1
|
Tzoupis H, Papavasileiou KD, Papatzelos S, Mavrogiorgis A, Zacharia LC, Melagraki G, Afantitis A. Systematic Review of Naturally Derived Substances That Act as Inhibitors of the Nicotine Metabolizing Enzyme Cytochrome P450 2A6. Int J Mol Sci 2024; 25:8031. [PMID: 39125600 PMCID: PMC11312336 DOI: 10.3390/ijms25158031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/20/2024] [Accepted: 07/21/2024] [Indexed: 08/12/2024] Open
Abstract
Tobacco smoking has been highlighted as a major health challenge in modern societies. Despite not causing death directly, smoking has been associated with several health issues, such as cardiovascular diseases, respiratory disorders, and several cancer types. Moreover, exposure to nicotine during pregnancy has been associated with adverse neurological disorders in babies. Nicotine Replacement Therapy (NRT) is the most common strategy employed for smoking cessation, but despite its widespread use, NRT presents with low success and adherence rates. This is attributed partially to the rate of nicotine metabolism by cytochrome P450 2A6 (CYP2A6) in each individual. Nicotine addiction is correlated with the high rate of its metabolism, and thus, novel strategies need to be implemented in NRT protocols. Naturally derived products are a cost-efficient and rich source for potential inhibitors, with the main advantages being their abundance and ease of isolation. This systematic review aims to summarize the natural products that have been identified as CYP2A6 inhibitors, validated through in vitro and/or in vivo assays, and could be implemented as nicotine metabolism inhibitors. The scope is to present the different compounds and highlight their possible implementation in NRT strategies. Additionally, this information would provide valuable insight regarding CYP2A6 inhibitors, that can be utilized in drug development via the use of in silico methodologies and machine-learning models to identify new potential lead compounds for optimization and implementation in NRT regimes.
Collapse
Affiliation(s)
- Haralampos Tzoupis
- Department of ChemInformatics, NovaMechanics Ltd., Nicosia 1070, Cyprus; (H.T.); (K.D.P.); (S.P.); (A.M.)
| | - Konstantinos D. Papavasileiou
- Department of ChemInformatics, NovaMechanics Ltd., Nicosia 1070, Cyprus; (H.T.); (K.D.P.); (S.P.); (A.M.)
- Department of ChemInformatics, NovaMechanics MIKE, 18545 Piraeus, Greece
| | - Stavros Papatzelos
- Department of ChemInformatics, NovaMechanics Ltd., Nicosia 1070, Cyprus; (H.T.); (K.D.P.); (S.P.); (A.M.)
| | - Angelos Mavrogiorgis
- Department of ChemInformatics, NovaMechanics Ltd., Nicosia 1070, Cyprus; (H.T.); (K.D.P.); (S.P.); (A.M.)
| | - Lefteris C. Zacharia
- School of Life and Health Sciences, University of Nicosia, Nicosia 1700, Cyprus;
| | - Georgia Melagraki
- Division of Physical Sciences and Applications, Hellenic Military Academy, 16672 Vari, Greece;
| | - Antreas Afantitis
- Department of ChemInformatics, NovaMechanics Ltd., Nicosia 1070, Cyprus; (H.T.); (K.D.P.); (S.P.); (A.M.)
- Department of ChemInformatics, NovaMechanics MIKE, 18545 Piraeus, Greece
- Division of Data Driven Innovation, Entelos Institute, Larnaca 6059, Cyprus
| |
Collapse
|
2
|
Irawan A, Bionaz M. Liver Transcriptomic Profiles of Ruminant Species Fed Spent Hemp Biomass Containing Cannabinoids. Genes (Basel) 2024; 15:963. [PMID: 39062742 PMCID: PMC11275923 DOI: 10.3390/genes15070963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
The inclusion of spent hemp biomass (SHB), an extracted byproduct from industrial cannabidiol (CBD) production, in the diets of dairy cows and lambs appears to be safe with minor effects on the metabolism, including a decrease in circulating cholesterol and increase bilirubinemia, both associated with liver metabolism. Those effects could be consequence of the presence of cannabinoids, particularly Δ9-tetrahydrocannabinol (THC) and CBD in the SHB. This study aimed to study the transcriptional profile of the liver of dairy cows and lambs fed SHB. Dairy cows received SHB or alfalfa pellet for four weeks of intervention (IP) and four weeks of withdrawal periods (WP). Finishing lambs were fed a control diet (CON), 10% (LH2), or 20% (HH2) SHB for 2 months or 1 month followed by 1-month SHB withdrawal (LH1 and HH1, respectively). RNA sequencing was performed, and the mRNA was annotated using the latest reference genomes. The RNAseq data were filtered, normalized for library size and composition, and statistically analyzed by DESeq2. The bioinformatic analysis was performed by using DAVID, Gene Set Enrichment Analysis (GSEA), and the Dynamic Impact Approach. Using a 0.2 FDR cut-off, we identified only ≤24 differentially expressed genes (DEG) in the liver by feeding SHB in dairy cows and a larger number of DEGs in lambs (from 71 in HH1 vs. CON to 552 in LH1 vs. CON). The KEGG analysis demonstrated that feeding SHB in dairy cows and lambs had relatively minor to moderate metabolic alterations in dairy cows and lambs mainly associated with amino acids and lipid metabolism whereas cholesterol synthesis was overall activated in lambs. GSEA identified activation of the PPAR signaling pathway only in dairy cows. We found an opposite effect on activation of metabolism of drug and xenobiotics by cytochrome P450 enzymes in dairy cows and lambs receiving less SHB but an inhibition in HH2 lambs. Immune system-related pathways were inhibited by feeding SHB in lambs, but the impact was minor. Cumulatively, inclusion of SHB containing cannabinoids in dairy and lambs demonstrate very little effects on the alteration of transcriptomic profile of the liver.
Collapse
Affiliation(s)
- Agung Irawan
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331, USA;
- Animal Science Study Program, Universitas Sebelas Maret, Surakarta 57126, Indonesia
| | - Massimo Bionaz
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR 97331, USA;
| |
Collapse
|
3
|
Coates S, Bardhi K, Lazarus P. Cannabinoid-Induced Inhibition of Morphine Glucuronidation and the Potential for In Vivo Drug-Drug Interactions. Pharmaceutics 2024; 16:418. [PMID: 38543313 PMCID: PMC10975434 DOI: 10.3390/pharmaceutics16030418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/01/2024] Open
Abstract
Opioids are commonly prescribed for the treatment of chronic pain. Approximately 50% of adults who are prescribed opioids for pain co-use cannabis with their opioid treatment. Morphine is primarily metabolized by UDP-glucuronosyltransferase (UGT) 2B7 to an inactive metabolite, morphine-3-glucuronide (M3G), and an active metabolite, morphine-6-glucuronide (M6G). Previous studies have shown that major cannabis constituents including Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) inhibit major UGT enzymes. To examine whether cannabinoids or their major metabolites inhibit morphine glucuronidation by UGT2B7, in vitro assays and mechanistic static modeling were performed with these cannabinoids and their major metabolites including 11-hydroxy-Δ9-tetrahydrocannabinol (11-OH-THC), 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (11-COOH-THC), 7-hydroxy-cannabidiol (7-OH-CBD), and 7-carboxy-cannabidiol (7-COOH-CBD). In vitro assays with rUGT-overexpressing microsomes and human liver microsomes showed that THC and CBD and their metabolites inhibited UGT2B7-mediated morphine metabolism, with CBD and THC exhibiting the most potent Ki,u values (0.16 µM and 0.37 µM, respectively). Only 7-COOH-CBD exhibited no inhibitory activity against UGT2B7-mediated morphine metabolism. Static mechanistic modeling predicted an in vivo drug-drug interaction between morphine and THC after inhaled cannabis, and between THC, CBD, and 7-OH-CBD after oral consumption of cannabis. These data suggest that the co-use of these agents may lead to adverse drug events in humans.
Collapse
Affiliation(s)
| | | | - Philip Lazarus
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, 412 E. Spokane Falls Blvd, Spokane, WA 99202, USA
| |
Collapse
|
4
|
Woerdenbag HJ, Olinga P, Kok EA, Brugman DAP, van Ark UF, Ramcharan AS, Lebbink PW, Hoogwater FJH, Knapen DG, de Groot DJA, Nijkamp MW. Potential, Limitations and Risks of Cannabis-Derived Products in Cancer Treatment. Cancers (Basel) 2023; 15:cancers15072119. [PMID: 37046779 PMCID: PMC10093248 DOI: 10.3390/cancers15072119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/31/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
The application of cannabis products in oncology receives interest, especially from patients. Despite the plethora of research data available, the added value in curative or palliative cancer care and the possible risks involved are insufficiently proven and therefore a matter of debate. We aim to give a recommendation on the position of cannabis products in clinical oncology by assessing recent literature. Various types of cannabis products, characteristics, quality and pharmacology are discussed. Standardisation is essential for reliable and reproducible quality. The oromucosal/sublingual route of administration is preferred over inhalation and drinking tea. Cannabinoids may inhibit efflux transporters and drug-metabolising enzymes, possibly inducing pharmacokinetic interactions with anticancer drugs being substrates for these proteins. This may enhance the cytostatic effect and/or drug-related adverse effects. Reversely, it may enable dose reduction. Similar interactions are likely with drugs used for symptom management treating pain, nausea, vomiting and anorexia. Cannabis products are usually well tolerated and may improve the quality of life of patients with cancer (although not unambiguously proven). The combination with immunotherapy seems undesirable because of the immunosuppressive action of cannabinoids. Further clinical research is warranted to scientifically support (refraining from) using cannabis products in patients with cancer.
