescence staining. In vitro, primary neurons and SH-SY5Y cells were processed with Loureirin C after oxygen and glucose deprivation-reperfusion (OGD/R). ELISA kits, western blotting, co-immunoprecipitation (Co-IP) analysis, immunofluorescence, and quantitative real-time PCR were devoted to proving the neuroprotective effects of Loureirin C on IS via regulating ferroptosis and Nrf2 pathways. RESULTS The results showed that Loureirin C not only dramatically alleviated brain injury and inhibited neurons ferroptosis in mice after MCAO/R, but also dose-dependently reduce ROS accumulation in ferroptosis after OGD/R. Further, Loureirin C inhibits ferroptosis by activating Nrf2 pathway, and promoting nuclear translocation of Nrf2. Besides, Loureirin C increases heme oxygenase 1 (HO-1), quinone oxidoreductase 1 (NQO1) and glutathione peroxidase 4 (GPX4) content after IS. Intriguingly, the anti-ferroptosis effect of Loureirin C is weakened by Nrf2 knockdown. CONCLUSION Our discoveries first revealed that the inhibitory action of Loureirin C on ferroptosis may greatly depend on its adjusting effect on the Nrf2 pathway, suggesting that Loureirin C could act as a novel anti-ferroptosis candidate and play a therapeutic role in IS. These novel discoveries on the role of Loureirin C on IS models reveal an innovative method that may contribute to neuroprotection for the prevention of IS.
Collapse
Affiliation(s)
- Yeshu Liu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China; National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Yan Mi
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China; National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Yongping Wang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Qingqi Meng
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Libin Xu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yueyang Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, China
| | - Di Zhou
- School of Traditional Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, China
| | - Yingjie Wang
- School of Traditional Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, China
| | - Dong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
| | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Ning Li
- School of Traditional Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, China.
| | - Yue Hou
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang, China; National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China.
| |
Collapse
|
4
|
Liu YS, Zhang GY, Hou Y. Theoretical and Experimental Investigation of the Antioxidation Mechanism of Loureirin C by Radical Scavenging for Treatment of Stroke. Molecules 2023; 28:380. [PMID: 36615573 PMCID: PMC9822359 DOI: 10.3390/molecules28010380] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 01/03/2023] Open
Abstract
Recent pharmacological studies have shown that dragon's blood has an anti-cerebral ischemia effect. Loureirin C (LC), a kind of dihydrochalcone compound in dragon's blood, is believed to be play an important role in the treatment of ischemia stroke, but fewer studies for LC have been done. In this paper, we report the first experimental and theoretical studies on the antioxidation mechanism of LC by radical scavenging. The experimental studies show that LC has almost no effect on cell viability under 15 μM for the SH-SY5Y cells without any treatments. For the SH-SY5Y cells with oxygen and glucose deprivation-reperfusion (OGD/R) treatment, LC increased the viability of SH-SY5Y cells. The results of 2',7'-Dichlorodihydrofluorescein diacetate (DCFH-DA) and MitoSox Red experiments indicate that LC is very efficient in inhibiting the generation of the intracellular/mitochondrial reactive oxygen species (ROS) or removing these two kinds of generated ROS. The density functional theory (DFT) calculations allowed us to elucidate the antioxidation mechanisms of LC. Fukui function analysis reveals the radical scavenging of LC by hydrogen abstraction mechanism, the complex formation by e-transfer, and radical adduct formation (RAF) mechanism. Among the H-abstraction, the complex formation by e-transfer, and radical adduct formation (RAF) reactions on LC, the H-abstraction at O-H35 position by OH• is favorable with the smallest energy difference between the product and two reactants of the attack of OH• to LC of -0.0748 Ha. The bond dissociation enthalpies (BDE), proton affinities (PA), ionization potential (IP), proton dissociation enthalpy (PDE), and electron transfer enthalpy (ETE) were calculated to determine thermodynamically preferred reaction pathway for hydrogen abstraction mechanism. In water, IP and the lowest PDE value at O3-H35 position are lower than the lowest BDE value at O3-H35 position; 41.8986 and 34.221 kcal/mol, respectively, indicating that SEPT mechanism is a preferred one in water in comparison with the HAT mechanism. The PA value of O3-H35 of LC in water is -17.8594 kcal/mol, thus the first step of SPLET would occur spontaneously. The minimum value of ETE is higher than the minimum value of PDE at O3-H35 position and IP value, 14.7332 and 22.4108 kcal/mol, respectively, which suggests that the SEPT mechanism is a preferred one in water in comparison with the SPLET mechanism. Thus, we can draw a conclusion that the SEPT mechanism of is the most favorite hydrogen abstraction mechanism in water, and O-H35 hydroxyl group has the greatest ability to donate H-atoms.
