1
|
Iyengar A, Ramadass B, Venkatesh S, Mak RH. Gut microbiota-targeted therapies in pediatric chronic kidney disease: gaps and opportunities. Pediatr Nephrol 2025:10.1007/s00467-025-06789-z. [PMID: 40307477 DOI: 10.1007/s00467-025-06789-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 05/02/2025]
Abstract
Given the complex relationship between the gut microbiome and chronic kidney disease (CKD), exploring the potential role and scope of microbiota-targeted therapies in pediatric CKD is highly relevant. We aim to provide an overview of gut-targeted therapeutic strategies, including nutritional interventions (fiber, phytochemicals, fermented foods, and traditional Chinese medicines), probiotics, synbiotics, oral absorbents, and fecal microbial transplantation. Enhancing physical activity and preventing constipation are additional strategies that may promote gut microbiome health. In a uremic environment, gut microbiota-targeted therapies could potentially rebalance the gut microbiota, improve gut barrier function, decrease uremic toxin concentrations, enhance the production of short-chain fatty acids (SCFA), and reduce inflammation. While research in adult CKD patients has provided insights into these approaches, there are limited data in children with CKD. This review aims to summarize potential targeted therapies for restoring a balanced gut microbiota, emphasizing the need for studies that evaluate their effects on clinical outcomes in pediatric CKD.
Collapse
Affiliation(s)
- Arpana Iyengar
- Department of Pediatric Nephrology, St. John's National Academy of Health Sciences, Bangalore, India, 560034.
| | - Balamurugan Ramadass
- Department of Biochemistry, All India Institute of Medical Sciences, Bhubaneswar, Orissa, India
| | - Shruthi Venkatesh
- Department of Pediatric Nephrology, St. John's National Academy of Health Sciences, Bangalore, India, 560034
| | - Robert H Mak
- Division of Pediatric Nephrology, University of California, San Diego, USA
| |
Collapse
|
2
|
Dong Z, Zhang R, Shen L, Ji H, He H, Ji X, Zhao L. Gut Microbiota and Immunoglobulin A Nephropathy: Exploration of Dietary Intervention and Treatment Strategies. Food Sci Nutr 2025; 13:e70218. [PMID: 40321610 PMCID: PMC12045934 DOI: 10.1002/fsn3.70218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/16/2025] [Accepted: 04/17/2025] [Indexed: 05/08/2025] Open
Abstract
Immunoglobulin A nephropathy (IgAN) is a primary glomerular disease characterized by the deposition of IgA. The pathogenesis of it is related to the dysbiosis of gut microbiota. Dysbiosis of gut microbiota influences mucosal immune response and systemic immune system, leading to glycosylation-deficient IgA1 (Gd-IgA1) increasing, which promotes the development of IgAN. Diet plays an important role in regulating gut microbiota and treating IgAN. In this review, we summarize the interplay between gut microbiota and IgAN, and their underlying mechanisms. We also describe the effects of dietary intake on IgAN, as well as the composition of gut microbiota. The progress on IgAN treatment mainly focuses on inhibiting or regulating the immune system. Moreover, therapeutic strategies related to gut microbiota such as dietary intervention, supplement of probiotics and prebiotics, as well as fecal microbiota transplantation (FMT) have shown the possibility of improving IgAN prognosis. Thus, exploration of the gut-kidney axis, the long-term effects of diet and microbiome is necessary to develop more effective treatment strategies.
Collapse
Affiliation(s)
- Zhaoyang Dong
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiChina
| | - Ran Zhang
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiChina
| | - Liang Shen
- Institute of Food and Drug Research for One Health, School of Food EngineeringLudong UniversityYantaiPeople's Republic of China
| | - Hong‐Fang Ji
- Institute of Food and Drug Research for One Health, School of Food EngineeringLudong UniversityYantaiPeople's Republic of China
| | - Haidong He
- Department of NephrologyMinhang Hospital, Fudan UniversityShanghaiChina
| | - Xiaoguo Ji
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiChina
- Shanghai Frontiers Science Centre of Optogenetic Techniques for Cell Metabolism, School of PharmacyEast China University of Science and TechnologyShanghaiChina
| | - Liming Zhao
- State Key Laboratory of Bioreactor EngineeringEast China University of Science and TechnologyShanghaiChina
- Shanghai Collaborative Innovation Centre for Biomanufacturing Technology (SCICBT)ShanghaiChina
| |
Collapse
|
3
|
Wu XQ, Zhao L, Zhao YL, He XY, Zou L, Zhao YY, Li X. Traditional Chinese medicine improved diabetic kidney disease through targeting gut microbiota. PHARMACEUTICAL BIOLOGY 2024; 62:423-435. [PMID: 38757785 PMCID: PMC11104709 DOI: 10.1080/13880209.2024.2351946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/28/2024] [Accepted: 04/30/2024] [Indexed: 05/18/2024]
Abstract
CONTEXT Diabetic kidney disease (DKD) affects nearly 40% of diabetic patients, often leading to end-stage renal disease that requires renal replacement therapies, such as dialysis and transplantation. The gut microbiota, an integral aspect of human evolution, plays a crucial role in this condition. Traditional Chinese medicine (TCM) has shown promising outcomes in ameliorating DKD by addressing the gut microbiota. OBJECTIVE This review elucidates the modifications in gut microbiota observed in DKD and explores the impact of TCM interventions on correcting microbial dysregulation. METHODS We searched relevant articles from databases including Web of Science, PubMed, ScienceDirect, Wiley, and Springer Nature. The following keywords were used: diabetic kidney disease, diabetic nephropathy, gut microbiota, natural product, TCM, Chinese herbal medicine, and Chinese medicinal herbs. Rigorous criteria were applied to identify high-quality studies on TCM interventions against DKD. RESULTS Dysregulation of the gut microbiota, including Lactobacillus, Streptococcus, and Clostridium, has been observed in individuals with DKD. Key indicators of microbial dysregulation include increased uremic solutes and decreased short-chain fatty acids. Various TCM therapies, such as formulas, tablets, granules, capsules, and decoctions, exhibit unique advantages in regulating the disordered microbiota to treat DKD. CONCLUSION This review highlights the importance of targeting the gut-kidney axis to regulate microbial disorders, their metabolites, and associated signaling pathways in DKD. The Qing-Re-Xiao-Zheng formula, the Shenyan Kangfu tablet, the Huangkui capsule, and the Bekhogainsam decoction are potential candidates to address the gut-kidney axis. TCM interventions offer a significant therapeutic approach by targeting microbial dysregulation in patients with DKD.