Collapse
Affiliation(s)
- Herman J. Woerdenbag
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Peter Olinga
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Ellen A. Kok
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Donald A. P. Brugman
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Ulrike F. van Ark
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | | - Paul W. Lebbink
- Transvaal Apotheek, Kempstraat 113, 2572 GC Den Haag, The Netherlands
| | - Frederik J. H. Hoogwater
- Department of Surgery, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Daan G. Knapen
- Department of Medical Oncology, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Derk Jan A. de Groot
- Department of Medical Oncology, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Maarten W. Nijkamp
- Department of Surgery, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
5
|
Hajjar ER, Lungen JM, Worster BK. Therapeutic Benefits of Medical Cannabis. PHYSICIAN ASSISTANT CLINICS 2022. [DOI: 10.1016/j.cpha.2022.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
6
|
Bardhi K, Coates S, Watson CJ, Lazarus P. Cannabinoids and drug metabolizing enzymes: potential for drug-drug interactions and implications for drug safety and efficacy. Expert Rev Clin Pharmacol 2022; 15:1443-1460. [DOI: 10.1080/17512433.2022.2148655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Keti Bardhi
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Shelby Coates
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Christy J.W. Watson
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| | - Philip Lazarus
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA
| |
Collapse
|
7
|
Graham M, Martin J, Lucas C, Murnion B, Schneider J. Cannabidiol drug interaction considerations for prescribers and pharmacists. Expert Rev Clin Pharmacol 2022; 15:1383-1397. [DOI: 10.1080/17512433.2022.2142114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Myfanwy Graham
- Australian Centre for Cannabinoid Clinical and Research Excellence, Newcastle, New South Wales, Australia
- Centre for Drug Repurposing & Medicines Research, School of Medicine and Public Health, The University of Newcastle, New South Wales, Australia
| | - Jennifer Martin
- Australian Centre for Cannabinoid Clinical and Research Excellence, Newcastle, New South Wales, Australia
- Centre for Drug Repurposing & Medicines Research, School of Medicine and Public Health, The University of Newcastle, New South Wales, Australia
| | - Catherine Lucas
- Australian Centre for Cannabinoid Clinical and Research Excellence, Newcastle, New South Wales, Australia
- Centre for Drug Repurposing & Medicines Research, School of Medicine and Public Health, The University of Newcastle, New South Wales, Australia
| | - Bridin Murnion
- Discipline of Addiction Medicine, University of Sydney, New South Wales, Australia
| | - Jennifer Schneider
- Australian Centre for Cannabinoid Clinical and Research Excellence, Newcastle, New South Wales, Australia
- Centre for Drug Repurposing & Medicines Research, School of Medicine and Public Health, The University of Newcastle, New South Wales, Australia
| |
Collapse
|
8
|
Anil SM, Peeri H, Koltai H. Medical Cannabis Activity Against Inflammation: Active Compounds and Modes of Action. Front Pharmacol 2022; 13:908198. [PMID: 35614947 PMCID: PMC9124761 DOI: 10.3389/fphar.2022.908198] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 04/08/2022] [Indexed: 12/12/2022] Open
Abstract
Inflammation often develops from acute, chronic, or auto-inflammatory disorders that can lead to compromised organ function. Cannabis (Cannabis sativa) has been used to treat inflammation for millennia, but its use in modern medicine is hampered by a lack of scientific knowledge. Previous studies report that cannabis extracts and inflorescence inhibit inflammatory responses in vitro and in pre-clinical and clinical trials. The endocannabinoid system (ECS) is a modulator of immune system activity, and dysregulation of this system is involved in various chronic inflammations. This system includes cannabinoid receptor types 1 and 2 (CB1 and CB2), arachidonic acid-derived endocannabinoids, and enzymes involved in endocannabinoid metabolism. Cannabis produces a large number of phytocannabinoids and numerous other biomolecules such as terpenes and flavonoids. In multiple experimental models, both in vitro and in vivo, several phytocannabinoids, including Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD) and cannabigerol (CBG), exhibit activity against inflammation. These phytocannabinoids may bind to ECS and/or other receptors and ameliorate various inflammatory-related diseases by activating several signaling pathways. Synergy between phytocannabinoids, as well as between phytocannabinoids and terpenes, has been demonstrated. Cannabis activity can be improved by selecting the most active plant ingredients (API) while eliminating parts of the whole extract. Moreover, in the future cannabis components might be combined with pharmaceutical drugs to reduce inflammation.
Collapse
|
9
|
Bansal S, Paine MF, Unadkat JD. Comprehensive Predictions of Cytochrome P450 (P450)-Mediated In Vivo Cannabinoid-Drug Interactions Based on Reversible and Time-Dependent P450 Inhibition in Human Liver Microsomes. Drug Metab Dispos 2022; 50:351-360. [PMID: 35115300 PMCID: PMC11022902 DOI: 10.1124/dmd.121.000734] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 01/25/2022] [Indexed: 11/22/2022] Open
Abstract
We previously reported the unbound reversible (IC50,u) and time-dependent (KI,u) inhibition potencies of cannabidiol (CBD), delta-9-tetrahydrocannabinol (THC), and THC metabolites 11-hydroxy THC (11-OH THC) and 11-nor-9-carboxy-delta-9-THC (11-COOH THC) against the major cytochrome P450 (P450) enzymes (1A2, 2C9, 2C19, 2D6, and 3A). Here, using human liver microsomes, we determined the CYP2A6, 2B6, and 2C8 IC50,u values of the aforementioned cannabinoids and the IC50,u and KI,u of the circulating CBD metabolites 7-hydroxy CBD (7-OH CBD) and 7-carboxy CBD (7-COOH CBD), against all the P450s listed above. The IC50,u of CBD, 7-OH CBD, THC, and 11-OH THC against CYP2B6 was 0.05, 0.34, 0.40, and 0.32 μM, respectively, and against CYP2C8 was 0.28, 1.02, 0.67, and 3.66 μM, respectively. 7-COOH CBD, but not 11-COOH THC, was a weak inhibitor of CYP2B6 and 2C8. All tested cannabinoids except 11-COOH THC were weak inhibitors of CYP2A6. 7-OH CBD inhibited all P450s examined (IC50,u<2.5 μM) except CYP1A2 and inactivated CYP2C19 and CYP3A, with inactivation efficiencies (kinact/KI,u) of 0.10 and 0.14 minutes-1 μM-1, respectively. Using several different static models, we predicted the following maximum pharmacokinetic interactions (affected P450 probe drug and area under the plasma concentration-time curve ratio) between oral CBD (700 mg) and drugs predominantly metabolized by CYP3A (midazolam, 14.8) > 2C9 (diclofenac, 9.6) > 2C19 (omeprazole, 7.3) > 1A2 (theophylline, 4.0) > 2B6 (ticlopidine, 2.2) > 2D6 (dextromethorphan, 2.1) > 2C8 (repaglinide, 1.6). Oral (130 mg) or inhaled (75 mg) THC was predicted to precipitate interactions with drugs predominately metabolized by CYP2C9 (diclofenac, 6.6 or 2.3, respectively) > 3A (midazolam, 1.8) > 1A2 (theophylline, 1.4). In vivo drug interaction studies are warranted to verify these predictions. SIGNIFICANCE STATEMENT: This study, combined with our previous findings, provides for the first time a comprehensive analysis of the potential for cannabidiol, delta-9-tetrahydrocannabinol, and their metabolites to inhibit cytochrome P450 enzymes in a reversible or time-dependent manner. These analyses enabled us to predict the potential of these cannabinoids to produce drug interactions in vivo at clinical or recreational doses.