Collapse
Affiliation(s)
- Ye-Shu Liu
- College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang 110819, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang 110819, China
| | - Guo-Ying Zhang
- College of Physics Science and Technology, Shenyang Normal University, Shenyang 110034, China
| | - Yue Hou
- College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang 110819, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry, Northeastern University, Ministry of Education, Shenyang 110819, China
| |
Collapse
|
5
|
Xu J, Liu J, Li Q, Mi Y, Zhou D, Wang J, Chen G, Liang D, Li N, Hou Y. Loureirin C ameliorates ischemia and reperfusion injury in rats by inhibiting the activation of the TLR4/NF-κB pathway and promoting TLR4 degradation. Phytother Res 2022; 36:4527-4541. [PMID: 36146897 DOI: 10.1002/ptr.7571] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 06/26/2022] [Accepted: 07/09/2022] [Indexed: 12/13/2022]
Abstract
Ischemic stroke is a leading cause of death and disability worldwide. Post-ischemia, microglia respond immediately to the alternations in neuronal activity and mediate inflammation. Toll-like receptor 4 (TLR4) plays a key role in this phenomenon. To explore the effect of loureirin C, an effective compound from Chinese Dragon's blood, on ischemic stroke, Sprague-Dawley rats were subjected to middle cerebral artery occlusion/reperfusion (MCAO/R) with/without intragastric administration of loureirin C (7, 14, and 28 mg/kg). Loureirin C alleviated MCAO/R-induced brain impairment evaluated by neurological scores (p < 0.001), brain water content (p < 0.001), and cerebral infarct volume (p = 0.001). The neuroprotective (p < 0.001) and inhibitory effects on microglial activation (p < 0.001) of loureirin C were revealed by immunofluorescence. Rescue studies with TLR4 overexpression in BV-2 microglia showed that the antiinflammatory effect of loureirin C was attributable to the inhibition of TLR4 protein expression. Moreover, co-immunoprecipitation assays showed that the binding of Triad3A, an E3 ubiquitin ligase of TLR4, was increased by loureirin C (p = 0.003). Our study demonstrates that loureirin C could be a promising therapeutic agent for the management of ischemic stroke by inhibiting microglial activation, potentially by Triad3A-mediated promotion of TLR4 ubiquitination and degradation.
Collapse
Affiliation(s)
- Jikai Xu
- College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Jingyu Liu
- College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Qing Li
- College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Yan Mi
- College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Di Zhou
- School of Traditional Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, China
| | - Jian Wang
- School of Traditional Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, China
| | - Gang Chen
- School of Traditional Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, China
| | - Dong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
| | - Ning Li
- School of Traditional Chinese Materia Medica, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, China
| | - Yue Hou
- College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, Shenyang, China
- Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| |
Collapse
|
6
|
Dong X, Huang R. Ferulic acid: An extraordinarily neuroprotective phenolic acid with anti-depressive properties. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 105:154355. [PMID: 35908520 DOI: 10.1016/j.phymed.2022.154355] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 06/13/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Depression, one of the most common mental illnesses and mood disorder syndromes, can seriously harm physical and mental health. As the pathophysiology of depression remains unclear, there is a need to find novel therapeutic agents. Ferulic acid (FA), a phenolic compound found in various Chinese herbal medicines, has anti-inflammatory and free radical scavenging properties as well as a wide range of therapeutic effects against depression. PURPOSE In this review, we appraised preclinical research to fully discuss the anti-depression capacity of FA and discussed FAs' holistic characteristics that can contribute to better management of depression. STUDY DESIGN We reviewed the results of in vitro and in vivo experiments using FA to treat depression and explored the possible antidepressant pharmacological mechanisms of FA for the clinical treatment of depression. METHODS Electronic databases, including PubMed, Google Scholar, and China National Knowledge Infrastructure, were searched from the beginning of the database creation to December 2021. RESULTS Studies on the antidepressant effects of FA show that it may exert such effects through various mechanisms. These include the following: the regulation of monoamine and non-monoamine neurotransmitter levels, inhibition of hypothalamic-pituitary-adrenal axis hyperfunction and neuroinflammation, promotion of hippocampal neurogenesis and upregulation brain-derived neurotrophic factor level, neuroprotection (inhibition of neuroinflammation, oxidative stress, mitochondrial dysfunction, and apoptosis), and downregulation of oxidative stress. CONCLUSION Preclinical studies on the antidepressant effects of FA were reviewed in this study, and research on the antidepressant mechanisms of FA was summarized, confirming that FA can exert antidepressant effects through various pharmacological mechanisms. However, more multicenter clinical case-control studies are needed to confirm the clinical efficacy of FA.
