1
|
Lu H, Feng Y, Lin M, Yu X, Liu Y, Tan Y, Luo X. Discovery of Polyketides and Alkaloids From the Mangrove Endophytic Fungus Diaporthe sp. and Their Anti-Osteoclastogenic Bioactivities. Chem Biodivers 2025:e202500858. [PMID: 40228317 DOI: 10.1002/cbdv.202500858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/16/2025]
Abstract
Two new compounds, 5-methoxymethylmellein (1) and 6-benzyl-2-hydroxy-5-methoxy-3-methylpyradine (2), along with nine known compounds (3-11), were obtained from the mangrove endophytic fungus Diaporthe sp. SCSIO 41011. Their structures were determined based on extensive spectroscopic analysis and by comparison with literature. The absolute configuration of 1 was assigned by electronic circular dichroism calculations. The structure of naturally rare compound 2 was unambiguously confirmed by single-crystal X-ray diffraction analysis. Notably, compound 4 displayed inhibition of lipopolysaccharide-induced nuclear factor kappa B in RAW264.7 macrophages at 20 µM. It further dose-dependently suppressed receptor activator of nuclear factor-κB ligand-induced osteoclast differentiation in bone marrow macrophage cells with an EC50 value of 19.0 µM, without observed cytotoxicity. Our findings provided 4 as a promising lead compound for the treatment of osteolytic diseases.
Collapse
Affiliation(s)
- Humu Lu
- Guangxi Key Laboratory of Marine Drugs, University Engineering Research Center of High-efficient Utilization of Marine Traditional Chinese Medicine Resources, Guangxi, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, China
| | - Yuyao Feng
- Guangxi Key Laboratory of Marine Drugs, University Engineering Research Center of High-efficient Utilization of Marine Traditional Chinese Medicine Resources, Guangxi, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, China
| | - Miaoping Lin
- Guangxi Key Laboratory of Marine Drugs, University Engineering Research Center of High-efficient Utilization of Marine Traditional Chinese Medicine Resources, Guangxi, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, China
| | - Xiang Yu
- Guangxi Key Laboratory of Marine Drugs, University Engineering Research Center of High-efficient Utilization of Marine Traditional Chinese Medicine Resources, Guangxi, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, China
| | - Yonghong Liu
- Guangxi Key Laboratory of Marine Drugs, University Engineering Research Center of High-efficient Utilization of Marine Traditional Chinese Medicine Resources, Guangxi, Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, China
| | - Yanhui Tan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
| | - Xiaowei Luo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, China
| |
Collapse
|
2
|
Hitora Y, Hokaguchi M, Sadahiro Y, Higaki T, Tsukamoto S. Machine Learning Accelerates Screening of Osteoclast Differentiation Inhibitors from Natural Products. JOURNAL OF NATURAL PRODUCTS 2024; 87:2393-2397. [PMID: 39364554 DOI: 10.1021/acs.jnatprod.4c00640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Natural products that inhibit osteoclast differentiation are promising therapeutic and preventive agents for osteoporosis. Conventionally, identifying osteoclast differentiation involves visual inspection of the microscope images of stained osteoclasts. In this study, a supervised machine learning model was developed to classify bright-field microscope images of osteoclasts without staining. The model was used to screen a compound library, and osteoclast differentiation inhibitors were identified, demonstrating the validity of our method. Next, an in-house library of fungal extracts was screened, and pinolidoxin was revealed as an inhibitor of osteoclast differentiation. Our machine learning method enabled accurate, objective, and high-throughput evaluation of osteoclast differentiation and efficient screening of the inhibitors from natural product extracts. This study represents the first machine learning classification developed to evaluate the inhibitory activity of natural products in osteoclast differentiation.