Collapse
Affiliation(s)
- Xia-Qing Wu
- Faculty of Life Science & Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Lei Zhao
- Department of General Practice, Xi’an International Medical Center Hospital, Xi’an, Shaanxi, China
| | - Yan-Long Zhao
- Faculty of Life Science & Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Xin-Yao He
- Faculty of Life Science & Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Liang Zou
- School of Food and Bioengineering, Chengdu University, Chengdu, Sichuan, China
| | - Ying-Yong Zhao
- Faculty of Life Science & Medicine, Northwest University, Xi’an, Shaanxi, China
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Xia Li
- Faculty of Life Science & Medicine, Northwest University, Xi’an, Shaanxi, China
- Department of General Practice, Xi’an International Medical Center Hospital, Xi’an, Shaanxi, China
| |
Collapse
|
4
|
Zhang R, Wang Q, Li Y, Li Q, Zhou X, Chen X, Dong Z. A new perspective on proteinuria and drug therapy for diabetic kidney disease. Front Pharmacol 2024; 15:1349022. [PMID: 39144629 PMCID: PMC11322372 DOI: 10.3389/fphar.2024.1349022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 07/17/2024] [Indexed: 08/16/2024] Open
Abstract
Diabetic kidney disease (DKD) is one of the leading causes of end-stage renal disease worldwide and significantly increases the risk of premature death due to cardiovascular diseases. Elevated urinary albumin levels are an important clinical feature of DKD. Effective control of albuminuria not only delays glomerular filtration rate decline but also markedly reduces cardiovascular disease risk and all-cause mortality. New drugs for treating DKD proteinuria, including sodium-glucose cotransporter two inhibitors, mineralocorticoid receptor antagonists, and endothelin receptor antagonists, have shown significant efficacy. Auxiliary treatment with proprietary Chinese medicine has also yielded promising results; however, it also faces a broader scope for development. The mechanisms by which these drugs treat albuminuria in patients with DKD should be described more thoroughly. The positive effects of combination therapy with two or more drugs in reducing albuminuria and protecting the kidneys warrant further investigation. Therefore, this review explores the pathophysiological mechanism of albuminuria in patients with DKD, the value of clinical diagnosis and prognosis, new progress and mechanisms of treatment, and multidrug therapy in patients who have type 2 diabetic kidney disease, providing a new perspective on the clinical diagnosis and treatment of DKD.
Collapse
Affiliation(s)
- Ruimin Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China
| | - Qian Wang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China
| | - Yaqing Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China
| | - Qihu Li
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China
| | - Xuefeng Zhou
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China
| | - Xiangmei Chen
- Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China
| | - Zheyi Dong
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, China
| |
Collapse
|
5
|
Liang X, Liu J, Di J, Xiao N, Peng Y, Tian Q, Chen L. Toxicity evaluation of processing Evodiae fructus based on intestinal microbiota. Front Microbiol 2024; 15:1336777. [PMID: 38435687 PMCID: PMC10904473 DOI: 10.3389/fmicb.2024.1336777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 02/06/2024] [Indexed: 03/05/2024] Open
Abstract
Background With the development of healthcare services, drug efficacy, and safety have become the focus of drug use, and processing alters drug toxicity and efficacy, exploring the effects of processing on Evodiae fructus (EF) can guide the clinical use of drugs. Methods Fifty male Kunming mice were randomly divided into the control group (CCN), raw small-flowered EF group (CRSEF), raw medium-flowered EF group (CRMEF), processing small-flowered EF group (CPSEF), and processing medium-flowered EF group (CPMEF). The CRSEF, CRMEF, CPSEF, and CPMEF groups were gavaged with aqueous extracts of raw small-flowered EF dry paste (RSEF), medium-flowered EF dry paste (RMEF), processing small-flowered EF dry paste (PSEF) and processing medium-flowered EF dry paste (PMEF), respectively, for 21 days at 5 times the pharmacopeial dosage. Upon concluding the experiment, histopathological sections of liver and kidney tissues were examined. Additionally, levels of aspartate aminotransferase (AST), alanine aminotransferase (ALT), serum creatinine (SCr), and blood urea nitrogen (BUN) were determined. DNA from the intestinal contents of the mice was extracted, and 16S rRNA full-length high-throughput sequencing was performed. Results After fed EF 21 days, mice exhibited a decreasing trend in body weight. Comparative analysis with the CCN group revealed an upward trend in SCr, BUN, AST, and ALT levels in both CRSEF and CRMEF groups. The CRMEF group displayed notably elevated BUN and AST levels, with an observed increasing trend in Scr and ALT. Kidney sections unveiled cellular edema and considerable inflammatory cell infiltrates, whereas significant liver damage was not evident. Compared with CRSEF, Bun levels were significantly lower while AST levels were significantly higher in the CPMEF group. Additionally, the intestinal microbiota diversity and the relative abundance of Psychrobacter decreased significantly, and the relative abundance of Staphylococcus, Jeotgalicoccus, and Salinicoccus increased significantly in the CPMEF group. AST, ALT, and SCr were positively correlated with Staphylococcus, Jeotgalicoccus, and Salinicoccus. Conclusion In conclusion, PMEF significantly increased harmful bacteria (Staphylococcus, Jeotgalicoccus, and Salinicoccu) and decreased beneficial bacteria. SEF with 5 times the clinical dose showed nephrotoxicity and SEF nephrotoxicity decreased after processing, but EF hepatotoxicity was not significant, which may be due to insufficient dose concentration and time.
Collapse
Affiliation(s)
| | - Jing Liu
- Hunan University of Chinese Medicine, Changsha, China
| | - Jiaxin Di
- Hunan University of Chinese Medicine, Changsha, China
| | - Nenqun Xiao
- Hunan University of Chinese Medicine, Changsha, China
| | - Yanmei Peng
- Hunan Academy of Chinese Medicine, Changsha, China
| | - Qixue Tian
- Hunan Province Hospital of Integrated Traditional Chinese and Western Medicine (The Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine), Changsha, China
- National Traditional Chinese Medicine Processing Technology Inheritance Base of the Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, China
| | - Linglong Chen
- Hunan Academy of Chinese Medicine, Changsha, China
- National Traditional Chinese Medicine Processing Technology Inheritance Base of the Affiliated Hospital of Hunan Academy of Traditional Chinese Medicine, Changsha, China
| |
Collapse
|
6
|
Pérez-Martínez L, Romero L, Verdugo-Sivianes EM, Muñoz-Galván S, Rubio-Mediavilla S, Amiama-Roig A, Carnero A, Blanco JR. Role of maraviroc and/or rapamycin in the liver of IL10 KO mice with frailty syndrome. PLoS One 2024; 19:e0286201. [PMID: 38198476 PMCID: PMC10781157 DOI: 10.1371/journal.pone.0286201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/10/2023] [Indexed: 01/12/2024] Open
Abstract
Cellular senescence and low-grade inflammation favor the acceleration of aging. The liver is an essential metabolic organ because changes related to its function are related to age-related diseases. The objective of this study was to evaluate the effects of maraviroc (MVC) and/or rapamycin (RAPA) on liver tissue in an experimental model of frailty syndrome in mice, since MVC and RAPA are two molecules able to decrease CCR5 expression, which is overexpressed in patients with frailty. Methods: Eighty male homozygous IL10KO mice were randomly assigned to one of 4 groups (n = 20): i) IL10KO group; ii) MVC group, iii) RAPA group, and iv) MVC-RAPA group. Liver samples were analyzed. Gene expression quantification and western blotting were also performed. The proinflammatory cytokines IL-6 and IL-18 were decreased in MVC and MVC/RAPA groups, IL-12 was decreased in RAPA and MVC/RAPA groups and TNF-α was decreased in all therapeutic groups. P21 was decreased in RAPA and MVC/RAPA groups, Galactosidase beta-1, was also significantly reduced in all therapeutic groups, as were NF-kB1, NF-kB2 and STAT3. In all groups, mTOR and CCL5 were significantly reduced. CCR5 expression was decreased in the MVC and MVC/RAPA groups. Conclusion: MVC and RAPA may protect against some factors involved in liver aging. More studies will be necessary to verify their clinical applications.