Collapse
Affiliation(s)
- Xiaoyu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning PR China
| | - Rui Huang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning PR China.
| |
Collapse
|
7
|
Prommee N, Itharat A, Thongdeeying P, Makchuchit S, Pipatrattanaseree W, Tasanarong A, Ooraikul B, Davies NM. Exploring in vitro anti-proliferative and anti-inflammatory activities of Prasachandaeng remedy, and its bioactive compounds. BMC Complement Med Ther 2022; 22:217. [PMID: 35953870 PMCID: PMC9373486 DOI: 10.1186/s12906-022-03678-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 07/13/2022] [Indexed: 11/20/2022] Open
Abstract
Background Prasachandaeng (PSD) remedy has been empirically used in Thai traditional medicine to treat fever in bile duct and liver and cancer patients through Thai folk doctors. However, there have been no scientific reports on the bioactive compounds and bioactivities related to inflammation-associated carcinogenesis or cytotoxicity against cancer cell lines. In this study, we investigated the chemical content of the remedy, and evaluated its cytotoxic activity against two cancer cell lines in comparison with a non-cancerous cell line and determined tumor necrosis factor-alpha (TNF-α) production in a murine macrophage cell line (RAW 264.7) to evaluate anti-inflammatory activity. A novel HPLC method was used for quality control of its chemical content. Methods Pure compounds from the EtOH extract of D. cochinchinensis were isolated using bioassay-guided fractionation and chemical content of the PSD remedy was determined using HPLC. The cytotoxic activity against the hepatocarcinoma cell line (HepG2) and cholangiocarcinoma cell line (KKU-M156), in comparison with non-cancerous cell line (HaCaT), were investigated using antiproliferative assay (SRB). The anti-inflammatory activity measured by TNF-α production in RAW 264.7 was determined using ELISA. Results All crude extracts and isolated compounds exhibited significant differences from vincristine sulfate (****p < 0.0001) in their cytotoxic activity against HepG2, KKU-M156, and HaCaT. The PSD remedy exhibited cytotoxic activity against HepG2 and KKU-M156 with IC50 values of 10.45 ± 1.98 (SI = 5.3) and 4.53 ± 0.74 (SI = 12.2) µg/mL, respectively. Some constituents from C. sappan, D. cochinchinensis, M. siamensis, and M. fragrans also exhibited cytotoxic activity against HepG2 and KKU-M156, with IC50 values less than 10 µg/mL. The isolated compounds, i.e., Loureirin B (1), 4-Hydroxy-2,4’-dimethoxydihydrochalcone (2), and Eucomol (3) exhibited moderate cytotoxicity against two cancer cell lines. None of the crude extracts and isolated compounds showed cytotoxicity against HaCaT. D. cochinchinensis and PSD remedy exhibited higher anti-inflammatory activity measured as TNF-α production than acetaminophen. Conclusion The findings provide evidence of bioactivity for EtOH extracts of PSD remedy and the isolated compounds of D. Cochinchinensis. The results consistent the use clinical activity and use of PSD remedy as a antipyretic treatment for liver and bile duct cancer patients by Thai traditional practitioners.
