1
|
Lin QT, Colussi DM, Lake T, Stathopulos PB. An AI-informed NMR structure reveals an extraordinary LETM1 F-EF-hand domain that functions as a two-way regulator of mitochondrial calcium. Structure 2024; 32:2063-2082.e5. [PMID: 39317198 DOI: 10.1016/j.str.2024.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/03/2024] [Accepted: 08/28/2024] [Indexed: 09/26/2024]
Abstract
AlphaFold can accurately predict static protein structures but does not account for solvent conditions. Human leucine zipper EF-hand transmembrane protein-1 (LETM1) has one sequence-identifiable EF-hand but how calcium (Ca2+) affects structure and function remains enigmatic. Here, we used highly confident AlphaFold Cα predictions to guide nuclear Overhauser effect (NOE) assignments and structure calculation of the LETM1 EF-hand in the presence of Ca2+. The resultant NMR structure exposes pairing between a partial loop-helix and full helix-loop-helix, forming an unprecedented F-EF-hand with non-canonical Ca2+ coordination but enhanced hydrophobicity for protein interactions compared to calmodulin. The structure also reveals the basis for pH sensing at the link between canonical and partial EF-hands. Functionally, mutations that augmented or weakened Ca2+ binding increased or decreased matrix Ca2+, respectively, establishing F-EF as a two-way mitochondrial Ca2+ regulator. Thus, we show how to synergize AI prediction with NMR data, elucidating a solution-specific and extraordinary LETM1 F-EF-hand.
Collapse
Affiliation(s)
- Qi-Tong Lin
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A5C1, Canada
| | - Danielle M Colussi
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A5C1, Canada
| | - Taylor Lake
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A5C1, Canada
| | - Peter B Stathopulos
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON N6A5C1, Canada.
| |
Collapse
|
2
|
Kamal H, Zafar MM, Parvaiz A, Razzaq A, Elhindi KM, Ercisli S, Qiao F, Jiang X. Gossypium hirsutum calmodulin-like protein (CML 11) interaction with geminivirus encoded protein using bioinformatics and molecular techniques. Int J Biol Macromol 2024; 269:132095. [PMID: 38710255 DOI: 10.1016/j.ijbiomac.2024.132095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/24/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Plant viruses are the most abundant destructive agents that exist in every ecosystem, causing severe diseases in multiple crops worldwide. Currently, a major gap is present in computational biology determining plant viruses interaction with its host. We lay out a strategy to extract virus-host protein interactions using various protein binding and interface methods for Geminiviridae, a second largest virus family. Using this approach, transcriptional activator protein (TrAP/C2) encoded by Cotton leaf curl Kokhran virus (CLCuKoV) and Cotton leaf curl Multan virus (CLCuMV) showed strong binding affinity with calmodulin-like (CML) protein of Gossypium hirsutum (Gh-CML11). Higher negative value for the change in Gibbs free energy between TrAP and Gh-CML11 indicated strong binding affinity. Consensus from gene ontology database and in-silico nuclear localization signal (NLS) tools identified subcellular localization of TrAP in the nucleus associated with Gh-CML11 for virus infection. Data based on interaction prediction and docking methods present evidences that full length and truncated C2 strongly binds with Gh-CML11. This computational data was further validated with molecular results collected from yeast two-hybrid, bimolecular fluorescence complementation system and pull down assay. In this work, we also show the outcomes of full length and truncated TrAP on plant machinery. This is a first extensive report to delineate a role of CML protein from cotton with begomoviruses encoded transcription activator protein.