Collapse
Affiliation(s)
- Yuki Hitora
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
- International Research Center for Agricultural and Environmental Biology (IRCAEB), 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Mako Hokaguchi
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yusaku Sadahiro
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Takumi Higaki
- International Research Center for Agricultural and Environmental Biology (IRCAEB), 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
- Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Sachiko Tsukamoto
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
- International Research Center for Agricultural and Environmental Biology (IRCAEB), 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| |
Collapse
|
3
|
Xie CL, Wu TZ, Wang Y, Capon RJ, Xu R, Yang XW. Genome Mining of a Deep-Sea-Derived Penicillium allii-sativi Revealed Polyketide-Terpenoid Hybrids with Antiosteoporosis Activity. Org Lett 2024; 26:3889-3895. [PMID: 38668739 DOI: 10.1021/acs.orglett.4c01065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Two novel meroterpenoids, alliisativins A and B (1, 2) were discovered through a genome-based exploration of the biosynthetic gene clusters of the deep-sea-derived fungus Penicillium allii-sativi MCCC entry 3A00580. Extensive spectroscopic analysis, quantum calculations, chemical derivatization, and biogenetic considerations were utilized to establish their structures. Alliisativins A and B (1, 2) possess a unique carbon skeleton featuring a drimane sesquiterpene with a highly oxidized polyketide. Noteworthily, alliisativin A (1) showed dual activity in promoting osteogenesis and inhibiting osteoclast, indicating an antiosteoporosis potential.
Collapse
Affiliation(s)
- Chun-Lan Xie
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, School of Pharmacy, Hainan Medical University, Hainan Academy of Medical Sciences, No. 3 Xueyuan Road, Haikou 571199, China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, South Xiangan Road, Xiamen 361102, China
| | - Tai-Zong Wu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| | - Yuan Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| | - Robert J Capon
- Institute for Molecular Bioscience, University of Queensland, Brisbane 4072, Australia
| | - Ren Xu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, South Xiangan Road, Xiamen 361102, China
| | - Xian-Wen Yang
- Engineering Research Center of Tropical Medicine Innovation and Transformation of Ministry of Education, School of Pharmacy, Hainan Medical University, Hainan Academy of Medical Sciences, No. 3 Xueyuan Road, Haikou 571199, China
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China
| |
Collapse
|
4
|
Wang T, Feng Y, Huang J, Wu S, Hu K, Wu J, Naman CB, Wang H, Lin W, He S. Pestanoid A, a Rearranged Pimarane Diterpenoid Osteoclastogenesis Inhibitor from a Marine Mesophotic Zone Chalinidae Sponge-Associated Fungus, Pestalotiopsis sp. NBUF145. JOURNAL OF NATURAL PRODUCTS 2024; 87:160-165. [PMID: 38194474 DOI: 10.1021/acs.jnatprod.3c00892] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
One novel rearranged pimarane diterpenoid, pestanoid A (1), and two reported molecules, nodulisporenones A (2) and B (3), were discovered from Pestalotiopsis sp. NBUF145 fungus associated with a 62 m deep mesophotic ("twilight") zone Chalinidae sponge. The structures of 1-3 were identified by spectrometry, spectroscopy, quantum-chemical calculations, and X-ray crystallography. Compounds 1 and 2 inhibited bone marrow monocyte osteoclastogenesis in vitro with the IC50 values 4.2 ± 0.2 μM and 3.0 ± 0.4 μM, respectively, without observed cytotoxicity. Both 1 and 2 suppressed the receptor activator of NF-kB ligand-induced MAPK and NF-κB signaling by inhibiting the phosphorylation of ERK1/2-JNK1/2-p38 MAPKs and NF-κB nuclear translocation.