Collapse
Affiliation(s)
- Sumit Bansal
- Department of Pharmaceutics, University of Washington, Seattle, Washington (S.B., J.D.U.); Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (M.F.P.); and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (M.F.P., J.D.U.)
| | - Mary F Paine
- Department of Pharmaceutics, University of Washington, Seattle, Washington (S.B., J.D.U.); Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (M.F.P.); and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (M.F.P., J.D.U.)
| | - Jashvant D Unadkat
- Department of Pharmaceutics, University of Washington, Seattle, Washington (S.B., J.D.U.); Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington (M.F.P.); and Center of Excellence for Natural Product Drug Interaction Research, Spokane, Washington (M.F.P., J.D.U.)
| |
Collapse
|
10
|
Smith RT, Gruber SA. Contemplating cannabis? The complex relationship between cannabinoids and hepatic metabolism resulting in the potential for drug-drug interactions. Front Psychiatry 2022; 13:1055481. [PMID: 36704740 PMCID: PMC9871609 DOI: 10.3389/fpsyt.2022.1055481] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
The majority of states have fully legalized the use of medical cannabis (MC), and nearly all other states allow limited access to cannabidiol (CBD), a non-intoxicating constituent of cannabis often touted for a range of therapeutic indications. Further, the Agricultural Improvement Act of 2018 legalized hemp-derived products in all 50 states; typically high in CBD, these products are derived from cannabis varieties containing ≤0.3% delta-9-tetrahydrocannabinol (THC) by weight. The recent "green rush" has resulted in a striking increase in cannabis use among patients and consumers who often use a wide variety of novel product types, each with a unique blend of cannabinoid constituents. Importantly, however, several cannabinoids have the potential to cause drug-drug interactions (DDI) with other medications, primarily due to their involvement with the hepatic cytochrome P450 (CYP450) system. This article examines the potential for individual cannabinoids, particularly CBD, to interact with the hepatic metabolic system, which is concerning given its involvement in the metabolism of commonly-prescribed medications. CBD and other cannabinoids are metabolized extensively by the CYP450 system, and also inhibit many of these enzymes, potentially leading to variable serum levels of other medications, as well as variable levels of cannabinoids when other medications modify the system. As access and interest in cannabinoid-based products continues to increase, critical questions remain unanswered regarding their safety. The complex relationship between cannabinoids and the hepatic metabolic system, including common potential DDI resulting from cannabinoid exposure, are explored along with the clinical significance of these potential interactions and monitoring or mitigation strategies.
Collapse
Affiliation(s)
- Rosemary T Smith
- Marijuana Investigations for Neuroscientific Discovery (MIND) Program, McLean Imaging Center, McLean Hospital, Belmont, MA, United States
| | - Staci A Gruber
- Marijuana Investigations for Neuroscientific Discovery (MIND) Program, McLean Imaging Center, McLean Hospital, Belmont, MA, United States.,Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
11
|
Nasrin S, Watson CJW, Bardhi K, Fort G, Chen G, Lazarus P. Inhibition of UDP-Glucuronosyltransferase Enzymes by Major Cannabinoids and Their Metabolites. Drug Metab Dispos 2021; 49:1081-1089. [PMID: 34493601 PMCID: PMC11022890 DOI: 10.1124/dmd.121.000530] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 09/01/2021] [Indexed: 11/22/2022] Open
Abstract
The UDP-glucuronosyltransferase (UGT) family of enzymes play a central role in the metabolism and detoxification of a wide range of endogenous and exogenous compounds. UGTs exhibit a high degree of structural similarity and display overlapping substrate specificity, often making estimations of potential drug-drug interactions difficult to fully elucidate. One such interaction yet to be examined may be occurring between UGTs and cannabinoids, as the legalization of recreational and medicinal cannabis and subsequent co-usage of cannabis and therapeutic drugs increases in the United States and internationally. In the present study, the inhibition potential of the major cannabinoids Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), and cannabinol (CBN), as well as their major metabolites, was determined in microsomes isolated from HEK293 cells overexpressing individual recombinant UGTs and in microsomes from human liver and kidney specimens. The highest inhibition was seen by CBD against the glucuronidation activity of UGTs 1A9, 2B4, 1A6, and 2B7, with binding-corrected IC50 values of 0.12 ± 0.020 µM, 0.22 ± 0.045 µM, 0.40 ± 0.10 µM, and 0.82 ± 0.15 µM, respectively. Strong inhibition of UGT1A9 was also demonstrated by THC and CBN, with binding-corrected IC50 values of 0.45 ± 0.12 μM and 0.51 ± 0.063 μM, respectively. Strong inhibition of UGT2B7 was also observed for THC and CBN; no or weak inhibition was observed with cannabinoid metabolites. This inhibition of UGT activity suggests that in addition to playing an important role in drug-drug interactions, cannabinoid exposure may have important implications in patients with impaired hepatic or kidney function. SIGNIFICANCE STATEMENT: Major cannabinoids found in the plasma of cannabis users inhibit several UDP-glucuronosyltransferase (UGT) enzymes, including UGT1A6, UGT1A9, UGT2B4, and UGT2B7. This study is the first to show the potential of cannabinoids and their metabolites to inhibit all the major kidney UGTs as well as the two most abundant UGTs present in liver. This study suggests that as all three major kidney UGTs are inhibited by cannabinoids, greater drug-drug interaction effects might be observed from co-use of cannabinods and therapeutics that are cleared renally.
Collapse
Affiliation(s)
- Shamema Nasrin
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Christy J W Watson
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Keti Bardhi
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Gabriela Fort
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Gang Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Philip Lazarus
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| |
Collapse
|
12
|
Nasrin S, Watson CJW, Perez-Paramo YX, Lazarus P. Cannabinoid Metabolites as Inhibitors of Major Hepatic CYP450 Enzymes, with Implications for Cannabis-Drug Interactions. Drug Metab Dispos 2021; 49:1070-1080. [PMID: 34493602 PMCID: PMC11022895 DOI: 10.1124/dmd.121.000442] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 09/01/2021] [Indexed: 11/22/2022] Open
Abstract
The legalization of cannabis in many parts of the United States and other countries has led to a need for a more comprehensive understanding of cannabis constituents and their potential for drug-drug interactions. Although (-)-trans-Δ9-tetrahydrocannabinol (THC), cannabidiol (CBD), and cannabinol (CBN) are the most abundant cannabinoids present in cannabis, THC metabolites are found in plasma at higher concentrations and for a longer duration than that of the parent cannabinoids. To understand the potential for drug-drug interactions, the inhibition potential of major cannabinoids and their metabolites on major hepatic cytochrome P450 (P450) enzymes was examined. In vitro assays with P450-overexpressing cell microsomes demonstrated that the major THC metabolites 11-hydroxy-Δ9-tetra-hydrocannabinol and 11-nor-9-carboxy-Δ9-THC-glucuronide competitively inhibited several major P450 enzymes, including CYP2B6, CYP2C9, and CYP2D6 (apparent Ki,u values = 0.086 ± 0.066 µM and 0.90 ± 0.54 µM, 0.057 ± 0.044 µM and 2.1 ± 0.81 µM, 0.15 ± 0.067 µM and 2.3 ± 0.54 µM, respectively). 11-Nor-9-carboxy-Δ9- tetrahydrocannabinol exhibited no inhibitory activity against any CYP450 tested. THC competitively inhibited CYP1A2, CYP2B6, CYP2C9, and CYP2D6; CBD competitively inhibited CYP3A4, CYP2B6, CYP2C9, CYP2D6, and CYP2E1; and CBN competitively inhibited CYP2B6, CYP2C9, and CYP2E1. THC and CBD showed mixed-type inhibition for CYP2C19 and CYP1A2, respectively. These data suggest that cannabinoids and major THC metabolites are able to inhibit the activities of multiple P450 enzymes, and basic static modeling of these data suggest the possibility of pharmacokinetic interactions between these cannabinoids and xenobiotics extensively metabolized by CYP2B6, CYP2C9, and CYP2D6. SIGNIFICANCE STATEMENT: Major cannabinoids and their metabolites found in the plasma of cannabis users inhibit several P450 enzymes, including CYP2B6, CYP2C9, and CYP2D6. This study is the first to show the inhibition potential of the most abundant plasma cannabinoid metabolite, THC-COO-Gluc, and suggests that circulating metabolites of cannabinoids play an essential role in CYP450 enzyme inhibition as well as drug-drug interactions.
Collapse
Affiliation(s)
- Shamema Nasrin
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Christy J W Watson
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Yadira X Perez-Paramo
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| | - Philip Lazarus
- Department of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, Washington
| |
Collapse
|
13
|
A Case of a Perinatal Woman on Methadone Maintenance Who Developed Postpartum Torsades de Pointes: Importance of Perinatal Changes in Drug Metabolism. J Clin Psychopharmacol 2021; 41:484-487. [PMID: 34155161 DOI: 10.1097/jcp.0000000000001426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Vaughn SE, Strawn JR, Poweleit EA, Sarangdhar M, Ramsey LB. The Impact of Marijuana on Antidepressant Treatment in Adolescents: Clinical and Pharmacologic Considerations. J Pers Med 2021; 11:jpm11070615. [PMID: 34209709 PMCID: PMC8307883 DOI: 10.3390/jpm11070615] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
The neuropharmacology of marijuana, including its effects on selective serotonin reuptake inhibitor (SSRI)/antidepressant metabolism and the subsequent response and tolerability in youth, has received limited attention. We sought to (1) review clinically relevant pharmacokinetic (PK) and pharmacodynamic (PD) interactions between cannabinoids and selected SSRIs, (2) use PK models to examine the impact of cannabinoids on SSRI exposure (area under curve (AUC)) and maximum concentration (CMAX) in adolescents, and (3) examine the frequency of adverse events reported when SSRIs and cannabinoids are used concomitantly. Cannabinoid metabolism, interactions with SSRIs, impact on relevant PK/PD pathways and known drug–drug interactions were reviewed. Then, the impact of tetrahydrocannabinol (THC) and cannabidiol (CBD) on exposure (AUC24) and CMAX for escitalopram and sertraline was modeled using pediatric PK data. Using data from the Food and Drug Administration Adverse Events Reporting System (FAERS), the relationship between CBD and CYP2C19-metabolized SSRIs and side effects was examined. Cannabis and CBD inhibit cytochrome activity, alter serotonergic transmission, and modulate SSRI response. In PK models, CBD and/or THC increases sertraline and es/citalopram concentrations in adolescents, and coadministration of CBD and CYP2C19-metabolized SSRIs increases the risk of cough, diarrhea, dizziness, and fatigue. Given the significant SSRI–cannabinoid interactions, clinicians should discuss THC and CBD use in youth prescribed SSRIs and be aware of the impact of initiating, stopping, or decreasing cannabinoid use as this may significantly affect es/citalopram and sertraline exposure.