Collapse
Affiliation(s)
| | - Lourdes Romero
- Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain
| | - Eva M. Verdugo-Sivianes
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Sevilla, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - Sandra Muñoz-Galván
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Sevilla, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Ana Amiama-Roig
- Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain
| | - Amancio Carnero
- Instituto de Biomedicina de Sevilla, IBIS, Hospital Universitario Virgen del Rocío, Consejo Superior de Investigaciones Científicas, Universidad de Sevilla, Sevilla, Spain
- CIBERONC, Instituto de Salud Carlos III, Madrid, Spain
| | - José-Ramón Blanco
- Centro de Investigación Biomédica de La Rioja (CIBIR), Logroño, Spain
- Servicio de Enfermedades Infecciosas, Hospital Universitario San Pedro, Logroño, Spain
| |
Collapse
|
7
|
Han YZ, Zheng HJ, Du BX, Zhang Y, Zhu XY, Li J, Wang YX, Liu WJ. Role of Gut Microbiota, Immune Imbalance, and Allostatic Load in the Occurrence and Development of Diabetic Kidney Disease. J Diabetes Res 2023; 2023:8871677. [PMID: 38094870 PMCID: PMC10719010 DOI: 10.1155/2023/8871677] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/15/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Diabetic kidney disease (DKD) is a prevailing complication arising from diabetes mellitus. Unfortunately, there are no trustworthy and efficacious treatment modalities currently available. In recent times, compelling evidence has emerged regarding the intricate correlation between the kidney and the gut microbiota, which is considered the largest immune organ within the human physique. Various investigations have demonstrated that the perturbation of the gut microbiota and its associated metabolites potentially underlie the etiology and progression of DKD. This phenomenon may transpire through perturbation of both the innate and the adaptive immunity, leading to a burdensome allostatic load on the body and ultimately culminating in the development of DKD. Within this literature review, we aim to delve into the intricate interplay between the gut microbiota, its metabolites, and the immune system in the context of DKD. Furthermore, we strive to explore and elucidate potential chemical interventions that could hold promise for the treatment of DKD, thereby offering invaluable insights and directions for future research endeavors.
Collapse
Affiliation(s)
- Yi Zhen Han
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Juan Zheng
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Bo Xuan Du
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yi Zhang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xing Yu Zhu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jing Li
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Yao Xian Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Wei Jing Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
8
|
Shi L, Li C, Wang J, Zhong H, Wei T, Fan W, Li Z. The intellectual base and global trends in inflammation of diabetic kidney disease: a bibliometric analysis. Ren Fail 2023; 45:2270061. [PMID: 37870857 PMCID: PMC11001326 DOI: 10.1080/0886022x.2023.2270061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/08/2023] [Indexed: 10/24/2023] Open
Abstract
Diabetic kidney disease (DKD) is a severe complication of diabetes mellitus (DM). The literature on DKD inflammation research has experienced substantial growth. However, there is a lack of bibliometric analyses. This study aimed to examine the existing research on inflammation in DKD by analyzing articles published in the Web of Science Core Collection (WOSCC) over the past 30 years. We conducted a visualization analysis using several software, including CiteSpace and VOSviewer. We found that the literature on inflammation research in DKD has experienced substantial growth, indicating a rising interest in this developing area of study. In this field, Navarro-Gonzalez, JF is the most frequently cited author, Kidney International is the most frequently cited journal, China had the highest number of publications in the field of DKD inflammation, and Monash University emerged as the institution with the most published research. The research area on inflammation in DKD primarily centers around the investigation of 'Glycation end-products', 'chronic kidney disease', and 'diabetic nephropathy'. The emerging research trends in this field will focus on the 'Gut microbiota', 'NLRP3 inflammasome', 'autophagy', 'pyroptosis', 'sglt2 inhibitor', and 'therapeutic target'. Future research on DKD may focus on further exploring the inflammatory response, identifying specific therapeutic targets, studying biomarkers, investigating stem cell therapy and tissue engineering, and exploring gene therapy and gene editing. In summary, this study examines the main areas of study, frontiers, and trends in DKD inflammation, which have significant implications for future research.
Collapse
Affiliation(s)
- LuYao Shi
- Department of Nephrology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - ChangYan Li
- Department of Nephrology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Jian Wang
- The Second People’s Hospital of Baoshan City, Baoshan, China
| | - HuaChen Zhong
- First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Tao Wei
- Kunming Medical University, Kunming, Yunnan Province, China
| | - WenXing Fan
- Department of Nephrology, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| | - Zhen Li
- Organ Transplantation Center, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan Province, China
| |
Collapse
|
9
|
Zhao H, Yang CE, Liu T, Zhang MX, Niu Y, Wang M, Yu J. The roles of gut microbiota and its metabolites in diabetic nephropathy. Front Microbiol 2023; 14:1207132. [PMID: 37577423 PMCID: PMC10413983 DOI: 10.3389/fmicb.2023.1207132] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/13/2023] [Indexed: 08/15/2023] Open
Abstract
Diabetic nephropathy (DN) is a severe microvascular complication of diabetes, which increases the risk of renal failure and causes a high global disease burden. Due to the lack of sustainable treatment, DN has become the primary cause of end-stage renal disease worldwide. Gut microbiota and its metabolites exert critical regulatory functions in maintaining host health and are associated with many pathogenesis of aging-related chronic diseases. Currently, the theory gut-kidney axis has opened a novel angle to understand the relationship between gut microbiota and multiple kidney diseases. In recent years, accumulating evidence has revealed that the gut microbiota and their metabolites play an essential role in the pathophysiologic processes of DN through the gut-kidney axis. In this review, we summarize the current investigations of gut microbiota and microbial metabolites involvement in the progression of DN, and further discuss the potential gut microbiota-targeted therapeutic approaches for DN.