Collapse
Affiliation(s)
- Tingting Wang
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Yunping Feng
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Jian Huang
- Ningbo Institute of Marine Medicine, Peking University, Ningbo 315832, Zhejiang, China
| | - Sitong Wu
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Kun Hu
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Jiabin Wu
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo 315211, Zhejiang, China
| | - C Benjamin Naman
- Department of Science and Conservation, San Diego Botanic Garden, Encinitas, California 92024, United States
| | - Hong Wang
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Wenhan Lin
- Ningbo Institute of Marine Medicine, Peking University, Ningbo 315832, Zhejiang, China
| | - Shan He
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Health Science Center, Ningbo University, Ningbo 315211, Zhejiang, China
- Ningbo Institute of Marine Medicine, Peking University, Ningbo 315832, Zhejiang, China
| |
Collapse
|
5
|
El-Desoky AH, Eguchi K, Kagiyama I, Hitora Y, Kato H, Ise Y, Losung F, Mangindaan REP, Tsukamoto S. Aaptocarbamates A-G, chlorinated terpene carbamates with antiosteoclastogenic activities from the marine sponge Aaptos sp. PHYTOCHEMISTRY 2023; 216:113872. [PMID: 37769957 DOI: 10.1016/j.phytochem.2023.113872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/03/2023]
Abstract
Six undescribed chlorinated sesquiterpene carbamates, aaptocarbamates A-F, and a chlorinated tris-norsesquiterpene carbamate, aaptocarbamate G, were isolated from the marine sponge Aaptos sp. collected in Indonesia. Aaptocarbamates D-F and G possess tetrahydrofurans and a tetrahydrofuranone, respectively. The relative configurations of the tetrahydrofuran units were determined by the NOE correlations and DFT-based calculation of the 13C chemical shifts. This is the first time that chlorinated terpene carbamates have been reported from natural sources. Various aaptamine derivatives have been reported from the Aaptos sponges so far, the isolation of chlorinated terpene carbamates is very rare. Aaptocarbamates A, B, and D showed 60% inhibition of the RANKL-induced formation of multinucleated osteoclasts in RAW264 macrophages at 20 μM.
Collapse
Affiliation(s)
- Ahmed H El-Desoky
- Pharmaceutical and Drug Industries Research Institute, Pharmacognosy Department, National Research Centre, El-Tahrir St., Dokki, Giza, 12622, Egypt
| | - Keisuke Eguchi
- Department of Natural Medicines, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto, 862-0973, Japan
| | - Ippei Kagiyama
- Department of Natural Medicines, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto, 862-0973, Japan
| | - Yuki Hitora
- Department of Natural Medicines, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto, 862-0973, Japan
| | - Hikaru Kato
- Department of Natural Medicines, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto, 862-0973, Japan
| | - Yuji Ise
- Kuroshio Biological Research Foundation, 560 Nishidomari, Otsuki, Hata, Kochi, 788-0333, Japan
| | - Fitje Losung
- Faculty of Fisheries and Marine Science, Sam Ratulangi University, Kampus Bahu, Manado, 95115, Indonesia
| | - Remy E P Mangindaan
- Faculty of Fisheries and Marine Science, Sam Ratulangi University, Kampus Bahu, Manado, 95115, Indonesia
| | - Sachiko Tsukamoto
- Department of Natural Medicines, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto, 862-0973, Japan.
| |
Collapse
|
6
|
Xie CL, Yue YT, Xu JP, Li N, Lin T, Ji GR, Yang XW, Xu R. Penicopeptide A (PPA) from the deep-sea-derived fungus promotes osteoblast-mediated bone formation and alleviates ovariectomy-induced bone loss by activating the AKT/GSK-3β/β-catenin signaling pathway. Pharmacol Res 2023; 197:106968. [PMID: 37866705 DOI: 10.1016/j.phrs.2023.106968] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 10/24/2023]
Abstract
The potential of marine natural products as effective drugs for osteoporosis treatment is an understudied area. In this study, we investigated the ability of lead compounds from deep-sea-derived Penicillium solitum MCCC 3A00215 to promote bone formation in vitro and in vivo. We found that penicopeptide A (PPA) promoted osteoblast mineralization among bone marrow mesenchymal stem cells (BMSCs) in a concentration-dependent manner, and thus, we selected this natural peptide for further testing. Our further experiments showed that PPA significantly promoted the osteogenic differentiation of BMSCs while inhibiting their adipogenic differentiation and not affecting their chondrogenic differentiation. Mechanistic studies showed that PPA binds directly to the AKT and GSK-3β and activates phosphorylation of AKT and GSK-3β, resulting in the accumulation of β-catenin. We also evaluated the therapeutic potential of PPA in a female mouse model of ovariectomy-induced systemic bone loss. In this model, PPA treatment prevented decreases in bone volume and trabecular thickness. In conclusion, our in vitro and in vivo results demonstrated that PPA could promote osteoblast-related bone formation via the AKT, GSK-3β, and β-catenin signaling pathways, indicating the clinical potential of PPA as a candidate compound for osteoporosis prevention.