Collapse
Affiliation(s)
- Samuel E. Vaughn
- Division of Child and Adolescent Psychiatry, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA;
- Correspondence: ; Tel.: +1-513-636-4788
| | - Jeffrey R. Strawn
- Division of Child and Adolescent Psychiatry, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA;
- Department of Psychiatry and Behavioral Neuroscience, College of Medicine, University of Cincinnati, Cincinnati, OH 45219, USA
- Division of Clinical Pharmacology, Cincinnati Children’s Hospital Medical Center, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA;
| | - Ethan A. Poweleit
- Division of Biomedical Informatics, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA; (E.A.P.); (M.S.)
- Division of Research in Patient Services, Cincinnati Children’s Hospital Medical Center, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Mayur Sarangdhar
- Division of Biomedical Informatics, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA; (E.A.P.); (M.S.)
- Department of Biomedical Informatics, College of Medicine, University of Cincinnati, Cincinnati, OH 45219, USA
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Laura B. Ramsey
- Division of Clinical Pharmacology, Cincinnati Children’s Hospital Medical Center, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA;
- Division of Research in Patient Services, Cincinnati Children’s Hospital Medical Center, College of Medicine, University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
15
|
Sampson PB. Phytocannabinoid Pharmacology: Medicinal Properties of Cannabis sativa Constituents Aside from the "Big Two". JOURNAL OF NATURAL PRODUCTS 2021; 84:142-160. [PMID: 33356248 DOI: 10.1021/acs.jnatprod.0c00965] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Plant-based therapies date back centuries. Cannabis sativa is one such plant that was used medicinally up until the early part of the 20th century. Although rich in diverse and interesting phytochemicals, cannabis was largely ignored by the modern scientific community due to its designation as a schedule 1 narcotic and restrictions on access for research purposes. There was renewed interest in the early 1990s when the endocannabinoid system (ECS) was discovered, a complex network of signaling pathways responsible for physiological homeostasis. Two key components of the ECS, cannabinoid receptor 1 (CB1) and cannabinoid receptor 2 (CB2), were identified as the molecular targets of the phytocannabinoid Δ9-tetrahydrocannabinol (Δ9-THC). Restrictions on access to cannabis have eased worldwide, leading to a resurgence in interest in the therapeutic potential of cannabis. Much of the focus has been on the two major constituents, Δ9-THC and cannabidiol (CBD). Cannabis contains over 140 phytocannabinoids, although only a handful have been tested for pharmacological activity. Many of these minor cannabinoids potently modulate receptors, ionotropic channels, and enzymes associated with the ECS and show therapeutic potential individually or synergistically with other phytocannabinoids. The following review will focus on the pharmacological developments of the next generation of phytocannabinoid therapeutics.
Collapse
|
16
|
Phytocannabinoid drug-drug interactions and their clinical implications. Pharmacol Ther 2020; 215:107621. [DOI: 10.1016/j.pharmthera.2020.107621] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/24/2020] [Indexed: 12/16/2022]
|
17
|
In Vitro Interaction of AB-FUBINACA with Human Cytochrome P450, UDP-Glucuronosyltransferase Enzymes and Drug Transporters. Molecules 2020; 25:molecules25194589. [PMID: 33050066 PMCID: PMC7582776 DOI: 10.3390/molecules25194589] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/04/2020] [Accepted: 10/05/2020] [Indexed: 12/11/2022] Open
Abstract
AB-FUBINACA, a synthetic indazole carboxamide cannabinoid, has been used worldwide as a new psychoactive substance. Because drug abusers take various drugs concomitantly, it is necessary to explore potential AB-FUBINACA-induced drug–drug interactions caused by modulation of drug-metabolizing enzymes and transporters. In this study, the inhibitory effects of AB-FUBINACA on eight major human cytochrome P450s (CYPs) and six uridine 5′-diphospho-glucuronosyltransferases (UGTs) of human liver microsomes, and on eight clinically important transport activities including organic cation transporters (OCT)1 and OCT2, organic anion transporters (OAT)1 and OAT3, organic anion transporting polypeptide transporters (OATP)1B1 and OATP1B3, P-glycoprotein, and breast cancer resistance protein (BCRP) in transporter-overexpressing cells were investigated. AB-FUBINACA inhibited CYP2B6-mediated bupropion hydroxylation via mixed inhibition with Ki value of 15.0 µM and competitively inhibited CYP2C8-catalyzed amodiaquine N-de-ethylation, CYP2C9-catalyzed diclofenac 4′-hydroxylation, CYP2C19-catalyzed [S]-mephenytoin 4′-hydroxylation, and CYP2D6-catalyzed bufuralol 1′-hydroxylation with Ki values of 19.9, 13.1, 6.3, and 20.8 µM, respectively. AB-FUBINACA inhibited OCT2-mediated MPP+ uptake via mixed inhibition (Ki, 54.2 µM) and competitively inhibited OATP1B1-mediated estrone-3-sulfate uptake (Ki, 94.4 µM). However, AB-FUBINACA did not significantly inhibit CYP1A2, CYP2A6, CYP3A4, UGT1A1, UGT1A3, UGT1A4, UGT1A6, or UGT2B7 enzyme activities at concentrations up to 100 µM. AB-FUBINACA did not significantly inhibit the transport activities of OCT1, OAT1/3, OATP1B3, P-glycoprotein, or BCRP at concentrations up to 250 μM. As the pharmacokinetics of AB-FUBINACA in humans and animals remain unknown, it is necessary to clinically evaluate potential in vivo pharmacokinetic drug–drug interactions induced by AB-FUBINACA-mediated inhibition of CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, OCT2, and OATP1B1 activities.
Collapse
|
18
|
Shea LA, Goldwire MA, Hymel D, Bui D. Colorado community pharmacists' survey and their perspectives regarding marijuana. SAGE Open Med 2020; 8:2050312120938215. [PMID: 32821385 PMCID: PMC7412924 DOI: 10.1177/2050312120938215] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 06/04/2020] [Indexed: 12/04/2022] Open
Abstract
OBJECTIVES With one of the highest prevalence rates for marijuana use in the United States, Colorado provides a great opportunity for insight on common encounters with consumers in the community pharmacy setting. Currently, there is limited data on community pharmacists and their experiences with patients and marijuana. This study aims to identify the most common questions community pharmacists receive about marijuana, how comfortable they are in answering those questions, and to identify knowledge gaps regarding marijuana and pharmaceutical care. METHODS A cross-sectional study design was chosen to survey community pharmacists. A convenience sample of community pharmacists from the greater Denver metro area counties were surveyed about recreational and medical marijuana questions they receive from patients and consumers. Statistical methods included descriptive statistics, Chi-square, Kruskal-Wallis, and Mann-Whitney. RESULTS Of the 51 pharmacists who completed the survey, 20% received questions about medical marijuana daily or weekly, 57% monthly, and 22% never, while 16% received questions about recreational marijuana weekly, 41% monthly, and 43% never. In addition, 53% were comfortable answering questions about medical marijuana, while 41% were comfortable answering questions about recreational marijuana. The most common questions received were related to indications, uses, and efficacy (33%), followed by drug interactions (30%). CONCLUSION The increased acceptance of marijuana by patients warrants pharmacists and other healthcare providers to be confident and familiar with its use. Our findings suggest that the majority of pharmacists are not asking about marijuana use/consumption, and this may be a gap in care. Studies support that other healthcare providers also exhibit hesitancy in initiating these conversations. Consumers are using marijuana products now, so increasing marijuana education for all healthcare professionals during both didactic education and continuing education will be key to ensuring patients have access to evidence-based care regarding the use of marijuana, rather than care based on belief, alone.