Collapse
Affiliation(s)
- Hui Zhao
- Clinical Experimental Center, Xi’an Engineering Technology Research Center for Cardiovascular Active Peptides, the Affiliated Xi’an International Medical Center Hospital, Northwest University, Xi’an, Shaanxi, China
- Faculty of Life Science and Medicine, Northwest University, Xi’an, Shaanxi, China
| | - Cheng-E Yang
- Department of Cardiology, Xi'an International Medical Center Hospital, Xi’an, Shaanxi, China
| | - Tian Liu
- Clinical Experimental Center, Xi’an Engineering Technology Research Center for Cardiovascular Active Peptides, the Affiliated Xi’an International Medical Center Hospital, Northwest University, Xi’an, Shaanxi, China
| | - Ming-Xia Zhang
- Clinical Experimental Center, Xi’an Engineering Technology Research Center for Cardiovascular Active Peptides, the Affiliated Xi’an International Medical Center Hospital, Northwest University, Xi’an, Shaanxi, China
| | - Yan Niu
- Clinical Experimental Center, Xi’an Engineering Technology Research Center for Cardiovascular Active Peptides, the Affiliated Xi’an International Medical Center Hospital, Northwest University, Xi’an, Shaanxi, China
| | - Ming Wang
- College of Food Science and Engineering, Northwest University, Xi’an, Shaanxi, China
| | - Jun Yu
- Clinical Experimental Center, Xi’an Engineering Technology Research Center for Cardiovascular Active Peptides, the Affiliated Xi’an International Medical Center Hospital, Northwest University, Xi’an, Shaanxi, China
| |
Collapse
|
10
|
Zahid S, Dafre AL, Currais A, Yu J, Schubert D, Maher P. The Geroprotective Drug Candidate CMS121 Alleviates Diabetes, Liver Inflammation, and Renal Damage in db/db Leptin Receptor Deficient Mice. Int J Mol Sci 2023; 24:6828. [PMID: 37047807 PMCID: PMC10095029 DOI: 10.3390/ijms24076828] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/31/2023] [Accepted: 04/02/2023] [Indexed: 04/14/2023] Open
Abstract
db/db mice, which lack leptin receptors and exhibit hyperphagia, show disturbances in energy metabolism and are a model of obesity and type 2 diabetes. The geroneuroprotector drug candidate CMS121 has been shown to be effective in animal models of Alzheimer's disease and aging through the modulation of metabolism. Thus, the hypothesis was that CMS121 could protect db/db mice from metabolic defects and thereby reduce liver inflammation and kidney damage. The mice were treated with CMS121 in their diet for 6 months. No changes were observed in food and oxygen consumption, body mass, or locomotor activity compared to control db/db mice, but a 5% reduction in body weight was noted. Improved glucose tolerance and reduced HbA1c and insulin levels were also seen. Blood and liver triglycerides and free fatty acids decreased. Improved metabolism was supported by lower levels of fatty acid metabolites in the urine. Markers of liver inflammation, including NF-κB, IL-18, caspase 3, and C reactive protein, were lowered by the CMS121 treatment. Urine markers of kidney damage were improved, as evidenced by lower urinary levels of NGAL, clusterin, and albumin. Urine metabolomics studies provided further evidence for kidney protection. Mitochondrial protein markers were elevated in db/db mice, but CMS121 restored the renal levels of NDUFB8, UQCRC2, and VDAC. Overall, long-term CMS121 treatment alleviated metabolic imbalances, liver inflammation, and reduced markers of kidney damage. Thus, this study provides promising evidence for the potential therapeutic use of CMS121 in treating metabolic disorders.
Collapse
Affiliation(s)
- Saadia Zahid
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Neurobiology Research Laboratory, Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
| | - Alcir L. Dafre
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Biochemistry Department, Federal University of Santa Catarina, Florianópolis 88040-900, Brazil
| | - Antonio Currais
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Jingting Yu
- The Razavi Newman Integrative Genomics and Bioinformatics Core, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - David Schubert
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Pamela Maher
- Cellular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
11
|
Xiang X, Peng B, Liu K, Wang T, Ding P, Li H, Zhu Y, Ming Y. Association between salivary microbiota and renal function in renal transplant patients during the perioperative period. Front Microbiol 2023; 14:1122101. [PMID: 37065138 PMCID: PMC10090686 DOI: 10.3389/fmicb.2023.1122101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/07/2023] [Indexed: 03/31/2023] Open
Abstract
IntroductionRenal transplantation is an effective treatment for the end stage renal disease (ESRD). However, how salivary microbiota changes during perioperative period of renal transplant recipients (RTRs) has not been elucidated.MethodsFive healthy controls and 11 RTRs who had good recovery were enrolled. Saliva samples were collected before surgery and at 1, 3, 7, and 14 days after surgery. 16S rRNA gene sequencing was performed.ResultsThere was no significant difference in the composition of salivary microbiota between ESRD patients and healthy controls. The salivary microbiota of RTRs showed higher operational taxonomic units (OTUs) amount and greater alpha and beta diversity than those of ESRD patients and healthy controls, but gradually stabilized over time. At the phylum level, the relative abundance of Actinobacteria, Tenericutes and Spirochaetes was about ten times different from ESRD patients or healthy controls for RTRs overall in time. The relative abundance of Bacteroidetes, Fusobacteria, Patescibacteria, Leptotrichiaceae and Streptococcaceae was correlated with serum creatinine (Scr) after renal transplantation.DiscussionIn short, salivary microbiota community altered in the perioperative period of renal transplantation and certain species of salivary microbiota had the potential to be a biomarker of postoperative recovery.
Collapse
Affiliation(s)
- Xuyu Xiang
- The Transplantation Center of the Third Xiangya Hospital, Central South University, Changsha, China
- Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, China
| | - Bo Peng
- The Transplantation Center of the Third Xiangya Hospital, Central South University, Changsha, China
- Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, China
| | - Kai Liu
- The Transplantation Center of the Third Xiangya Hospital, Central South University, Changsha, China
- Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, China
| | - Tianyin Wang
- The Transplantation Center of the Third Xiangya Hospital, Central South University, Changsha, China
- Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, China
| | - Peng Ding
- The Transplantation Center of the Third Xiangya Hospital, Central South University, Changsha, China
- Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, China
| | - Hao Li
- The Transplantation Center of the Third Xiangya Hospital, Central South University, Changsha, China
- Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, China
| | - Yi Zhu
- The Transplantation Center of the Third Xiangya Hospital, Central South University, Changsha, China
- Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, China
| | - Yingzi Ming
- The Transplantation Center of the Third Xiangya Hospital, Central South University, Changsha, China
- Engineering and Technology Research Center for Transplantation Medicine of National Health Commission, Changsha, China
- *Correspondence: Yingzi Ming
| |
Collapse
|
12
|
Das S, Gnanasambandan R. Intestinal microbiome diversity of diabetic and non-diabetic kidney disease: Current status and future perspective. Life Sci 2023; 316:121414. [PMID: 36682521 DOI: 10.1016/j.lfs.2023.121414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/09/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
A significant portion of the health burden of diabetic kidney disease (DKD) is caused by both type 1 and type 2 diabetes which leads to morbidity and mortality globally. It is one of the most common diabetic complications characterized by loss of renal function with high prevalence, often leading to acute kidney disease (AKD). Inflammation triggered by gut microbiota is commonly associated with the development of DKD. Interactions between the gut microbiota and the host are correlated in maintaining metabolic and inflammatory homeostasis. However, the fundamental processes through which the gut microbiota affects the onset and progression of DKD are mainly unknown. In this narrative review, we summarised the potential role of the gut microbiome, their pathogenicity between diabetic and non-diabetic kidney disease (NDKD), and their impact on host immunity. A well-established association has already been seen between gut microbiota, diabetes and kidney disease. The gut-kidney interrelationship is confirmed by mounting evidence linking gut dysbiosis to DKD, however, it is still unclear what is the real cause of gut dysbiosis, the development of DKD, and its progression. In addition, we also try to distinguish novel biomarkers for early detection of DKD and the possible therapies that can be used to regulate the gut microbiota and improve the host immune response. This early detection and new therapies will help clinicians for better management of the disease and help improve patient outcomes.