Collapse
Affiliation(s)
- Chun-Lan Xie
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen 361102, China; Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Yu-Ting Yue
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen 361102, China; Department of Orthopedics Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361102, Xiamen,China
| | - Jing-Ping Xu
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Na Li
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Ting Lin
- Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Guang-Rong Ji
- Department of Orthopedics Surgery, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, 361102, Xiamen,China.
| | - Xian-Wen Yang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China.
| | - Ren Xu
- Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen 361102, China; The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, State Key Laboratory of Cellular Stress Biology, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
7
|
Zhang Y, Xie CL, Wang Y, He XW, Xie MM, Li Y, Zhang K, Zou ZB, Yang LH, Xu R, Yang XW. Penidihydrocitrinins A-C: New Polyketides from the Deep-Sea-Derived Penicillium citrinum W17 and Their Anti-Inflammatory and Anti-Osteoporotic Bioactivities. Mar Drugs 2023; 21:538. [PMID: 37888473 PMCID: PMC10608093 DOI: 10.3390/md21100538] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 10/28/2023] Open
Abstract
Three new polyketides (penidihydrocitrinins A-C, 1-3) and fourteen known compounds (4-17) were isolated from the deep-sea-derived Penicillium citrinum W17. Their structures were elucidated by comprehensive analyses of 1D and 2D NMR, HRESIMS, and ECD calculations. Compounds 1-17 were evaluated for their anti-inflammatory and anti-osteoporotic bioactivities. All isolates exhibited significant inhibitory effects on LPS-stimulated nitric oxide production in murine brain microglial BV-2 cells in a dose-response manner. Notably, compound 14 displayed the strongest effect with the IC50 value of 4.7 µM. Additionally, compounds 6, 7, and 8 significantly enhanced osteoblast mineralization, which was comparable to that of the positive control, purmorphamine. Furthermore, these three compounds also suppressed osteoclastogenesis in a dose-dependent manner under the concentrations of 2.5 μM, 5.0 μM, and 10 μM.
Collapse
Affiliation(s)
- Yong Zhang
- Key Laboratory of Marine Genetic Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (Y.Z.); (C.-L.X.); (Y.W.); (X.-W.H.); (M.-M.X.); (Y.L.); (K.Z.); (Z.-B.Z.)
| | - Chun-Lan Xie
- Key Laboratory of Marine Genetic Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (Y.Z.); (C.-L.X.); (Y.W.); (X.-W.H.); (M.-M.X.); (Y.L.); (K.Z.); (Z.-B.Z.)
- School of Medicine, Xiamen University, South Xiangan Road, Xiamen 361005, China
| | - Yuan Wang
- Key Laboratory of Marine Genetic Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (Y.Z.); (C.-L.X.); (Y.W.); (X.-W.H.); (M.-M.X.); (Y.L.); (K.Z.); (Z.-B.Z.)
| | - Xi-Wen He
- Key Laboratory of Marine Genetic Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (Y.Z.); (C.-L.X.); (Y.W.); (X.-W.H.); (M.-M.X.); (Y.L.); (K.Z.); (Z.-B.Z.)
| | - Ming-Min Xie
- Key Laboratory of Marine Genetic Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (Y.Z.); (C.-L.X.); (Y.W.); (X.-W.H.); (M.-M.X.); (Y.L.); (K.Z.); (Z.-B.Z.)