Collapse
Affiliation(s)
| | | | | | - Doan Bui
- Regis University, Denver, CO, USA
| |
Collapse
|
19
|
Qian Y, Gurley BJ, Markowitz JS. The Potential for Pharmacokinetic Interactions Between Cannabis Products and Conventional Medications. J Clin Psychopharmacol 2020; 39:462-471. [PMID: 31433338 DOI: 10.1097/jcp.0000000000001089] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE Increased cannabis use and recent drug approvals pose new challenges for avoiding drug interactions between cannabis products and conventional medications. This review aims to identify drug-metabolizing enzymes and drug transporters that are affected by concurrent cannabis use and, conversely, those co-prescribed medications that may alter the exposure to one or more cannabinoids. METHODS A systematic literature search was conducted utilizing the Google Scholar search engine and MEDLINE (PubMed) database through March 2019. All articles describing in vitro or clinical studies of cannabis drug interaction potential were retrieved for review. Additional articles of interest were obtained through cross-referencing of published bibliographies. FINDINGS After comparing the in vitro inhibition parameters to physiologically achievable cannabinoid concentrations, it was concluded that CYP2C9, CYP1A1/2, and CYP1B1 are likely to be inhibited by all 3 major cannabinoids Δ-tetrahydrocannabinol (THC), cannabidiol (CBD), and cannabinol (CBN). The isoforms CYP2D6, CYP2C19, CYP2B6, and CYP2J2 are inhibited by THC and CBD. CYP3A4/5/7 is potentially inhibited by CBD. Δ-Tetrahydrocannabinol also activates CYP2C9 and induces CYP1A1. For non-CYP drug-metabolizing enzymes, UGT1A9 is inhibited by CBD and CBN, whereas UGT2B7 is inhibited by CBD but activated by CBN. Carboxylesterase 1 (CES1) is potentially inhibited by THC and CBD. Clinical studies suggest inhibition of CYP2C19 by CBD, inhibition of CYP2C9 by various cannabis products, and induction of CYP1A2 through cannabis smoking. Evidence of CBD inhibition of UGTs and CES1 has been shown in some studies, but the data are limited at present. We did not identify any clinical studies suggesting an influence of cannabinoids on drug transporters, and in vitro results suggest that a clinical interaction is unlikely. CONCLUSIONS Medications that are prominent substrates for CYP2C19, CYP2C9, and CYP1A2 may be particularly at risk of altered disposition by concomitant use of cannabis or 1 or more of its constituents. Caution should also be given when coadministered drugs are metabolized by UGT or CES1, on which subject the information remains limited and further investigation is warranted. Conversely, conventional drugs with strong inhibitory or inductive effects on CYP3A4 are expected to affect CBD disposition.
Collapse
Affiliation(s)
- Yuli Qian
- From the Department of Pharmacotherapy and Translational Research, University of Florida, Gainesville, FL
| | - Bill J Gurley
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR
| | - John S Markowitz
- From the Department of Pharmacotherapy and Translational Research, University of Florida, Gainesville, FL
| |
Collapse
|
20
|
Ing Lorenzini K, Girardin F. Direct-acting antiviral interactions with opioids, alcohol or illicit drugs of abuse in HCV-infected patients. Liver Int 2020; 40:32-44. [PMID: 31654604 DOI: 10.1111/liv.14283] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/17/2019] [Accepted: 10/15/2019] [Indexed: 02/13/2023]
Abstract
The hepatitis C virus (HCV) prevalence is extremely high in patients who consume and inject illicit drugs. Concerns about poor adherence and fear of interaction with drugs of abuse could constitute further disincentive for treatment initiation in these patients. We discussed the pharmacokinetics (PKs) and pharmacodynamics (PD) of currently prescribed direct antiviral agents (NSA5 inhibitors: daclatasvir, elbasvir, ledipasvir, pibrentasvir, velpatasvir; NS5B inhibitor: sofosbuvir; NS3/4A protease inhibitors: glecaprevir, grazoprevir, voxilaprevir) and most common substances of abuse (opioids: buprenorphine, fentanyl, heroin, methadone, morphine, oxycodone; stimulants: amphetamines, cathinones, cocaine; cannabinoids; ethanol). Overall, most direct-acting antivirals (DAAs) are substrates and inhibitors of the transmembrane transporter P-glycoprotein (P-gp), and several of them are metabolized by cytochrome P450 enzymes. Clinically relevant interactions are associated with P-gp and CYP3A modulators. Most substances of abuse are eliminated by Phase I and Phase II metabolizing enzymes, but none of them are either major inhibitors or inducers. PK studies did not show any relevant interactions between DAA and methadone or buprenorphine. Based on pharmacological considerations, neither efficacy loss nor adverse drug event associated with detrimental interaction are expected with opioids, stimulants, cannabinoids and ethanol. In summary, our literature review shows that the interaction potential of DAA with most opioids and illicit drugs is limited and should not be a hurdle to the initiate DAA.
Collapse
Affiliation(s)
- Kuntheavy Ing Lorenzini
- Division of Clinical Pharmacology and Toxicology, University Hospitals of Geneva, Geneva, Switzerland
| | - François Girardin
- Division of Clinical Pharmacology and Toxicology, University Hospitals of Geneva, Geneva, Switzerland
| |
Collapse
|
21
|
In Vitro Inhibitory Effects of APINACA on Human Major Cytochrome P450, UDP-Glucuronosyltransferase Enzymes, and Drug Transporters. Molecules 2019; 24:molecules24163000. [PMID: 31430908 PMCID: PMC6720883 DOI: 10.3390/molecules24163000] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/14/2019] [Accepted: 08/17/2019] [Indexed: 11/17/2022] Open
Abstract
APINACA (known as AKB48, N-(1-adamantyl)-1-pentyl-1H-indazole-3-carboxamide), an indazole carboxamide synthetic cannabinoid, has been used worldwide as a new psychoactive substance. Drug abusers take various drugs concomitantly, and therefore, it is necessary to characterize the potential of APINACA-induced drug–drug interactions due to the modulation of drug-metabolizing enzymes and transporters. In this study, the inhibitory effects of APINACA on eight major human cytochrome P450s (CYPs) and six uridine 5′-diphospho-glucuronosyltransferases (UGTs) in human liver microsomes, as well as on the transport activities of six solute carrier transporters and two efflux transporters in transporter-overexpressed cells, were investigated. APINACA exhibited time-dependent inhibition of CYP3A4-mediated midazolam 1′-hydroxylation (Ki, 4.5 µM; kinact, 0.04686 min−1) and noncompetitive inhibition of UGT1A9-mediated mycophenolic acid glucuronidation (Ki, 5.9 µM). APINACA did not significantly inhibit the CYPs 1A2, 2A6, 2B6, 2C8/9/19, or 2D6 or the UGTs 1A1, 1A3, 1A4, 1A6, or 2B7 at concentrations up to 100 µM. APINACA did not significantly inhibit the transport activities of organic anion transporter (OAT)1, OAT3, organic anion transporting polypeptide (OATP)1B1, OATP1B3, organic cation transporter (OCT)1, OCT2, P-glycoprotein, or breast cancer resistance protein at concentrations up to 250 μM. These data suggest that APINACA can cause drug interactions in the clinic via the inhibition of CYP3A4 or UGT1A9 activities.
Collapse
|
22
|
A marijuana-drug interaction primer: Precipitants, pharmacology, and pharmacokinetics. Pharmacol Ther 2019; 201:25-38. [PMID: 31071346 DOI: 10.1016/j.pharmthera.2019.05.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 05/02/2019] [Indexed: 02/07/2023]
Abstract
In the United States, the evolving landscape of state-legal marijuana use for recreational and/or medical purposes has given rise to flourishing markets for marijuana and derivative products. The popularity of these products highlights the relative absence of safety, pharmacokinetic, and drug interaction data for marijuana and its constituents, most notably the cannabinoids. This review articulates current issues surrounding marijuana terminology, taxonomy, and dosing; summarizes cannabinoid pharmacology and pharmacokinetics; and assesses the drug interaction risks associated with co-consuming marijuana with conventional medications. Existing pharmacokinetic data are currently insufficient to fully characterize potential drug interactions precipitated by marijuana constituents. As such, increasing awareness among researchers, clinicians, and federal agencies regarding the need to conduct well-designed in vitro and clinical studies is imperative. Mechanisms that help researchers navigate the legal and regulatory barriers to conducting these studies would promote rigorous evaluation of potential marijuana-drug interactions and inform health care providers and consumers about the possible risks of co-consuming marijuana products with conventional medications.
Collapse
|
23
|
Qian Y, Wang X, Markowitz JS. In Vitro Inhibition of Carboxylesterase 1 by Major Cannabinoids and Selected Metabolites. Drug Metab Dispos 2019; 47:465-472. [PMID: 30833288 DOI: 10.1124/dmd.118.086074] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 02/28/2019] [Indexed: 02/13/2025] Open
Abstract
The escalating use of medical cannabis and significant recreational use of cannabis in recent years has led to a higher potential for metabolic interactions between cannabis or one or more of its components and concurrently used medications. Although there have been a significant number of in vitro and in vivo assessments of the effects of cannabis on cytochrome P450 and UDP-glucuronosyltransferase enzyme systems, there is limited information regarding the effects of cannabis on the major hepatic esterase, carboxylesterase 1 (CES1). In this study, we investigated the in vitro inhibitory effects of the individual major cannabinoids and metabolites ∆9-tetrahydrocannabinol (THC), cannabidiol (CBD), cannabinol (CBN), 11-nor-THC-carboxylic acid, and 11-hydroxy-THC on CES1 activity. S9 fractions from human embryonic kidney 293 cells stably expressing CES1 were used in the assessment of cannabinoid inhibitory effects. THC, CBD, and CBN each exhibited substantial inhibitory potency, and were further studied to determine their mechanism of inhibition and kinetic parameters. The inhibition of CES1 by THC, CBD, and CBN was reversible and appears to proceed through a mixed competitive-noncompetitive mechanism. The inhibition constant (K i) values for THC, CBD, and CBN inhibition were 0.541, 0.974, and 0.263 µM (0.170, 0.306, and 0.0817 µg/ml), respectively. Inhibition potency was increased when THC, CBD, and CBN were combined. Compared with the potential unbound plasma concentrations attainable clinically, the K i values suggest a potential for clinically significant inhibition of CES1 by THC and CBD. CBN, however, is expected to have a limited impact on CES1. Carefully designed clinical studies are warranted to establish the clinical significance of these in vitro findings.