Collapse
Affiliation(s)
- Soumik Das
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Ramanathan Gnanasambandan
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India.
| |
Collapse
|
13
|
Mao ZH, Gao ZX, Liu DW, Liu ZS, Wu P. Gut microbiota and its metabolites - molecular mechanisms and management strategies in diabetic kidney disease. Front Immunol 2023; 14:1124704. [PMID: 36742307 PMCID: PMC9896007 DOI: 10.3389/fimmu.2023.1124704] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/06/2023] [Indexed: 01/22/2023] Open
Abstract
Diabetic kidney disease (DKD) is one of the major microvascular complications of diabetes mellitus and is also one of the serious risk factors in cardiovascular events, end-stage renal disease, and mortality. DKD is associated with the diversified, compositional, and functional alterations of gut microbiota. The interaction between gut microbiota and host is mainly achieved through metabolites, which are small molecules produced by microbial metabolism from exogenous dietary substrates and endogenous host compounds. The gut microbiota plays a critical role in the pathogenesis of DKD by producing multitudinous metabolites. Nevertheless, detailed mechanisms of gut microbiota and its metabolites involved in the occurrence and development of DKD have not been completely elucidated. This review summarizes the specific classes of gut microbiota-derived metabolites, aims to explore the molecular mechanisms of gut microbiota in DKD pathophysiology and progression, recognizes biomarkers for the screening, diagnosis, and prognosis of DKD, as well as provides novel therapeutic strategies for DKD.
Collapse
Affiliation(s)
- Zi-Hui Mao
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Institute of Nephrology, Zhengzhou University, Zhengzhou, China,Henan Province Research Center for Kidney Disease, Zhengzhou, China,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zhong-Xiuzi Gao
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Institute of Nephrology, Zhengzhou University, Zhengzhou, China,Henan Province Research Center for Kidney Disease, Zhengzhou, China,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Dong-Wei Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Institute of Nephrology, Zhengzhou University, Zhengzhou, China,Henan Province Research Center for Kidney Disease, Zhengzhou, China,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China
| | - Zhang-Suo Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Institute of Nephrology, Zhengzhou University, Zhengzhou, China,Henan Province Research Center for Kidney Disease, Zhengzhou, China,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China,*Correspondence: Peng Wu, ; Zhang-Suo Liu,
| | - Peng Wu
- Traditional Chinese Medicine Integrated Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China,Institute of Nephrology, Zhengzhou University, Zhengzhou, China,Henan Province Research Center for Kidney Disease, Zhengzhou, China,Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou, China,*Correspondence: Peng Wu, ; Zhang-Suo Liu,
| |
Collapse
|
14
|
Zheng L, Luo M, Zhou H, Chen J. Natural products from plants and microorganisms: Novel therapeutics for chronic kidney disease via gut microbiota regulation. Front Pharmacol 2023; 13:1068613. [PMID: 36733377 PMCID: PMC9887141 DOI: 10.3389/fphar.2022.1068613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/23/2022] [Indexed: 01/18/2023] Open
Abstract
Dysbiosis of gut microbiota plays a fundamental role in the pathogenesis and development of chronic kidney disease (CKD) and its complications. Natural products from plants and microorganisms can achieve recognizable improvement in renal function and serve as an alternative treatment for chronic kidney disease patients with a long history, yet less is known on its beneficial effects on kidney injury by targeting the intestinal microbiota. In this review, we summarize studies on the effects of natural products from plants and microorganisms, including herbal medicines and their bioactive extracts, polysaccharides from plants and microorganisms, and phytochemicals, on the prevention and treatment of chronic kidney disease through targeting gut microflora. We describe the strategies of these anti-CKD effects in animal experiments including remodulation of gut microbiota structure, reduction of uremic toxins, enhancement of short-chain fatty acid (SCFA) production, regulation of intestinal inflammatory signaling, and improvement in intestinal integrity. Meanwhile, the clinical trials of different natural products in chronic kidney disease clinical practice were also analyzed and discussed. These provide information to enable a better understanding of the renoprotective effects of these effective natural products from plants and microorganisms in the treatment of chronic kidney disease. Finally, we propose the steps to prove the causal role of the intestinal microflora in the treatment of chronic kidney disease by natural products from plants and microorganisms. We also assess the future perspective that natural active products from plants and microorganisms can beneficially delay the onset and progression of kidney disease by targeting the gut flora and highlight the remaining challenges in this area. With the continuous deepening of studies in recent years, it has been proved that gut microbiota is a potential target of natural active products derived from plants and microorganisms for chronic kidney disease treatment. Fully understanding the functions and mechanisms of gut microbiota in these natural active products from plants and microorganisms is conducive to their application as an alternative therapeutic in the treatment of chronic kidney disease.
Collapse
Affiliation(s)
- Lin Zheng
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Mingjing Luo
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology, Shenzhen, China
| | - Haokui Zhou
- Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institutes of Advanced Technology, Shenzhen, China
| | - Jianping Chen
- Shenzhen Key Laboratory of Hospital Chinese Medicine Preparation, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
15
|
Wu X, Zhao L, Zhang Y, Li K, Yang J. The role and mechanism of the gut microbiota in the development and treatment of diabetic kidney disease. Front Physiol 2023; 14:1166685. [PMID: 37153213 PMCID: PMC10160444 DOI: 10.3389/fphys.2023.1166685] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/12/2023] [Indexed: 05/09/2023] Open
Abstract
Diabetic kidney disease (DKD) is a common complication in patients with diabetes mellitus (DM). Increasing evidence suggested that the gut microbiota participates in the progression of DKD, which is involved in insulin resistance, renin-angiotensin system (RAS) activation, oxidative stress, inflammation and immunity. Gut microbiota-targeted therapies including dietary fiber, supplementation with probiotics or prebiotics, fecal microbiota transplantation and diabetic agents that modulate the gut microbiota, such as metformin, glucagon-like peptide-1 (GLP-1) receptor agonists, dipeptidyl peptidase-4 (DPP-4) inhibitors, and sodium-glucose transporter-2 (SGLT-2) inhibitors. In this review, we summarize the most important findings about the role of the gut microbiota in the pathogenesis of DKD and the application of gut microbiota-targeted therapies.