| | - You Li
- Key Laboratory of Marine Genetic Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (Y.Z.); (C.-L.X.); (Y.W.); (X.-W.H.); (M.-M.X.); (Y.L.); (K.Z.); (Z.-B.Z.)
| | - Kai Zhang
- Key Laboratory of Marine Genetic Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (Y.Z.); (C.-L.X.); (Y.W.); (X.-W.H.); (M.-M.X.); (Y.L.); (K.Z.); (Z.-B.Z.)
| | - Zheng-Biao Zou
- Key Laboratory of Marine Genetic Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (Y.Z.); (C.-L.X.); (Y.W.); (X.-W.H.); (M.-M.X.); (Y.L.); (K.Z.); (Z.-B.Z.)
| | - Long-He Yang
- Key Laboratory of Marine Genetic Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (Y.Z.); (C.-L.X.); (Y.W.); (X.-W.H.); (M.-M.X.); (Y.L.); (K.Z.); (Z.-B.Z.)
| | - Ren Xu
- School of Medicine, Xiamen University, South Xiangan Road, Xiamen 361005, China
| | - Xian-Wen Yang
- Key Laboratory of Marine Genetic Resources, Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (Y.Z.); (C.-L.X.); (Y.W.); (X.-W.H.); (M.-M.X.); (Y.L.); (K.Z.); (Z.-B.Z.)
| |
Collapse
|
8
|
Yan XY, Zhang L, Yang QB, Ge ZY, Liang LF, Guo YW. Genus Litophyton: A Hidden Treasure Trove of Structurally Unique and Diversely Bioactive Secondary Metabolites. Mar Drugs 2023; 21:523. [PMID: 37888458 PMCID: PMC10608288 DOI: 10.3390/md21100523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Marine soft corals are prolific sources of various natural products that have served as a wealthy reservoir of diverse chemical scaffolds with potential as new drug leads. The genus Litophyton contains almost 100 species but only a small proportion of them has been chemically investigated, which calls for more attentions from global researchers. In the current work, 175 secondary metabolites have been discussed, drawing from published data spanning almost five decades, up to July 2023. The studied species of the genus Litophyton resided in various tropical and temperate regions and encompassed a broad range of biologically active natural products including terpenes, steroids, nitrogen-containing metabolites, lipids, and other metabolites. A wide spectrum of pharmacological effects of these compounds had been evaluated, such as cytotoxic, antiviral, antibacterial, antifungal, anti-malarial, antifeedant, anti-inflammatory, molluscicidal, PTP1B inhibitory, insect growth inhibitory, and neuroprotective activities. This review aims to offer an up-to-date survey of the literature and provide a comprehensive understanding of the chemical structures, taxonomical distributions, and biological activities of the reported metabolites from the title genus whenever available.
Collapse
Affiliation(s)
- Xian-Yun Yan
- College of Materials Science and Engineering, Central South University of Forestry and Technology, 498 South Shaoshan Road, Changsha 410004, China; (X.-Y.Y.); (L.Z.); (Q.-B.Y.); (Z.-Y.G.)
| | - Ling Zhang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, 498 South Shaoshan Road, Changsha 410004, China; (X.-Y.Y.); (L.Z.); (Q.-B.Y.); (Z.-Y.G.)
| | - Qi-Bin Yang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, 498 South Shaoshan Road, Changsha 410004, China; (X.-Y.Y.); (L.Z.); (Q.-B.Y.); (Z.-Y.G.)
| | - Zeng-Yue Ge
- College of Materials Science and Engineering, Central South University of Forestry and Technology, 498 South Shaoshan Road, Changsha 410004, China; (X.-Y.Y.); (L.Z.); (Q.-B.Y.); (Z.-Y.G.)
| | - Lin-Fu Liang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, 498 South Shaoshan Road, Changsha 410004, China; (X.-Y.Y.); (L.Z.); (Q.-B.Y.); (Z.-Y.G.)