Collapse
|
8
|
Dhungana RK, Sapkota RR, Wickham LM, Niroula D, Shrestha B, Giri R. Ni‐Catalyzed Arylbenzylation of Alkenylarenes: Kinetic Studies Reveal Autocatalysis by ZnX
2
**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202110459] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Roshan K. Dhungana
- Department of Chemistry Pennsylvania State University University Park Pennsylvania 16802 USA
| | - Rishi R. Sapkota
- Department of Chemistry Pennsylvania State University University Park Pennsylvania 16802 USA
| | - Laura M. Wickham
- Department of Chemistry Pennsylvania State University University Park Pennsylvania 16802 USA
| | - Doleshwar Niroula
- Department of Chemistry Pennsylvania State University University Park Pennsylvania 16802 USA
| | - Bijay Shrestha
- Current address: Department of Chemistry and Biochemistry University of California Los Angeles CA 90095 USA
| | - Ramesh Giri
- Department of Chemistry Pennsylvania State University University Park Pennsylvania 16802 USA
| |
Collapse
|
9
|
Dhungana RK, Sapkota RR, Wickham LM, Niroula D, Shrestha B, Giri R. Ni-Catalyzed Arylbenzylation of Alkenylarenes: Kinetic Studies Reveal Autocatalysis by ZnX 2 *. Angew Chem Int Ed Engl 2021; 60:22977-22982. [PMID: 34427992 PMCID: PMC8490319 DOI: 10.1002/anie.202110459] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Indexed: 11/08/2022]
Abstract
We report a Ni-catalyzed regioselective arylbenzylation of alkenylarenes with benzyl halides and arylzinc reagents. The reaction furnishes differently substituted 1,1,3-triarylpropyl structures that are reminiscent of the cores of oligoresveratrol natural products. The reaction is also compatible for the coupling of internal alkenes, secondary benzyl halides and variously substituted arylzinc reagents. Kinetic studies reveal that the reaction proceeds with a rate-limiting single-electron-transfer process and is autocatalyzed by in-situ-generated ZnX2 . The reaction rate is amplified by a factor of three through autocatalysis upon addition of ZnX2 .
Collapse
Affiliation(s)
| | | | | | | | | | - Ramesh Giri
- Department of Chemistry Pennsylvania State University, University Park, Pennsylvania 16802, USA
| |
Collapse
|
10
|
Liu Y, Zhao X, Yao R, Li C, Zhang Z, Xu Y, Wei JH. Dragon's Blood from Dracaena Worldwide: Species, Traditional Uses, Phytochemistry and Pharmacology. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:1315-1367. [PMID: 34247562 DOI: 10.1142/s0192415x21500634] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Dragon's blood (DB) refers mainly to the crimson resin of many Dracaena spp. DB has been used by different traditional medicine systems worldwide, including Arabic medicine, African medicine, traditional Chinese medicine, Thai medicine, etc. DB are mainly used to heal wounds, kill pain, stop bleeding, and cure various diseases such as diarrhea, dysentery and ulcers for over 1000 years. 11 Dracaena spp. and 3 subspecies are reported to be able to produce red resin. However, the resources are extremely deficient. Several Dracaena spp. are in threatened status. Over 300 compounds have been isolated from Dracaena spp., mainly including flavonoids, steroids, and phenolics. DB exhibits anti-inflammatory, analgesic, antithrombotic, anti-oxidant, antimicrobial, antidiabetic, and anticancer properties, which explain its wound healing effects, preventive effects on cardiovascular and cerebrovascular diseases, dual-directional regulation of blood flow, neuroprotection and radioprotective effects. No apparent side effects or toxicity have been reported. DB are restricted from being exploited due to limited resources and unclear resin formation mechanism. It is necessary to expand the cultivation of Dracaena spp. and fully understand the mechanism underlying the resin formation process to develop an effective induction method for the sustainable utilization of DB.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory of Bioactive Substances and Resources, Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering, Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, P. R. China
| | - Xiangsheng Zhao
- Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine & Key Laboratory of State, Administration of Traditional Chinese Medicine for Agarwood, Sustainable Utilization, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Haikou 570311, P. R. China
| | - Ruyu Yao
- Key Laboratory of Bioactive Substances and Resources, Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering, Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, P. R. China
| | - Chuangjun Li
- Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, P. R. China
| | - Zhonglian Zhang