Collapse
Affiliation(s)
- Xiaofang Wu
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lei Zhao
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yujiang Zhang
- Department of Nephrology, Chongqing Jiangjin Second People’s Hospital, Chongqing, China
| | - Kailong Li
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jurong Yang
- Department of Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Jurong Yang,
| |
Collapse
|
16
|
Liu L, Xu J, Zhang Z, Ren D, Wu Y, Wang D, Zhang Y, Zhao S, Chen Q, Wang T. Metabolic Homeostasis of Amino Acids and Diabetic Kidney Disease. Nutrients 2022; 15:nu15010184. [PMID: 36615841 PMCID: PMC9823842 DOI: 10.3390/nu15010184] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/16/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Diabetic kidney disease (DKD) occurs in 25-40% of patients with diabetes. Individuals with DKD are at a significant risk of progression to end-stage kidney disease morbidity and mortality. At present, although renal function-decline can be retarded by intensive glucose lowering and strict blood pressure control, these current treatments have shown no beneficial impact on preventing progression to kidney failure. Recently, in addition to control of blood sugar and pressure, a dietary approach has been recommended for management of DKD. Amino acids (AAs) are both biomarkers and causal factors of DKD progression. AA homeostasis contributes to renal hemodynamic response and glomerular hyperfiltration alteration in diabetic patients. This review discusses the links between progressive kidney dysfunction and the metabolic homeostasis of histidine, tryptophan, methionine, glutamine, tyrosine, and branched-chain AAs. In addition, we emphasize the regulation effects of special metabolites on DKD progression, with a focus on causality and potential mechanisms. This paper may offer an optimized protein diet strategy with concomitant management of AA homeostasis to reduce the risks of DKD in a setting of hyperglycemia.
Collapse
Affiliation(s)
- Luokun Liu
- State Key Laboratory of Component Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Jingge Xu
- Haihe Laboratory of Modern Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Zhiyu Zhang
- State Key Laboratory of Component Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Dongwen Ren
- Haihe Laboratory of Modern Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Yuzheng Wu
- State Key Laboratory of Component Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Dan Wang
- State Key Laboratory of Component Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Yi Zhang
- Haihe Laboratory of Modern Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Shuwu Zhao
- School of Intergrative Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
| | - Qian Chen
- State Key Laboratory of Component Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
- Correspondence: (Q.C.); (T.W.); Tel.: +86-22-59596164 (Q.C.); +86-22-59596185 (T.W.)
| | - Tao Wang
- Haihe Laboratory of Modern Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai District, Tianjin 301617, China
- Correspondence: (Q.C.); (T.W.); Tel.: +86-22-59596164 (Q.C.); +86-22-59596185 (T.W.)
| |
Collapse
|
17
|
Du J, Yang M, Zhang Z, Cao B, Wang Z, Han J. The modulation of gut microbiota by herbal medicine to alleviate diabetic kidney disease - A review. Front Pharmacol 2022; 13:1032208. [PMID: 36452235 PMCID: PMC9702521 DOI: 10.3389/fphar.2022.1032208] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/31/2022] [Indexed: 09/09/2023] Open
Abstract
The treatment of diabetic kidney disease (DKD) has been the key concern of the medical community. Herbal medicine has been reported to alleviate intestinal dysbiosis, promote the excretion of toxic metabolites, and reduce the secretion of uremic toxins. However, the current understanding of the modulation of the gut microbiota by herbal medicine to delay the progression of DKD is still insufficient. Consequently, we reviewed the knowledge based on peer-reviewed English-language journals regarding regulating gut microbiota by herbal medicines in DKD. It was found that herbal medicine or their natural extracts may have the following effects: modulating the composition of intestinal flora, particularly Akkermansia, Lactobacillus, and Bacteroidetes, as well as adjusting the F/B ratio; increasing the production of SCFAs and restoring the intestinal barrier; reducing the concentration of uremic toxins (p-cresol sulfate, indole sulfate, TMAO); inhibiting inflammation and oxidative stress.
Collapse
Affiliation(s)
- Jinxin Du
- Shandong University of Traditional Chinese Medicine, Jinan, China
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China
| | - Meina Yang
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Zhongwen Zhang
- Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Baorui Cao
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China
| | - Zhiying Wang
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China
| | - Jinxiang Han
- NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences), Biomedical Sciences College, Shandong First Medical University, Jinan, China
| |
Collapse
|
18
|
Chen DQ, Wu J, Li P. Therapeutic mechanism and clinical application of Chinese herbal medicine against diabetic kidney disease. Front Pharmacol 2022; 13:1055296. [PMID: 36408255 PMCID: PMC9669587 DOI: 10.3389/fphar.2022.1055296] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/24/2022] [Indexed: 12/25/2023] Open
Abstract
Diabetic kidney disease (DKD) is the major complications of type 1 and 2 diabetes, and is the predominant cause of chronic kidney disease and end-stage renal disease. The treatment of DKD normally consists of controlling blood glucose and improving kidney function. The blockade of renin-angiotensin-aldosterone system and the inhibition of sodium glucose cotransporter 2 (SGLT2) have become the first-line therapy of DKD, but such treatments have been difficult to effectively block continuous kidney function decline, eventually resulting in kidney failure and cardiovascular comorbidities. The complex mechanism of DKD highlights the importance of multiple therapeutic targets in treatment. Chinese herbal medicine (active compound, extract and formula) synergistically improves metabolism regulation, suppresses oxidative stress and inflammation, inhibits mitochondrial dysfunction, and regulates gut microbiota and related metabolism via modulating GLP-receptor, SGLT2, Sirt1/AMPK, AGE/RAGE, NF-κB, Nrf2, NLRP3, PGC-1α, and PINK1/Parkin pathways. Clinical trials prove the reliable evidences for Chinese herbal medicine against DKD, but more efforts are still needed to ensure the efficacy and safety of Chinese herbal medicine. Additionally, the ideal combined therapy of Chinese herbal medicine and conventional medicine normally yields more favorable benefits on DKD treatment, laying the foundation for novel strategies to treat DKD.
Collapse
Affiliation(s)
- Dan-Qian Chen
- Department of Emergency, China-Japan Friendship Hospital, Beijing, China
| | - Jun Wu
- Shandong College of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Ping Li
- Beijing Key Lab for Immune-Mediated Inflammatory Diseases, Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
19
|
Liu J, Zhang X, Xu G. Clinical efficacy, safety, and cost of nine Chinese patent medicines combined with ACEI/ARB in the treatment of early diabetic kidney disease: A network meta-analysis. Front Pharmacol 2022; 13:939488. [PMID: 36071841 PMCID: PMC9441488 DOI: 10.3389/fphar.2022.939488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Objectives: To evaluate and compare the efficacy, safety, and cost of nine Chinese patent medicines (CPMs) combined with angiotensin-converting enzyme inhibitor (ACEI) or angiotensin receptor blocker (ARB) in treating early diabetic kidney disease (DKD). Design: Systematic review and network meta-analysis. Data sources: PubMed, Embase, Cochrane Library, Web of Science, clinicaltrials.gov, SinoMed, Chinese Biomedicine, China National Knowledge Infrastructure, WanFang, and Chongqing VIP Information databases were comprehensively searched from the beginning to February 2022. Review Methods: Randomized controlled trials (RCTs) including Bailing capsule (BLC); Jinshuibao capsule (JSB); Huangkui capsule (HKC); Compound Xueshuantong capsule (CXC); uremic clearance granule (UCG); Shenyan Kangfu tablet (SYKFT); tripterygium glycosides (TG); Keluoxin capsule (KLX), and Shenshuaining tablet (SSNT) combined with ACEI/ARB for patients with early DKD were reviewed. Data Synthesis: Two reviewers independently screened articles, extracted data, and assessed the risk of bias. Risk ratios (RRs) and mean difference (MD) were reckoned to assess dichotomous variable quantities and continuous variable quantities, respectively. Using the surface under the cumulative ranking curve (SUCRA), we then ranked each therapeutic regime. Results: Ultimately, 160 RCTs involving 13,365 patients and nine CPMs were included. UCG showed significantly higher probabilities on urinary albumin excretion rate (UAER) when compared with ACEI/ARB group, with MD of −47 (95%CI) (−57, −37) and SUCRA 98.0%. The CXC group achieved a remarkable improvement in overall response rate (ORR) compared with ACEI/ARB (RR, 1.3, 95%CI (1.2, 1.5)) with SUCRA 91.9%. SSNT could be significantly superior to ACEI/ARB group in terms of serum creatinine (Scr) (−19 (−26, −12), SUCRA 99.3%) and adverse effects (AEs) (0.46 (0.17, 1.1), SUCRA 82.9%). BLC showed the greatest effectiveness on 24 h urinary total protein (24 h UTP) (−170 (−260, −83), SUCRA 78.5%) and triglyceride (Trig) (−0.89 (−1.2, −0.53), SUCRA 97.0%). From the cost-effectiveness analysis of CPMs in China, the cost of TG, SYKFT and CXC was 108, 600, and 648 RMB, respectively, per 3 months and were ranked in the top three. Conclusion: UCG and CXC might be the optimum selection for improving UAER and ORR, and SSNT could be significantly superior to ACEI/ARB group in terms of Scr and AEs. BLC shows the best curative effect on 24 h UTP and Trig. TG shows the highest cost-effectiveness among the nine CPMs.