Collapse
Affiliation(s)
- Yuli Qian
- Department of Pharmacotherapy and Translational Research, University of Florida, Gainesville, Florida (Y.Q., J.S.M.); and Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan (X.W.)
| | - Xinwen Wang
- Department of Pharmacotherapy and Translational Research, University of Florida, Gainesville, Florida (Y.Q., J.S.M.); and Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan (X.W.)
| | - John S Markowitz
- Department of Pharmacotherapy and Translational Research, University of Florida, Gainesville, Florida (Y.Q., J.S.M.); and Department of Clinical Pharmacy, University of Michigan, Ann Arbor, Michigan (X.W.)
| |
Collapse
|
24
|
Yamaori S, Araki N, Shionoiri M, Ikehata K, Kamijo S, Ohmori S, Watanabe K. A Specific Probe Substrate for Evaluation of CYP4A11 Activity in Human Tissue Microsomes and a Highly Selective CYP4A11 Inhibitor: Luciferin-4A and Epalrestat. J Pharmacol Exp Ther 2018; 366:446-457. [PMID: 29976573 DOI: 10.1124/jpet.118.249557] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/29/2018] [Indexed: 03/08/2025] Open
Abstract
The specificity of cytochrome P450 4A11 (CYP4A11) against luciferin-4A O-demethylation in human liver microsomes (HLMs) and human renal microsomes (HRMs) and selectivity of CYP4A11 inhibition by epalrestat were investigated. Kinetic analysis of luciferin-4A O-demethylation yielded Vmax and S50 values of 39.7 pmol/min per milligram protein and 43.2 μM for HLMs (Hill coefficient 1.24) and 39.4 pmol/min per milligram protein and 33.8 μM for HRMs (Hill coefficient 1.34), respectively. Among the selective CYP inhibitors tested, HET0016 (CYP4 inhibitor) exclusively inhibited luciferin-4A O-demethylation by HLMs and HRMs. Furthermore, anti-CYP4A11 antibody nearly abolished the activity of both tissue microsomes. Luciferin-4A O-demethylase activity of HLMs was significantly correlated with lauric acid ω-hydroxylase activity, a marker of CYP4A11 activity (r = 0.904, P < 0.0001). Next, effects of epalrestat on CYP-mediated drug oxidations were examined. Epalrestat showed the most potent inhibition against CYP4A11 (IC50 = 1.82 μM) among the 17 recombinant enzymes tested. The inhibitory effect of epalrestat on CYP4A11 was at least 10-fold stronger than those on CYP4F2, CYP4F3B, and CYP4F12. For known CYP4 inhibitors, in contrast, HET0016 inhibited the activities of CYP4A11 and CYP4F2 (IC50 = 0.0137-0.0182 μM); 17-octadecynoic acid reduced activities of CYP4A11, CYP4F2, CYP4F3B, and CYP4F12 to a similar extent (IC50 = 5.70-17.7 μM). Epalrestat selectively and effectively inhibited the CYP4A11 activity of HLMs (IC50 = 0.913 μM) and HRMs (IC50 = 0.659 μM). These results indicated that luciferin-4A O-demethylase activity is a good CYP4A11 marker of HLMs and HRMs, and that epalrestat is a more selective CYP4A11 inhibitor compared with known CYP4 inhibitors.
Collapse
Affiliation(s)
- Satoshi Yamaori
- Department of Pharmacy, Shinshu University Hospital, Matsumoto, Japan (S.Y., S.O.); Department of Biochemical Pharmacology and Toxicology, Graduate School of Medicine, Shinshu University, Matsumoto, Japan (S.Y., S.K., S.O.); and Department of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa, Japan (N.A., M.S., K.I., K.W.)
| | - Noriyuki Araki
- Department of Pharmacy, Shinshu University Hospital, Matsumoto, Japan (S.Y., S.O.); Department of Biochemical Pharmacology and Toxicology, Graduate School of Medicine, Shinshu University, Matsumoto, Japan (S.Y., S.K., S.O.); and Department of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa, Japan (N.A., M.S., K.I., K.W.)
| | - Mio Shionoiri
- Department of Pharmacy, Shinshu University Hospital, Matsumoto, Japan (S.Y., S.O.); Department of Biochemical Pharmacology and Toxicology, Graduate School of Medicine, Shinshu University, Matsumoto, Japan (S.Y., S.K., S.O.); and Department of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa, Japan (N.A., M.S., K.I., K.W.)
| | - Kurumi Ikehata
- Department of Pharmacy, Shinshu University Hospital, Matsumoto, Japan (S.Y., S.O.); Department of Biochemical Pharmacology and Toxicology, Graduate School of Medicine, Shinshu University, Matsumoto, Japan (S.Y., S.K., S.O.); and Department of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa, Japan (N.A., M.S., K.I., K.W.)
| | - Shinobu Kamijo
- Department of Pharmacy, Shinshu University Hospital, Matsumoto, Japan (S.Y., S.O.); Department of Biochemical Pharmacology and Toxicology, Graduate School of Medicine, Shinshu University, Matsumoto, Japan (S.Y., S.K., S.O.); and Department of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa, Japan (N.A., M.S., K.I., K.W.)
| | - Shigeru Ohmori
- Department of Pharmacy, Shinshu University Hospital, Matsumoto, Japan (S.Y., S.O.); Department of Biochemical Pharmacology and Toxicology, Graduate School of Medicine, Shinshu University, Matsumoto, Japan (S.Y., S.K., S.O.); and Department of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa, Japan (N.A., M.S., K.I., K.W.)
| | - Kazuhito Watanabe
- Department of Pharmacy, Shinshu University Hospital, Matsumoto, Japan (S.Y., S.O.); Department of Biochemical Pharmacology and Toxicology, Graduate School of Medicine, Shinshu University, Matsumoto, Japan (S.Y., S.K., S.O.); and Department of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Hokuriku University, Kanazawa, Japan (N.A., M.S., K.I., K.W.)
| |
Collapse
|
25
|
Synthetic cannabinoids are substrates and inhibitors of multiple drug-metabolizing enzymes. Arch Pharm Res 2018; 41:691-710. [PMID: 30039377 DOI: 10.1007/s12272-018-1055-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 07/11/2018] [Indexed: 01/06/2023]
Abstract
Synthetic cannabinoids, a new class of psychoactive substances, are potent agonists of cannabinoid receptors, which mimic the psychoactive effects of the principal psychoactive component of cannabis, ∆9-tetrahydrocannabinol. Despite governmental scheduling as illicit drugs, new synthetic cannabinoids are being produced. The abuse of synthetic cannabinoids with several drugs containing different chemical groups has resulted in large numbers of poisonings. This has increased the urgency for forensic and public health laboratories to identify the metabolites of synthetic cannabinoids and apply this knowledge to the development of analytical methods and for toxicity prediction. It is necessary to determine whether synthetic cannabinoids are involved in drug-metabolizing enzyme-mediated drug-drug interactions. This review describes the metabolic pathways of 13 prevalent synthetic cannabinoids and various drug-metabolizing enzymes responsible for their metabolism, including cytochrome P450 (CYP), UDP-glucuronosyltransferases (UGTs), and carboxylesterases. The inhibitory effects of synthetic cannabinoids on CYP and UGT activities are also reviewed to predict the potential of synthetic cannabinoids for drug-drug interactions. The drug-metabolizing enzymes responsible for metabolism of synthetic cannabinoids should be characterized and the effects of synthetic cannabinoids on CYP and UGT activities should be determined to predict the pharmacokinetics of synthetic cannabinoids and synthetic cannabinoid-induced drug-drug interactions in the clinic.
Collapse
|
26
|
In Vitro Inhibitory Effects of Synthetic Cannabinoid EAM-2201 on Cytochrome P450 and UDP-Glucuronosyltransferase Enzyme Activities in Human Liver Microsomes. Molecules 2018; 23:molecules23040920. [PMID: 29659506 PMCID: PMC6017357 DOI: 10.3390/molecules23040920] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 01/22/2023] Open
Abstract
EAM-2201, a synthetic cannabinoid, is a potent agonist of the cannabinoid receptors that is widely abused as an illicit recreational drug in combination with other drugs. To evaluate the potential of EAM-2201 as a perpetrator of drug–drug interactions, the inhibitory effects of EAM-2201 on major drug-metabolizing enzymes, cytochrome P450s (CYPs) and uridine 5′-diphospho-glucuronosyltransferases (UGTs) were evaluated in pooled human liver microsomes using liquid chromatography–tandem mass spectrometry (LC-MS/MS). EAM-2201 at doses up to 50 µM negligibly inhibited the activities of eight major human CYPs (1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6 and 3A4) and five UGTs (1A1, 1A4, 1A6, 1A9 and 2B7) in human liver microsomes. EAM-2201 exhibited time-dependent inhibition of CYP2C8-catalyzed amodiaquine N-deethylation, CYP2C9-catalyzed diclofenac 4′-hydroxylation, CYP2C19-catalyzed [S]-mephenytoin 4′-hydroxylation and CYP3A4-catalyzed midazolam 1′-hydroxylation with Ki values of 0.54 µM (kinact: 0.0633 min−1), 3.0 µM (kinact: 0.0462 min−1), 3.8 µM (kinact: 0.0264 min−1) and 4.1 µM (kinact: 0.0250 min−1), respectively and competitively inhibited UGT1A3-catalyzed chenodeoxycholic acid 24-acyl-glucuronidation, with a Ki value of 2.4 µM. Based on these in vitro results, we conclude that EAM-2201 has the potential to trigger in vivo pharmacokinetic drug interactions when co-administered with substrates of CYP2C8, CYP2C9, CYP2C19, CYP3A4 and UGT1A3.