- Yunnan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Jinghong 666100, P. R. China
| | - Yanhong Xu
- Key Laboratory of Bioactive Substances and Resources, Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering, Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, P. R. China
| | - Jian-He Wei
- Key Laboratory of Bioactive Substances and Resources, Utilization of Chinese Herbal Medicine, Ministry of Education & National Engineering, Laboratory for Breeding of Endangered Medicinal Materials, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, P. R. China.,Hainan Provincial Key Laboratory of Resources Conservation and Development of Southern Medicine & Key Laboratory of State, Administration of Traditional Chinese Medicine for Agarwood, Sustainable Utilization, Hainan Branch of the Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Haikou 570311, P. R. China
| |
Collapse
|
11
|
Sun HF, Song MF, Zhang Y, Zhang ZL. Transcriptome profiling reveals candidate flavonoid-related genes during formation of dragon's blood from Dracaena cochinchinensis (Lour.) S.C.Chen under conditions of wounding stress. JOURNAL OF ETHNOPHARMACOLOGY 2021; 273:113987. [PMID: 33667570 DOI: 10.1016/j.jep.2021.113987] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dragon's Blood (Resina Draconis) is a red resin that has been used in traditional medicine to promote blood circulation, regenerate muscles, reduce swelling and pain, stop bleeding, etc., and its main chemical constituents are flavonoids. Dracaena cochinchinensis (Lour.) S.C.Chen is the only plant defined by the Pharmacopoeia of the People's Republic of China as a source of dragon's blood. AIM OF THE STUDY We aimed to reveal genes involved in the biosynthesis and accumulation of flavonoids of D. cochinchinensis which is under wounding stress by performing a de novo transcriptome analysis. MATERIALS AND METHODS D. cochinchinensis samples were collected for transcriptome sequencing and bioinformatics analysis at 0 days (0 d), 3 days (3 d), 6 days (6 d), and 10 days (10 d) after induction wounding stress, and tissues were microscopically observed after wounding stress. RESULTS A total of 63,244 unigenes were obtained through bioinformatics analysis, and genes associated with the biosynthesis of flavonoids were identified. Through the analysis of DEGs after wounding stress in D. cochinchinensis, based on gene expression consistent with flavonoid accumulation levels, 20 genes in connection with the flavonoid synthesis pathway and 56 genes that may be responsible for flavonoid modification and transport, and also revealed TFs (MYB, bHLH) that may be responsible for flavonoid biosynthesis. Analysis of DEGs between the four periods revealed that after wounding stress, the greatest number of significant DEGs were enriched during the first 3 days, while fewer DEGs were enriched after day 3, which corresponding to only about 1/10 (353/3883) the number of DEGs during the first 3 days. In addition, putative unigenes involved in lignin biosynthesis, such as CSE, HCT, CCR, F5H, and CAD, were significantly down-regulation after D. cochinchinensis wounding stress, but the putative unigenes responsible for flavonoid biosynthesis, such as CHS, CHI, DFR, F3'5'H, F3H, ANR, FLS, and ANS were significantly up-regulation. CONCLUSION We performed de novo transcriptome analysis of D.cochinchinensis under wounding stress, candidate genes and TFs involved in the biosynthesis and accumulation of flavonoids were identified, which is the first report on the transcript variants in flavonoid form accumulation in D. cochinchinensis under wounding stress. According to the results of DEGs analysis, wounding stress attenuated lignin biosynthesis meanwhile promoted flavonoid biosynthesis. In addition, we also compared the transcriptomics of the two different original plants (D.cochinchinensis and D.cambodiana) that form dragon's blood in order to provide further understanding of the formation of dragon's blood.
Collapse
Affiliation(s)
- Hui-Fang Sun
- Yunnan Branch of Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Yunnan Key Laboratory of Southern Medicinal Utilization, Jinghong 666100, China
| | - Mei-Fang Song
- Yunnan Branch of Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Yunnan Key Laboratory of Southern Medicinal Utilization, Jinghong 666100, China
| | - Yue Zhang
- Yunnan Branch of Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Yunnan Key Laboratory of Southern Medicinal Utilization, Jinghong 666100, China
| | - Zhong-Lian Zhang
- Yunnan Branch of Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Yunnan Key Laboratory of Southern Medicinal Utilization, Jinghong 666100, China.