Collapse
Affiliation(s)
- Hira Kamal
- Department of Plant Pathology, Washington State University, Pullman, WA, USA
| | - Muhammad Mubashar Zafar
- Sanya Institute of Breeding and Multiplication/School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
| | - Aqsa Parvaiz
- Department of Biochemistry and Biotechnology, The Women University Multan, Multan. Pakistan
| | - Abdul Razzaq
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan..
| | - Khalid M Elhindi
- Plant Production Department, College of Food & Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Sezai Ercisli
- Department of Horticulture, Faculty of Agriculture, Ataturk University, 25240 Erzurum, Turkey
| | - Fei Qiao
- Sanya Institute of Breeding and Multiplication/School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
| | - Xuefei Jiang
- Sanya Institute of Breeding and Multiplication/School of Tropical Agriculture and Forestry, Hainan University, Sanya, China..
| |
Collapse
|
3
|
Overexpression of the dystrophins Dp40 and Dp40 L170P modifies neurite outgrowth and the protein expression profile of PC12 cells. Sci Rep 2022; 12:1410. [PMID: 35082358 PMCID: PMC8791958 DOI: 10.1038/s41598-022-05271-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/04/2022] [Indexed: 11/08/2022] Open
Abstract
Dp40 is ubiquitously expressed including the central nervous system. In addition to being present in the nucleus, membrane, and cytoplasm, Dp40 is detected in neurites and postsynaptic spines in hippocampal neurons. Although Dp40 is expressed from the same promoter as Dp71, its role in the cognitive impairment present in Duchenne muscular dystrophy patients is still unknown. Here, we studied the effects of overexpression of Dp40 and Dp40L170P during the neuronal differentiation of PC12 Tet-On cells. We found that Dp40 overexpression increased the percentage of PC12 cells with neurites and neurite length, while Dp40L170P overexpression decreased them compared to Dp40 overexpression. Two-dimensional gel electrophoresis analysis showed that the protein expression profile was modified in nerve growth factor-differentiated PC12-Dp40L170P cells compared to that of the control cells (PC12 Tet-On). The proteins α-internexin and S100a6, involved in cytoskeletal structure, were upregulated. The expression of vesicle-associated membrane proteins increased in differentiated PC12-Dp40 cells, in contrast to PC12-Dp40L170P cells, while neurofilament light-chain was decreased in both differentiated cells. These results suggest that Dp40 has an important role in the neuronal differentiation of PC12 cells through the regulation of proteins involved in neurofilaments and exocytosis of synaptic vesicles, functions that might be affected in PC12-Dp40L170P.
Collapse
|
4
|
Identification of two genes potentially related to myogenesis and muscle growth in Fenneropenaeus chinensis: Activin receptor II and Follistatin-like protein. Gene 2020; 770:145346. [PMID: 33333225 DOI: 10.1016/j.gene.2020.145346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/09/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023]
Abstract
Activin receptor (ActR) and follistatin-like (FSTL) genes, which are involved in the Myostatin (Mstn) related TGF-β/Smad signaling pathway, play important roles in regulating the muscle generation, development and growth of muscle in vertebrate. Our previous studies have confirmed that Mstn negatively regulates muscle development and growth in Fenneropenaeus chinensis as that in vertebrate. However, the roles of ActR and FSTL in muscle development and growth in invertebrate remains unclear. In the present study, type II ActR(FcActRII) and FSTL (FcFSTL) genes from F. chinensis were cloned and characterized, and their functions on muscle development and growth were investigated. The full-length cDNAs of FcActRII and FcFSTL were 2366 bp that encoded 572 amino acids and 2474 bp that encoded 717 amino acids, respectively. Sequence analysis revealed that the overall protein sequences of the two genes shared 97% and 96% identities with Penaeus vannamei and 50%-59% and 35%-36% identities with vertebrates, respectively. In the early development stages, muscles firstly appeared in nauplius stage and developed gradually until post larval, and the mRNA expressions of FcActRII increased from gastrula to zoea stage and then decreased from zoea stage to post larval stage while that of FcFSTL was lowest in gastrula stage and increased rapidly in nauplius stage and then expressed stably from nauplius stage to post-larval stage. In the adult shrimp, the two genes were widely distributed in the examined tissues. The FcActRII expression in muscle of L group was significantly lower than that of S group, but the FcFSTL expression showed an opposite result. After down-regulating the expression of FcMstn by RNAi, FcActRII expression was significantly down-regulated while that of FcFSTL was up-regulated. The present study suggested that FcActRII and FcFSTL, regulated by FcMstn, might be involved in myogenesis and muscle growth.