Collapse
|
20
|
Zhao J, Ai J, Mo C, Shi W, Meng L. Comparative efficacy of seven Chinese patent medicines for early diabetic kidney disease: A Bayesian network meta-analysis. Complement Ther Med 2022; 67:102831. [PMID: 35398481 DOI: 10.1016/j.ctim.2022.102831] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 03/12/2022] [Accepted: 04/05/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Bailing Capsule (BLC), Jinshuibao (JSB), Huangkui Capsule (HKC), Uremic Clearance Granule (UCG), Tripterygium glycosides (TG), Compound Xueshuantong Capsule (CXC), and Shenyan Kangfu Tablet (SYKFT) as classic Chinese patent medicines (CPMs), have been widely used and shown beneficial effects on the treatment of early diabetic kidney disease (DKD). However, the comparative efficacy of seven CPMs in the treatment of early DKD remains unknown. OBJECTIVE To evaluate and compare the efficacy of seven CPMs (BLC, JSB, HKC, UCG, TG, CXC, SYKFT) combined with angiotensin-converting enzyme inhibitor (ACEI) or angiotensin receptor blocker (ARB) on early DKD by a Bayesian network meta-analysis (NMA) of randomized controlled trials (RCTs). METHODS A comprehensive and systematic literature search was performed in PubMed, Embase, Cochrane Library, Web of Science, Clinical Trials.gov, China Biology Medicine, Chinese National Knowledge Infrastructure, Chinese Scientific Journal, and Wanfang databases from inception to March 14, 2021, for full-text RCTs that evaluated the efficacy of seven CPMs combined with ACEI/ARB on patients with early DKD. Two reviewers independently screened studies for eligibility, extracted data, and assessed the risk of bias. Agreement between reviewers was measured using kappa statistics. Mean difference (MD) and odds ratio (OR) were calculated to evaluate continuous variables and dichotomous, respectively. The random effect modeling NMA was performed and the ranking probability of interventions in various outcomes was also conducted based on the surface under the cumulative ranking curve (SUCRA). Begg's and Egger's tests were used to evaluate publication bias. The certainty of the evidence for outcomes was evaluated according to the GRADE system. RESULTS A total of 62 RCTs with 5362 patients with early DKD were identified. The value of Kappa calculated for the various parameters extracted by the two investigators was 0.821 (P < 0.001). Among these CPMs, UCG + ACEI/ARB showed the best effectiveness for urinary albumin excretion rate (UAER) (MD 32.25, 95% CrI 19.11-45.67, low certainty) with SUCRA 92%. JSB + ACEI/ARB showed the highest effectiveness for 24-h urinary total protein (24-h UTP) (MD 76.92, 95% CrI 53.54-100.58, low certainty) with SUCRA 97%. CXC + ACEI/ARB showed the highest effectiveness for serum creatinine (SCr) (MD 26.02, 95% CrI 6.10-45.95, low certainty) with SUCRA 96%. HKC + ACEI/ARB showed the highest effectiveness for blood urea nitrogen (BUN) (MD 1.46, 95% CrI 0.42-2.54, very low certainty) with SUCRA 86%. BLC + ACEI/ARB showed significant differences in triglyceride (TRIG) (MD - 1.17, 95% CrI - 1.93 to - 0.43, low certainty) with SUCRA 90%, total cholesterol (TC) (MD - 1.17, 95% CrI - 1.97 to - 0.39, very low certainty) with SUCRA 90%, and C-reaction protein (CRP) (MD - 0.90, 95% CrI - 1.51 to - 0.32, very low certainty) with SUCRA 76%. CONCLUSIONS CPMs + ACEI/ARB might be positive efficacious interventions from which patients with DKD will derive benefit. UCG + ACEI/ARB, JSB + ACEI/ARB, CXC + ACEI/ARB, and HKC + ACEI/ARB might be potentially the preferred intervention for reducing UAER, 24-h UTP, SCr, and BUN levels, respectively. BLC + ACEI/ARB has a better impact on lowing TRIG, TC, and CRP levels in patients with early DKD. However, more high-quality, large-scale, multi-center RCTs and stronger head-to-head trials are required to confirm these findings.
Collapse
Affiliation(s)
- Jie Zhao
- Graduate School, Hunan University of Chinese Medicine, Changsha, Hunan 410208, PR China.
| | - Jun Ai
- Basic Medicine School, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, PR China.
| | - Chao Mo
- Department of Nephrology, the First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi 530023, PR China; Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi 530200, PR China.
| | - Wei Shi
- Department of Nephrology, the First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi 530023, PR China.
| | - LiFeng Meng
- Department of Nephrology, the First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi 530023, PR China; Traditional Chinese and Western Medicine Laboratory for Controlling Organ Fibrosis, Southwest Medical University, Luzhou, Sichuan 646000, PR China.
| |
Collapse
|
21
|
Huang Y, Xin W, Xiong J, Yao M, Zhang B, Zhao J. The Intestinal Microbiota and Metabolites in the Gut-Kidney-Heart Axis of Chronic Kidney Disease. Front Pharmacol 2022; 13:837500. [PMID: 35370631 PMCID: PMC8971625 DOI: 10.3389/fphar.2022.837500] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/21/2022] [Indexed: 12/13/2022] Open
Abstract
Emerging evidences demonstrate the involvement of gut microbiota in the progression of chronic kidney disease (CKD) and CKD-associated complications including cardiovascular disease (CVD) and intestinal dysfunction. In this review, we discuss the interactions between the gut, kidney and heart in CKD state, and elucidate the significant role of intestinal microbiota in the gut-kidney-heart axis hypothesis for the pathophysiological mechanisms of these diseases, during which process mitochondria may serve as a potential therapeutic target. Dysregulation of this axis will lead to a vicious circle, contributing to CKD progression. Recent studies suggest novel therapies targeting gut microbiota in the gut-kidney-heart axis, including dietary intervention, probiotics, prebiotics, genetically engineered bacteria, fecal microbiota transplantation, bacterial metabolites modulation, antibiotics, conventional drugs and traditional Chinese medicine. Further, the identification of specific microbial communities and their corresponding pathophysiological metabolites and the illumination of the gut-kidney-heart axis may contribute to innovative basic research, clinical trials and therapeutic strategies against CKD progression and uremic complications in CKD patients.