| | - Yue-Wei Guo
- School of Medicine, Shanghai University, 99 Shangda Road, Bao Shan District, Shanghai 200444, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, 198 Binhai East Road, High-tech Zone, Yantai 264117, China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
9
|
Davan I, Fakurazi S, Alias E, Ibrahim N'I, Hwei NM, Hassan H. Astaxanthin as a Potent Antioxidant for Promoting Bone Health: An Up-to-Date Review. Antioxidants (Basel) 2023; 12:1480. [PMID: 37508018 PMCID: PMC10376010 DOI: 10.3390/antiox12071480] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
In recent years, bone loss and its associated diseases have become a significant public health concern due to increased disability, morbidity, and mortality. Oxidative stress and bone loss are correlated, where oxidative stress suppresses osteoblast activity, resulting in compromised homeostasis between bone formation and resorption. This event causes upregulation of bone remodeling turnover rate with an increased risk of fractures and bone loss. Therefore, supplementation of antioxidants can be proposed to reduce oxidative stress, facilitate the bone remodeling process, suppress the initiation of bone diseases, and improve bone health. Astaxanthin (3,3'-dihydroxy-4-4'-diketo-β-β carotene), a potent antioxidant belonging to the xanthophylls family, is a potential ROS scavenger and could be a promising therapeutic nutraceutical possessing various pharmacological properties. In bone, astaxanthin enhances osteoblast differentiation, osteocytes numbers, and/or differentiation, inhibits osteoclast differentiation, cartilage degradation markers, and increases bone mineral density, expression of osteogenic markers, while reducing bone loss. In this review, we presented the up-to-date findings of the potential anabolic effects of astaxanthin on bone health in vitro, animal, and human studies by providing comprehensive evidence for its future clinical application, especially in treating bone diseases.
Collapse
Affiliation(s)
- Iswari Davan
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
| | - Sharida Fakurazi
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
| | - Ekram Alias
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Nurul 'Izzah Ibrahim
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia (UKM), Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Ng Min Hwei
- Centre for Tissue Engineering and Regenerative Medicine, Universiti Kebangsaan Malaysia (UKM), Jalan Yaacob Latiff, Bandar Tun Razak, Kuala Lumpur 56000, Malaysia
| | - Haniza Hassan
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia
| |
Collapse
|
10
|
Wu Z, Hu L, Ru K, Zhang W, Xu X, Liu S, Liu H, Jia Y, Liang S, Chen Z, Qian A. Ellagic acid inhibits CDK12 to increase osteoblast differentiation and alleviate osteoporosis in hindlimb-unloaded and ovariectomized mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154745. [PMID: 36931096 DOI: 10.1016/j.phymed.2023.154745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 02/13/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Osteoporosis is a highly prevalent bone disease occurred commonly in astronauts and postmenopausal women due to mechanical unloading and estrogen deficiency, respectively. At present, there are some traditional Chinese medicine compounds for preventing and treating osteoporosis induced by simulated microgravity, but the detailed components of the traditional Chinese medicines still need to be confirmed and osteoporosis is still untreatable due to a lack of effective small-molecule natural medicine. PURPOSE To explore the role of cyclin-dependent kinase 12 (CDK12) in osteoporosis induced by simulated microgravity and the therapeutic effect of CDK12-targeted Ellagic Acid (EA) on osteoporosis. METHODS Our previous study has suggested that CDK12 as a potential target for treating and preventing osteoporosis. In this study, the role of CDK12 in osteoblasts and mice bone tissues was further studied under simulated microgravity. And by targeting CDK12, natural small-molecule product EA was screened out based on a large scale through the weighted set similarity (WES) method and the therapeutic effects of EA on osteoporosis was investigated in hindlimb-unloaded (HU) mouse model and ovariectomized (OVX) model. RESULTS The results demonstrated that simulated microgravity inhibited bone formation and up-regulated the expression of CDK12. Furthermore, CDK12-siRNA or THZ531 (an inhibitor of CDK 12) promoted osteoblast differentiation, while the overexpression of CDK12 inhibited osteoblasts differentiation. And we further proved that CDK12-targeted EA showed a rescue effect on osteoblast differentiation inhibition caused by simulated microgravity. EA (50 mg·kg-1·day-1) daily intragastric administration alleviated the symptoms of osteoporosis and accompanied with the improvement of trabecular bone and cortical bone parameters with significantly overexpression of CDK12. CONCLUSION EA efficiently improves osteoporosis by targeting CDK12, which is a suppresser of osteoblast differentiation and a novel therapeutic target for treating osteoporosis.