| |
Collapse
|
12
|
Prommee N, Itharat A, Panthong S, Makchuchit S, Ooraikul B. Ethnopharmacological analysis from Thai traditional medicine called prasachandaeng remedy as a potential antipyretic drug. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113520. [PMID: 33129948 DOI: 10.1016/j.jep.2020.113520] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Prasachandaeng (PSD) remedy is a famous antipyretic drug for adults and children in Thai traditional medicine used and is described in Thailand's National List of Essential Medicine. Relationship between the taste of this herbal medicine, ethnopharmacological used and its pharmacological properties was reviewed. AIMS OF STUDY Since there has been no scientific report on the antipyretic activity of PSD, aim of this study was to investigate the efficacy related antipyretic drug of the remedy and its 12 herbal ingredients. It involved quality evaluation of raw materials, extraction of PSD and its ingredients, in vitro evaluation of their inhibitory activities on fever mediators, i.e. NO and PGE2 production in murine macrophage (RAW 264.7) cell line stimulated by lipopolysaccharide, and its stability study of the 95% ethanolic extract of PSD remedy. MATERIALS AND METHODS PSD remedy was extracted by maceration with 50% and 95% ethanol (PSD50 and PSD95), by decoction with distilled water (PSDW), and hydrolysis of PSDW with 0.1 N HCl (PSDH). The 12 plant ingredients were extracted with 95% ethanol. Quality evaluation of PSD ingredients was performed according to the standard procedures for the quality control of herbal materials. The inhibitory activity on nitric oxide production was determined by the Griess reaction and the inhibition of prostaglandin E2 production was determined using the ELISA test kit. RESULTS PSD ingredients passed the quality standard stipulated for herbal materials. PSD95 exhibited the highest inhibitory activities on the production of NO and PGE2 with the IC50 values of 42.40 ± 0.72 and 4.65 ± 0.76 μg/mL, respectively. A standard drug acetaminophen (ACP) exhibited inhibition of NO and PGE2 production with the IC50 values of 99.50 ± 0.43 and 6.110 ± 0.661 μg/mL, respectively. The stability study was suggested two years shelf-life of PSD95. This is the first report on the activity related antipyretic activity of PSD remedy and its ingredients against two fever mediators, NO and PGE2. CONCLUSION The results suggested that the 95% ethanolic extracts of PSD remedy and some of its ingredients, were better than ACP in reducing fever. PSD should be further studied using in vivo models and clinical trials to support its use as an antipyretic drug in Thai traditional medicine.
Collapse
Affiliation(s)
- Nuntika Prommee
- Student of Doctor of Philosophy (Applied Thai Traditional Medicine), Department of Applied Thai Traditional Medicine, Faculty of Medicine, Thammasat University (Rangsit Campus), Klongluang, Pathumthani, 12120, Thailand.
| | - Arunporn Itharat
- Department of Applied Thai Traditional Medicine, Faculty of Medicine, Thammasat University (Rangsit Campus), Klongluang, Pathumthani 12120, Thailand; Center of Excellence in Applied Thai Traditional Medicine Research (CEATMR), Thammasat University (Rangsit Campus), Klongluang, Pathumthani, 12120, Thailand.
| | - Sumalee Panthong
- Department of Applied Thai Traditional Medicine, Faculty of Medicine, Thammasat University (Rangsit Campus), Klongluang, Pathumthani 12120, Thailand; Center of Excellence in Applied Thai Traditional Medicine Research (CEATMR), Thammasat University (Rangsit Campus), Klongluang, Pathumthani, 12120, Thailand.
| | - Sunita Makchuchit
- Department of Applied Thai Traditional Medicine, Faculty of Medicine, Thammasat University (Rangsit Campus), Klongluang, Pathumthani 12120, Thailand; Center of Excellence in Applied Thai Traditional Medicine Research (CEATMR), Thammasat University (Rangsit Campus), Klongluang, Pathumthani, 12120, Thailand.
| | - Buncha Ooraikul
- Center of Excellence in Applied Thai Traditional Medicine Research (CEATMR), Thammasat University (Rangsit Campus), Klongluang, Pathumthani, 12120, Thailand; Professor Emeritus, Department of Agricultural Food and Nutritional Science, Faculty of Agricultural Life and Environmental Sciences, University of Alberta, Edmonton, Bualuang ASEAN Chair Professor, Thammasat University, Canada.