Collapse
|
27
|
Arnold WR, Weigle AT, Das A. Cross-talk of cannabinoid and endocannabinoid metabolism is mediated via human cardiac CYP2J2. J Inorg Biochem 2018; 184:88-99. [PMID: 29689453 DOI: 10.1016/j.jinorgbio.2018.03.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/28/2018] [Accepted: 03/23/2018] [Indexed: 01/07/2023]
Abstract
Phytocannabinoids have well-known cardiovascular implications. For instance, Δ9-tetrahydrocannabinol (Δ9-THC), the principal component of cannabis, induces tachycardia in humans. In order to understand the impact of phytocannabinoids on human cardiovascular health, there is a need to study the metabolism of phytocannabinoids by cardiac cytochromes p450 (CYPs). CYP2J2, the primary CYP of cardiomyocytes, is responsible for the metabolism of the endocannabinoid, anandamide (AEA), into cardioprotective epoxides (EET-EAs). Herein, we have investigated the kinetics of the direct metabolism of six phytocannabinoids (Δ9-THC, Δ8-tetrahydrocannabinol, cannabinol, cannabidiol, cannabigerol, and cannabichromene) by CYP2J2. CYP2J2 mainly produces 1'/1″-OH metabolites of these phytocannabinoids. These phytocannabinoids are metabolized with greater catalytic efficiency compared to the metabolism of AEA by CYP2J2. We have also determined that the phytocannabinoids are potent inhibitors of CYP2J2-mediated AEA metabolism, with Δ9-THC being the strongest inhibitor. Most of the inhibition of CYP2J2 by the phytocannabinoids follow a noncompetitive inhibition model, and therefore dramatically reduce the formation of EET-EAs by CYP2J2. Taken together, these data demonstrate that phytocannabinoids are directly metabolized by CYP2J2 and inhibit human cardiac CYP2J2, leading to a reduction in the formation of cardioprotective EET-EAs.
Collapse
Affiliation(s)
- William R Arnold
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| | - Austin T Weigle
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| | - Aditi Das
- Department of Comparative Biosciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States; Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States; Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States; Department of Bioengineering, Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States.
| |
Collapse
|
28
|
Abstract
Polypharmacy is common in psychiatry. Usage of cognitive enhancers is increasing in the psychiatric population. Many clinicians are not familiar with these new psychoactive compounds. This paper reviews the potential drug-drug interactions when these cognitive enhancers are used together with psychotropic drugs and their confounding effects on diagnosis and clinical management.
Collapse
|
29
|
Inhibition of cytochrome P450 and uridine 5'-diphospho-glucuronosyltransferases by MAM-2201 in human liver microsomes. Arch Pharm Res 2017; 40:727-735. [PMID: 28484907 DOI: 10.1007/s12272-017-0917-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 04/30/2017] [Indexed: 02/03/2023]
Abstract
MAM-2201, a synthetic cannabinoid, is a potent agonist of the cannabinoid receptors and is increasingly used as an illicit recreational drug. The inhibitory effects of MAM-2201 on major drug-metabolizing enzymes such as cytochrome P450s (CYPs) and uridine 5'-diphospho-glucuronosyltransferases (UGTs) have not yet been investigated although it is widely abused, sometimes in combination with other drugs. We evaluated the inhibitory effects of MAM-2201 on eight major human CYPs (CYPs 1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, and 3A4) and six UGTs (UGTs 1A1, 1A3, 1A4, 1A6, 1A9, and 2B7) of pooled human liver microsomes; we thus explored potential MAM-2201-induced drug interactions. MAM-2201 potently inhibited CYP2C9-catalyzed diclofenac 4'-hydroxylation, CYP3A4-catalyzed midazolam 1'-hydroxylation, and UGT1A3-catalyzed chenodeoxycholic acid 24-acyl-glucuronidation, with K i values of 5.6, 5.4 and 5.0 µM, respectively. MAM-2201 exhibited mechanism-based inhibition of CYP2C8-catalyzed amodiaquine N-de-ethylation with K i and k inact values of 1.0 µM and 0.0738 min-1, respectively. In human liver microsomes, MAM-2201 (50 µM) negligibly inhibited CYP1A2, CYP2A6, CYP2B6, CYP2C19, CYP2D6, UGT1A1, UGT1A4, UGT1A6, UGT1A9, and UGT2B7. Based on these in vitro results, we conclude that MAM-2201 has the potential to trigger in vivo pharmacokinetic drug interactions when co-administered with substrates of CYP2C8, CYP2C9, CYP3A4, and UGT1A3.
Collapse
|
30
|
Kim JH, Kwon SS, Kong TY, Cheong JC, Kim HS, In MK, Lee HS. AM-2201 Inhibits Multiple Cytochrome P450 and Uridine 5'-Diphospho-Glucuronosyltransferase Enzyme Activities in Human Liver Microsomes. Molecules 2017; 22:molecules22030443. [PMID: 28287454 PMCID: PMC6155437 DOI: 10.3390/molecules22030443] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 03/08/2017] [Indexed: 01/07/2023] Open
Abstract
AM-2201 is a synthetic cannabinoid that acts as a potent agonist at cannabinoid receptors and its abuse has increased. However, there are no reports of the inhibitory effect of AM-2201 on human cytochrome P450 (CYP) or uridine 5′-diphospho-glucuronosyltransferase (UGT) enzymes. We evaluated the inhibitory effect of AM-2201 on the activities of eight major human CYPs (1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, and 3A4) and six major human UGTs (1A1, 1A3, 1A4, 1A6, 1A9, and 2B7) enzymes in pooled human liver microsomes using liquid chromatography–tandem mass spectrometry to investigate drug interaction potentials of AM-2201. AM-2201 potently inhibited CYP2C9-catalyzed diclofenac 4′-hydroxylation, CYP3A4-catalyzed midazolam 1′-hydroxylation, UGT1A3-catalyzed chenodeoxycholic acid 24-acyl-glucuronidation, and UGT2B7-catalyzed naloxone 3-glucuronidation with IC50 values of 3.9, 4.0, 4.3, and 10.0 µM, respectively, and showed mechanism-based inhibition of CYP2C8-catalyzed amodiaquine N-deethylation with a Ki value of 2.1 µM. It negligibly inhibited CYP1A2, CYP2A6, CYP2B6, CYP2C19, CYP2D6, UGT1A1, UGT1A4, UGT1A6, and UGT1A9 activities at 50 μM in human liver microsomes. These in vitro results indicate that AM-2201 needs to be examined for potential pharmacokinetic drug interactions in vivo due to its potent inhibition of CYP2C8, CYP2C9, CYP3A4, UGT1A3, and UGT2B7 enzyme activities.
Collapse
Affiliation(s)
- Ju-Hyun Kim
- Drug Metabolism and Bioanalysis Laboratory, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon 14662, Korea.
| | - Soon-Sang Kwon
- Drug Metabolism and Bioanalysis Laboratory, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon 14662, Korea.
| | - Tae Yeon Kong
- Drug Metabolism and Bioanalysis Laboratory, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon 14662, Korea.
| | - Jae Chul Cheong
- Forensic Chemistry Laboratory, Forensic Science Division, Supreme Prosecutor's Office, 157 Banpo-daero, Seocho-gu, Seoul 06590, Korea.
| | - Hee Seung Kim
- Forensic Chemistry Laboratory, Forensic Science Division, Supreme Prosecutor's Office, 157 Banpo-daero, Seocho-gu, Seoul 06590, Korea.
| | - Moon Kyo In
- Forensic Chemistry Laboratory, Forensic Science Division, Supreme Prosecutor's Office, 157 Banpo-daero, Seocho-gu, Seoul 06590, Korea.
| | - Hye Suk Lee
- Drug Metabolism and Bioanalysis Laboratory, College of Pharmacy, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon 14662, Korea.