Collapse
Affiliation(s)
- Zixiang Wu
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Lifang Hu
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Kang Ru
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Wenjuan Zhang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xia Xu
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Shuyu Liu
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Hua Liu
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yunxia Jia
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Shujing Liang
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Zhihao Chen
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Airong Qian
- Lab for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China; NPU-UAB Joint Laboratory for Bone Metabolism, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
11
|
El-Desoky AH, Asano T, Maeyama Y, Kato H, Hitora Y, Goto E, Kotani S, Nakajima M, Tsukamoto S. Arteperoxides A-C, tris-normonoterpene-sesquiterpene conjugates with peroxide-bridges from Artemisia judaica exhibiting antiosteoclastogenic activity. PHYTOCHEMISTRY 2023; 206:113548. [PMID: 36481317 DOI: 10.1016/j.phytochem.2022.113548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/24/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Antiosteoclastogenic-guided screening was conducted with 120 extracts of the medicinal plants collected in Egypt that led to the selection of Artemisia judaica L. (Asteraceae). Three undescribed davanone-related terpenoids, arteperoxides A-C, were isolated from the extract with two known derivatives, hydroxydavanone and davana acid. Structural analysis revealed that arteperoxides A-C were tris-normonoterpene-sesquiterpene conjugates with peroxide bridges. Although davanone derivatives with peroxides, such as a hydroperoxyl and peroxyhemiketal groups, have been isolated from Artemisia species, arteperoxides A-C are the first variations observed to contain peroxide bridges between two terpene-derived units. The absolute configurations of arteperoxides A and B were studied based on their spectroscopic data compared with those of the semisynthetic analogs that have ether linkages. The natural and synthetic compounds were tested for the antiosteoclastogenic activity, and arteperoxide C and hydroxydavanone were more potent than other compounds at 20 μM.
Collapse
Affiliation(s)
- Ahmed H El-Desoky
- Department of Natural Medicines, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto, 862-0973, Japan; Pharmaceutical and Drug Industries Research Institute, Pharmacognosy Department, National Research Centre, El-Tahrir St., Dokki, Giza, 12622, Egypt
| | - Toshifumi Asano
- Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi Chuo-ku, Kumamoto, 862-0973, Japan
| | - Yuka Maeyama
- Department of Natural Medicines, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto, 862-0973, Japan
| | - Hikaru Kato
- Department of Natural Medicines, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto, 862-0973, Japan
| | - Yuki Hitora
- Department of Natural Medicines, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto, 862-0973, Japan
| | - Eishu Goto
- Department of Natural Medicines, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto, 862-0973, Japan
| | - Shunsuke Kotani
- Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi Chuo-ku, Kumamoto, 862-0973, Japan
| | - Makoto Nakajima
- Department of Organic Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi Chuo-ku, Kumamoto, 862-0973, Japan
| | - Sachiko Tsukamoto
- Department of Natural Medicines, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto, 862-0973, Japan.