Collapse
|
22
|
Yang M, Yang Y, He Q, Zhu P, Liu M, Xu J, Zhao M. Intestinal Microbiota-A Promising Target for Antiviral Therapy? Front Immunol 2021; 12:676232. [PMID: 34054866 PMCID: PMC8149780 DOI: 10.3389/fimmu.2021.676232] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/28/2021] [Indexed: 12/12/2022] Open
Abstract
The intestinal microbiota is thought to be an important biological barrier against enteric pathogens. Its depletion, however, also has curative effects against some viral infections, suggesting that different components of the intestinal microbiota can play both promoting and inhibitory roles depending on the type of viral infection. The two primary mechanisms by which the microbiota facilitates or inhibits viral invasion involve participation in the innate and adaptive immune responses and direct or indirect interaction with the virus, during which the abundance and composition of the intestinal microbiota might be changed by the virus. Oral administration of probiotics, faecal microbiota transplantation (FMT), and antibiotics are major therapeutic strategies for regulating intestinal microbiota balance. However, these three methods have shown limited curative effects in clinical trials. Therefore, the intestinal microbiota might represent a new and promising supplementary antiviral therapeutic target, and more efficient and safer methods for regulating the microbiota require deeper investigation. This review summarizes the latest research on the relationship among the intestinal microbiota, anti-viral immunity and viruses and the most commonly used methods for regulating the intestinal microbiota with the goal of providing new insight into the antiviral effects of the gut microbiota.
Collapse
Affiliation(s)
- Mengling Yang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yang Yang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qingnan He
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Mengqi Liu
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jiahao Xu
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Mingyi Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
23
|
Wang P, Wang T, Zheng X, Cui W, Shang J, Zhao Z. Gut microbiota, key to unlocking the door of diabetic kidney disease. Nephrology (Carlton) 2021; 26:641-649. [PMID: 33715272 PMCID: PMC8360003 DOI: 10.1111/nep.13874] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/30/2022]
Abstract
This review discusses the influence of gut microbiota dysbiosis on diabetic kidney disease through metabolite profile changes and immune and inflammatory mechanisms. We also elaborate on the mechanism of dysbiosis in the onset and development of other kidney diseases. This review presents scientific evidence on the pathophysiologic links between gut microbiota and diabetic kidney disease (DKD), highlighting the influence of gut microbiota dysbiosis on DKD through metabolite profile changes and immunologic mechanisms.
Collapse
Affiliation(s)
- Peipei Wang
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Ting Wang
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Xuejun Zheng
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Wen Cui
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Jin Shang
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| | - Zhanzheng Zhao
- Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, P.R. China
| |
Collapse
|
24
|
Carranza-Naval MJ, Vargas-Soria M, Hierro-Bujalance C, Baena-Nieto G, Garcia-Alloza M, Infante-Garcia C, del Marco A. Alzheimer's Disease and Diabetes: Role of Diet, Microbiota and Inflammation in Preclinical Models. Biomolecules 2021; 11:biom11020262. [PMID: 33578998 PMCID: PMC7916805 DOI: 10.3390/biom11020262] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/05/2021] [Accepted: 02/05/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is the most common cause of dementia. Epidemiological studies show the association between AD and type 2 diabetes (T2DM), although the mechanisms are not fully understood. Dietary habits and lifestyle, that are risk factors in both diseases, strongly modulate gut microbiota composition. Also, the brain-gut axis plays a relevant role in AD, diabetes and inflammation, through products of bacterial metabolism, like short-chain fatty acids. We provide a comprehensive review of current literature on the relation between dysbiosis, altered inflammatory cytokines profile and microglia in preclinical models of AD, T2DM and models that reproduce both diseases as commonly observed in the clinic. Increased proinflammatory cytokines, such as IL-1β and TNF-α, are widely detected. Microbiome analysis shows alterations in Actinobacteria, Bacteroidetes or Firmicutes phyla, among others. Altered α- and β-diversity is observed in mice depending on genotype, gender and age; therefore, alterations in bacteria taxa highly depend on the models and approaches. We also review the use of pre- and probiotic supplements, that by favoring a healthy microbiome ameliorate AD and T2DM pathologies. Whereas extensive studies have been carried out, further research would be necessary to fully understand the relation between diet, microbiome and inflammation in AD and T2DM.
Collapse
Affiliation(s)
- Maria Jose Carranza-Naval
- Division of Physiology, School of Medicine, Universidad de Cadiz, 11003 Cadiz, Spain; (M.J.C.-N.); (M.V.-S.); (C.H.-B.); (M.G.-A.)
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), 11009 Cadiz, Spain;
- Salus Infirmorum, Universidad de Cadiz, 11005 Cadiz, Spain
| | - Maria Vargas-Soria
- Division of Physiology, School of Medicine, Universidad de Cadiz, 11003 Cadiz, Spain; (M.J.C.-N.); (M.V.-S.); (C.H.-B.); (M.G.-A.)
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), 11009 Cadiz, Spain;
| | - Carmen Hierro-Bujalance
- Division of Physiology, School of Medicine, Universidad de Cadiz, 11003 Cadiz, Spain; (M.J.C.-N.); (M.V.-S.); (C.H.-B.); (M.G.-A.)
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), 11009 Cadiz, Spain;
| | - Gloria Baena-Nieto
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), 11009 Cadiz, Spain;
- Department of Endocrinology, Jerez Hospital, Jerez de la Frontera, 11407 Cadiz, Spain
| | - Monica Garcia-Alloza
- Division of Physiology, School of Medicine, Universidad de Cadiz, 11003 Cadiz, Spain; (M.J.C.-N.); (M.V.-S.); (C.H.-B.); (M.G.-A.)
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), 11009 Cadiz, Spain;
| | - Carmen Infante-Garcia
- Division of Physiology, School of Medicine, Universidad de Cadiz, 11003 Cadiz, Spain; (M.J.C.-N.); (M.V.-S.); (C.H.-B.); (M.G.-A.)
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), 11009 Cadiz, Spain;
- Correspondence: (C.I.-G.); (A.d.M.)
| | - Angel del Marco
- Division of Physiology, School of Medicine, Universidad de Cadiz, 11003 Cadiz, Spain; (M.J.C.-N.); (M.V.-S.); (C.H.-B.); (M.G.-A.)
- Instituto de Investigacion e Innovacion en Ciencias Biomedicas de la Provincia de Cadiz (INIBICA), 11009 Cadiz, Spain;
- Correspondence: (C.I.-G.); (A.d.M.)
| |
Collapse
|