| |
Collapse
|
31
|
Dybowski MP, Dawidowicz AL. The determination of α- and β-thujone in human serum – Simple analysis of absinthe congener substance. Forensic Sci Int 2016; 259:188-92. [DOI: 10.1016/j.forsciint.2015.12.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 11/27/2015] [Accepted: 12/11/2015] [Indexed: 11/27/2022]
|
32
|
Yamaori S, Okushima Y, Yamamoto I, Watanabe K. Characterization of the structural determinants required for potent mechanism-based inhibition of human cytochrome P450 1A1 by cannabidiol. Chem Biol Interact 2014; 215:62-8. [PMID: 24667653 DOI: 10.1016/j.cbi.2014.03.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 02/24/2014] [Accepted: 03/14/2014] [Indexed: 01/01/2023]
Abstract
We previously demonstrated that cannabidiol (CBD) was a potent mechanism-based inhibitor of human cytochrome P450 1A1 (CYP1A1). However, the moiety of CBD that contributes to the potent mechanism-based inhibition of human CYP1A1 remains unknown. Thus, the effects of compounds structurally related to CBD on CYP1A1 activity were examined with recombinant human CYP1A1 in order to characterize the structural requirements for potent inactivation by CBD. When preincubated in the presence of NADPH for 20min, olivetol, which corresponds to the pentylresorcinol moiety of CBD, enhanced the inhibition of the 7-ethoxyresorufin O-deethylase activity of CYP1A1. In contrast, d-limonene, which corresponds to the terpene moiety of CBD, failed to inhibit CYP1A1 activity in a metabolism-dependent manner. Pentylbenzene, which lacks two free phenolic hydroxyl groups, also did not enhance CYP1A1 inhibition. On the other hand, preincubation of the CBD-2'-monomethyl ether (CBDM) and CBD-2',6'-dimethyl ether (CBDD) enhanced the inhibition of CYP1A1 activity. Inhibition by cannabidivarin (CBDV), which possessed a propyl side chain, was strongly potentiated by its preincubation. Orcinol, which has a methyl group, augmented CYP1A1 inhibition, whereas its derivative without an alkyl side chain, resorcinol, did not exhibit any metabolism-dependent inhibition. The preincubation of CBD-hydroxyquinone did not markedly enhance CYP1A1 inhibition. We further confirmed that olivetol, CBDM, CBDD, CBDV, and orcinol, as well as CBD (kinact=0.215min(-1)), inactivated CYP1A1 activity; their kinact values were 0.154, 0.0638, 0.0643, 0.226, and 0.0353min(-1), respectively. These results suggest that the methylresorcinol structure in CBD may have structurally important roles in the inactivation of CYP1A1.
Collapse
Affiliation(s)
- Satoshi Yamaori
- Department of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Hokuriku University, Ho-3 Kanagawa-machi, Kanazawa 920-1181, Japan
| | - Yoshimi Okushima
- Department of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Hokuriku University, Ho-3 Kanagawa-machi, Kanazawa 920-1181, Japan
| | - Ikuo Yamamoto
- School of Pharmaceutical Sciences, Kyushu University of Health and Welfare, 1714-1 Yoshino-machi, Nobeoka 882-8508, Japan
| | - Kazuhito Watanabe
- Department of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Hokuriku University, Ho-3 Kanagawa-machi, Kanazawa 920-1181, Japan; Organization for Frontier Research in Preventive Pharmaceutical Sciences, Hokuriku University, Ho-3 Kanagawa-machi, Kanazawa 920-1181, Japan.
| |
Collapse
|
33
|
Stout SM, Cimino NM. Exogenous cannabinoids as substrates, inhibitors, and inducers of human drug metabolizing enzymes: a systematic review. Drug Metab Rev 2013; 46:86-95. [DOI: 10.3109/03602532.2013.849268] [Citation(s) in RCA: 221] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
34
|
Fernández-Ruiz J, Sagredo O, Pazos MR, García C, Pertwee R, Mechoulam R, Martínez-Orgado J. Cannabidiol for neurodegenerative disorders: important new clinical applications for this phytocannabinoid? Br J Clin Pharmacol 2013; 75:323-33. [PMID: 22625422 DOI: 10.1111/j.1365-2125.2012.04341.x] [Citation(s) in RCA: 230] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Cannabidiol (CBD) is a phytocannabinoid with therapeutic properties for numerous disorders exerted through molecular mechanisms that are yet to be completely identified. CBD acts in some experimental models as an anti-inflammatory, anticonvulsant, anti-oxidant, anti-emetic, anxiolytic and antipsychotic agent, and is therefore a potential medicine for the treatment of neuroinflammation, epilepsy, oxidative injury, vomiting and nausea, anxiety and schizophrenia, respectively. The neuroprotective potential of CBD, based on the combination of its anti-inflammatory and anti-oxidant properties, is of particular interest and is presently under intense preclinical research in numerous neurodegenerative disorders. In fact, CBD combined with Δ(9)-tetrahydrocannabinol is already under clinical evaluation in patients with Huntington's disease to determine its potential as a disease-modifying therapy. The neuroprotective properties of CBD do not appear to be exerted by the activation of key targets within the endocannabinoid system for plant-derived cannabinoids like Δ(9)-tetrahydrocannabinol, i.e. CB(1) and CB(2) receptors, as CBD has negligible activity at these cannabinoid receptors, although certain activity at the CB(2) receptor has been documented in specific pathological conditions (i.e. damage of immature brain). Within the endocannabinoid system, CBD has been shown to have an inhibitory effect on the inactivation of endocannabinoids (i.e. inhibition of FAAH enzyme), thereby enhancing the action of these endogenous molecules on cannabinoid receptors, which is also noted in certain pathological conditions. CBD acts not only through the endocannabinoid system, but also causes direct or indirect activation of metabotropic receptors for serotonin or adenosine, and can target nuclear receptors of the PPAR family and also ion channels.
Collapse
Affiliation(s)
- Javier Fernández-Ruiz
- Departamento de Bioquímica y Biología Molecular III, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense, 28040-Madrid, Spain.
| | | | | | | | | | | | | |
Collapse
|
35
|
Human brain microsomes: their abilities to metabolize tetrahydrocannabinols and cannabinol. Forensic Toxicol 2013. [DOI: 10.1007/s11419-013-0181-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
36
|
Jiang R, Yamaori S, Okamoto Y, Yamamoto I, Watanabe K. Cannabidiol Is a Potent Inhibitor of the Catalytic Activity of Cytochrome P450 2C19. Drug Metab Pharmacokinet 2013; 28:332-8. [DOI: 10.2133/dmpk.dmpk-12-rg-129] [Citation(s) in RCA: 134] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
37
|
Yamaori S, Kushihara M, Koeda K, Yamamoto I, Watanabe K. Significance of CYP2C9 genetic polymorphism in inhibitory effect of Δ9-tetrahydrocannabinol on CYP2C9 activity. Forensic Toxicol 2012. [DOI: 10.1007/s11419-012-0148-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
38
|
Yamaori S, Koeda K, Kushihara M, Hada Y, Yamamoto I, Watanabe K. Comparison in the In Vitro Inhibitory Effects of Major Phytocannabinoids and Polycyclic Aromatic Hydrocarbons Contained in Marijuana Smoke on Cytochrome P450 2C9 Activity. Drug Metab Pharmacokinet 2012; 27:294-300. [DOI: 10.2133/dmpk.dmpk-11-rg-107] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
39
|
Yamaori S, Okamoto Y, Yamamoto I, Watanabe K. Cannabidiol, a major phytocannabinoid, as a potent atypical inhibitor for CYP2D6. Drug Metab Dispos 2011; 39:2049-56. [PMID: 21821735 DOI: 10.1124/dmd.111.041384] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025] Open
Abstract
Δ(9)-Tetrahydrocannabinol, cannabidiol (CBD), and cannabinol are the three major cannabinoids contained in marijuana, which are devoid of nitrogen atoms in their structures. In this study, we investigated the inhibitory effects of the major phytocannabinoids on the catalytic activity of human CYP2D6. These major cannabinoids inhibited the 3-[2-(N,N-diethyl-N-methylammonium)ethyl]-7-methoxy-4-methylcoumarin (AMMC) and dextromethorphan O-demethylase activities of recombinant CYP2D6 and pooled human liver microsomes in a concentration-dependent manner (IC(50) = 4.01-24.9 μM), indicating the strongest inhibitory potency of CBD. However, these cannabinoids showed no or weak metabolism-dependent inhibition. CBD competitively inhibited the CYP2D6 activities with the apparent K(i) values of 1.16 to 2.69 μM. To clarify the structural requirement for CBD-mediated CYP2D6 inhibition, effects of CBD-related compounds on the AMMC O-demethylase activity of recombinant CYP2D6 were examined. Olivetol (IC(50) = 7.21 μM) inhibited CYP2D6 activity as potently as CBD did (IC(50) = 6.52 μM), whereas d-limonene did not show any inhibitory effect. Pentylbenzene failed to inhibit CYP2D6 activity. Furthermore, neither monomethyl nor dimethyl ethers of CBD inhibited the activity. Cannabidivarin having a propyl side chain inhibited CYP2D6 activity; its inhibitory effect (IC(50) = 10.2 μM) was less potent than that of CBD. On the other hand, orcinol and resorcinol showed lack of inhibition. The inhibitory effect of CBD on CYP2D6 activity was more potent than those of 16 compounds without nitrogen atoms tested, such as progesterone. These results indicated that CBD caused potent direct CYP2D6 inhibition, in which two phenolic hydroxyl groups and the pentyl side chain of CBD may play important roles.
Collapse
Affiliation(s)
- Satoshi Yamaori
- Department of Hygienic Chemistry, Faculty of Pharmaceutical Sciences, Hokuriku University, Ho-3, Kanagawa-machi, Kanazawa 920-1181, Japan
| | | | | | | |
Collapse
|