| |
Collapse
|
12
|
Hadisaputri YE, Nurhaniefah AA, Sukmara S, Zuhrotun A, Hendriani R, Sopyan I. Callyspongia spp.: Secondary Metabolites, Pharmacological Activities, and Mechanisms. Metabolites 2023; 13:metabo13020217. [PMID: 36837836 PMCID: PMC9964934 DOI: 10.3390/metabo13020217] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
One of the most widespread biotas in the sea is the sponge. Callyspongia is a sponge genus found in the seas, making it easily available. In this review, the pharmacological activity and mechanism of action of the secondary metabolites of Callyspongia spp. are addressed, which may lead to the development of new drugs and targeted therapeutic approaches. Several scientific databases, such as Google Scholar, PubMed, ResearchGate, Science Direct, Springer Link, and Wiley Online Library, were mined to obtain relevant information. In the 41 articles reviewed, Callyspongia spp. was reported to possess pharmacological activities such as cytotoxicity against cancer cell lines (36%), antifungal (10%), anti-inflammatory (10%), immunomodulatory (10%), antidiabetic and antiobesity (6%), antimicrobial (8%), antioxidant (4%), antineurodegenerative (4%), antihypercholesterolemic (2%), antihypertensive (2%), antiparasitic (2%), antiallergic (2%), antiviral (2%), antiosteoporotic (2%), and antituberculosis (2%) activities. Of these, the antioxidant, antituberculosis, and anti-inflammatory activities of Callyspongia extract were weaker compared with that of the control drugs; however, other activities, particularly cytotoxicity, show promise, and the compounds responsible may be developed into new drugs.
Collapse
Affiliation(s)
- Yuni Elsa Hadisaputri
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia
- Correspondence: ; Tel.: +62-22-842-88888
| | - Annida Adha Nurhaniefah
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Sendi Sukmara
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Ade Zuhrotun
- Department of Pharmaceutical Biology, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Rini Hendriani
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| | - Iyan Sopyan
- Departement of Pharmaceutics and Technology of Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Jatinangor 45363, Indonesia
| |
Collapse
|
13
|
He ZH, Xie CL, Wu T, Yue YT, Wang CF, Xu L, Xie MM, Zhang Y, Hao YJ, Xu R, Yang XW. Tetracyclic Steroids Bearing a Bicyclo[4.4.1] Ring System as Potent Antiosteoporosis Agents from the Deep-Sea-Derived Fungus Rhizopus sp. W23. JOURNAL OF NATURAL PRODUCTS 2023; 86:157-165. [PMID: 36547402 DOI: 10.1021/acs.jnatprod.2c00866] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Chemical investigation of the deep-sea-derived fungus Rhizopus sp. W23 resulted in the identification of six new (1-3, 6, 8, 9) and 12 known (4, 5, 10-19) cyclocitrinol analogues, together with one handling artifact (7), all featuring an unusual 7/7/6/5-tetracyclic scaffold and bicyclo[4.4.1] A/B rings. Norcyclocitrinoic acids A and B (1, 2) represent the second occurrence of 24,25-bisnor cyclocitrinols. Structures were assigned to new steroids on the basis of extensive spectroscopic analysis and X-ray crystallography. Compound 13 significantly enhances osteoblastogenesis and inhibits adipogenesis in mature bone marrow stromal cells at 5 μM, indicating a potential to be an antiosteoporosis lead.
Collapse
Affiliation(s)
- Zhi-Hui He
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, People's Republic of China
| | - Chun-Lan Xie
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, People's Republic of China
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, South Xiangan Road, Xiamen 361102, People's Republic of China
| | - Taizong Wu
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, 4072, Australia
| | - Yu-Ting Yue
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, South Xiangan Road, Xiamen 361102, People's Republic of China
| | - Chao-Feng Wang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, People's Republic of China
| | - Lin Xu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, People's Republic of China
| | - Ming-Min Xie
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, People's Republic of China
| | - Yong Zhang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, People's Republic of China
| | - You-Jia Hao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, People's Republic of China
| | - Ren Xu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, South Xiangan Road, Xiamen 361102, People's Republic of China
| | - Xian-Wen Yang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, People's Republic of China
| |
Collapse
|