| |
Collapse
|
13
|
Thu ZM, Myo KK, Aung HT, Armijos C, Vidari G. Flavonoids and Stilbenoids of the Genera Dracaena and Sansevieria: Structures and Bioactivities. Molecules 2020; 25:molecules25112608. [PMID: 32503357 PMCID: PMC7321247 DOI: 10.3390/molecules25112608] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 12/22/2022] Open
Abstract
The genera Dracaena and Sansevieria (Asparagaceae, Nolinoideae) are still poorly resolved phylogenetically. Plants of these genera are commonly distributed in Africa, China, Southeast Asia, and America. Most of them are cultivated for ornamental and medicinal purposes and are used in various traditional medicines due to the wide range of ethnopharmacological properties. Extensive in vivo and in vitro tests have been carried out to prove the ethnopharmacological claims and other bioactivities. These investigations have been accompanied by the isolation and identification of hundreds of phytochemical constituents. The most characteristic metabolites are steroids, flavonoids, stilbenes, and saponins; many of them exhibit potent analgesic, anti-inflammatory, antimicrobial, antioxidant, antiproliferative, and cytotoxic activities. This review highlights the structures and bioactivities of flavonoids and stilbenoids isolated from Dracaena and Sansevieria.
Collapse
Affiliation(s)
- Zaw Min Thu
- Department of Chemistry, Kalay University, Kalay 03044, Sagaing Region, Myanmar;
- Correspondence: (Z.M.T.); (C.A.); (G.V.)
| | - Ko Ko Myo
- Department of Chemistry, Kalay University, Kalay 03044, Sagaing Region, Myanmar;
| | - Hnin Thanda Aung
- Department of Chemistry, University of Mandalay, Mandalay 100103, Myanmar;
| | - Chabaco Armijos
- Departamento de Química y Ciencias Exactas, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, Loja 1101608, Ecuador
- Correspondence: (Z.M.T.); (C.A.); (G.V.)
| | - Giovanni Vidari
- Medical Analysis Department, Faculty of Science, Tishk International University, Erbil 44001, Iraq
- Correspondence: (Z.M.T.); (C.A.); (G.V.)
| |
Collapse
|
14
|
Subedi L, Lee SE, Madiha S, Gaire BP, Jin M, Yumnam S, Kim SY. Phytochemicals against TNFα-Mediated Neuroinflammatory Diseases. Int J Mol Sci 2020; 21:ijms21030764. [PMID: 31991572 PMCID: PMC7037901 DOI: 10.3390/ijms21030764] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/20/2020] [Accepted: 01/21/2020] [Indexed: 02/07/2023] Open
Abstract
Tumor necrosis factor-alpha (TNF-α) is a well-known pro-inflammatory cytokine responsible for the modulation of the immune system. TNF-α plays a critical role in almost every type of inflammatory disorder, including central nervous system (CNS) diseases. Although TNF-α is a well-studied component of inflammatory responses, its functioning in diverse cell types is still unclear. TNF-α functions through its two main receptors: tumor necrosis factor receptor 1 and 2 (TNFR1, TNFR2), also known as p55 and p75, respectively. Normally, the functions of soluble TNF-α-induced TNFR1 activation are reported to be pro-inflammatory and apoptotic. While TNF-α mediated TNFR2 activation has a dual role. Several synthetic drugs used as inhibitors of TNF-α for diverse inflammatory diseases possess serious adverse effects, which make patients and researchers turn their focus toward natural medicines, phytochemicals in particular. Phytochemicals targeting TNF-α can significantly improve disease conditions involving TNF-α with fewer side effects. Here, we reviewed known TNF-α inhibitors, as well as lately studied phytochemicals, with a role in inhibiting TNF-α itself, and TNF-α-mediated signaling in inflammatory diseases focusing mainly on CNS disorders.
Collapse
Affiliation(s)
- Lalita Subedi
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea; (L.S.); (S.E.L.); (B.P.G.)
| | - Si Eun Lee
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea; (L.S.); (S.E.L.); (B.P.G.)
| | - Syeda Madiha
- Neurochemistry and Biochemical Neuropharmacology Research Unit, Department of Biochemistry, University of Karachi, Karachi-75270, Pakistan;
| | - Bhakta Prasad Gaire
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea; (L.S.); (S.E.L.); (B.P.G.)
| | - Mirim Jin
- College of Medicine and Department of Health Science and Technology, GAIHST, Gachon University #155, Gaebeol-ro, Yeonsu-gu, Incheon 21999, Korea;
| | - Silvia Yumnam
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea; (L.S.); (S.E.L.); (B.P.G.)
- Correspondence: (S.Y.); (S.Y.K.); Tel.: +82-32-820-4931 (S.Y. & S.Y.K.); Fax: +82-32-820-4932 (S.Y. & S.Y.K.)
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, #191, Hambakmoero, Yeonsu-gu, Incheon 21936, Korea; (L.S.); (S.E.L.); (B.P.G.)
- Correspondence: (S.Y.); (S.Y.K.); Tel.: +82-32-820-4931 (S.Y. & S.Y.K.); Fax: +82-32-820-4932 (S.Y. & S.Y.K.)
| |
Collapse
|
15
|
Li Y, Zeng Y, Meng T, Gao X, Huang B, He D, Ran X, Du J, Zhang Y, Fu S, Hu G. Farrerol protects dopaminergic neurons in a rat model of lipopolysaccharide-induced Parkinson's disease by suppressing the activation of the AKT and NF-κB signaling pathways. Int Immunopharmacol 2019; 75:105739. [PMID: 31351366 DOI: 10.1016/j.intimp.2019.105739] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/30/2019] [Accepted: 07/02/2019] [Indexed: 12/26/2022]
Abstract
Neuroinflammation, characterized by the activation of microglia, is one of the major pathologic processes of Parkinson's disease (PD). Overactivated microglia can release many pro-inflammatory cytokines, which cause an excessive inflammatory response and eventually damage dopaminergic neurons. Therefore, the inhibition of neuroinflammation that results from the overactivation of microglia may be an method for the treatment of PD. Farrerol is a 2,3-dihydro-flavonoid obtained from Rhododendron, and it possesses various biological functions, including anti-inflammatory, antibacterial and antioxidant activities. However, the effect of farrerol on neuroinflammation has not been investigated. The present study uncovered a neuroprotective role for farrerol. In vitro, farrerol markedly decreased the production of inflammatory mediators, including interleukin-6 (IL-6), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), cyclooxygenase 2 (COX-2) and induced nitric oxide synthase (iNOS), induced by lipopolysaccharide (LPS) in BV-2 cells. This anti-inflammatory effect was regulated via inhibiting NF-κB p65 and AKT phosphorylation. Furthermore, we found that farrerol alleviated microglial activation and dopaminergic neuronal death in rats with LPS-induced PD. Pretreatment with farrerol markedly improved motor deficits in rats with LPS-induced PD. Taken together, our results indicate that the neuroprotective effect of the farrerol, which prevents microglial overactivation in rats with LPS-induced PD, may provide a potential therapy for patients suffering from PD.
Collapse
Affiliation(s)
- Yuhang Li
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Yalong Zeng
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Tianyu Meng
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Xiyu Gao
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Bingxu Huang
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Dewei He
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Xin Ran
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Jian Du
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Yufei Zhang
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Shoupeng Fu
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China.
| | - Guiqiu Hu
- College of Animal Science and Veterinary Medicine, Jilin University, Changchun 130062, China.
| |
Collapse
|
16
|
Phytochemical analysis of Vietnamese propolis produced by the stingless bee Lisotrigona cacciae. PLoS One 2019; 14:e0216074. [PMID: 31017965 PMCID: PMC6481864 DOI: 10.1371/journal.pone.0216074] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/14/2019] [Indexed: 01/30/2023] Open
Abstract
Propolis produced by the stingless bee Lisotrigona cacciae was studied for the first time. Using different chromatographic procedures, a total of eighteen constituents (phenols and triterpenes) were isolated, among which flavane 1, homoisoflavanes 2-4, and xanthones 5 and 6 were new for propolis. Propolis extract was also characterized by gas chromatography/mass spectrometry and other fifteen constituents were identified. The xanthone α-mangostin (8) demonstrated significant activity against Staphylococcus aureus with MIC and MBC 0.31 μg/ml, followed by 7,4'-dihydroxy-5-methoxy-8-methylflavane (1) with MIC 78 μg/ml and MBC 156 μg/ml. 10,11- Dihydroxydracaenone C (4), a component bearing ortho-hydroxyl groups, was the only compound displaying radical scavenging ability. Triple botanical origin of the sample was defined, consisting of Dracaena cochinchinensis, Cratoxylum cochinchinense and Mangifera indica. D. cochinchinensis is a new resin source of propolis.
Collapse
|