Collapse
|
5
|
Kamal H, Minhas FUAA, Tripathi D, Abbasi WA, Hamza M, Mustafa R, Khan MZ, Mansoor S, Pappu HR, Amin I. βC1, pathogenicity determinant encoded by Cotton leaf curl Multan betasatellite, interacts with calmodulin-like protein 11 (Gh-CML11) in Gossypium hirsutum. PLoS One 2019; 14:e0225876. [PMID: 31794580 PMCID: PMC6890265 DOI: 10.1371/journal.pone.0225876] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 11/14/2019] [Indexed: 01/14/2023] Open
Abstract
Begomoviruses interfere with host plant machinery to evade host defense mechanism by interacting with plant proteins. In the old world, this group of viruses are usually associated with betasatellite that induces severe disease symptoms by encoding a protein, βC1, which is a pathogenicity determinant. Here, we show that βC1 encoded by Cotton leaf curl Multan betasatellite (CLCuMB) requires Gossypium hirsutum calmodulin-like protein 11 (Gh-CML11) to infect cotton. First, we used the in silico approach to predict the interaction of CLCuMB-βC1 with Gh-CML11. A number of sequence- and structure-based in-silico interaction prediction techniques suggested a strong putative binding of CLCuMB-βC1 with Gh-CML11 in a Ca+2-dependent manner. In-silico interaction prediction was then confirmed by three different experimental approaches: The Gh-CML11 interaction was confirmed using CLCuMB-βC1 in a yeast two hybrid system and pull down assay. These results were further validated using bimolecular fluorescence complementation system showing the interaction in cytoplasmic veins of Nicotiana benthamiana. Bioinformatics and molecular studies suggested that CLCuMB-βC1 induces the overexpression of Gh-CML11 protein and ultimately provides calcium as a nutrient source for virus movement and transmission. This is the first comprehensive study on the interaction between CLCuMB-βC1 and Gh-CML11 proteins which provided insights into our understating of the role of βC1 in cotton leaf curl disease.
Collapse
Affiliation(s)
- Hira Kamal
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
- Department of Plant Pathology, Washington State University, Pullman, WA, United States of America
| | | | - Diwaker Tripathi
- Department of Biology, University of Washington, Seattle, WA, United States of America
| | - Wajid Arshad Abbasi
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
| | - Muhammad Hamza
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Roma Mustafa
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Muhammad Zuhaib Khan
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Shahid Mansoor
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Hanu R. Pappu
- Department of Plant Pathology, Washington State University, Pullman, WA, United States of America
| | - Imran Amin
- National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| |
Collapse
|
6
|
Graphdiyne oxide enhances the stability of solid contact-based ionselective electrodes for excellent in vivo analysis. Sci China Chem 2019. [DOI: 10.1007/s11426-019-9516-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Marsden AN, Derry SW, Schneider I, Scott CA, Westfall TA, Brastrom LK, Shea MA, Dawson DV, Slusarski DC. The Nkd EF-hand domain modulates divergent wnt signaling outputs in zebrafish. Dev Biol 2018; 434:63-73. [PMID: 29180104 DOI: 10.1016/j.ydbio.2017.11.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 10/29/2017] [Accepted: 11/20/2017] [Indexed: 12/25/2022]
Abstract
Wnt proteins regulate diverse biological responses by initiating two general outcomes: β-catenin-dependent transcription and β-catenin-independent activation of signaling cascades, the latter including modulation of calcium and regulation of cytoskeletal dynamics (Planar Cell Polarity, PCP). It has been difficult to elucidate the mechanisms by which Wnt signals are directed to effect one or the other outcome due to shared signaling proteins between the β-catenin-dependent and -independent pathways, such as the Dishevelled binding protein Naked. While all Naked paralogs contain a putative calcium-binding domain, the EF-Hand, Drosophila Naked does not bind calcium. Here we find a lineage-specific evolutionary change within the Drosophila Naked EF-hand that is not shared with other insects or vertebrates. We demonstrate the necessary role of the EF-hand for Nkd localization changes in calcium fluxing cells and using in vivo assays, we identify a role for the zebrafish Naked EF-hand in PCP but not in β-catenin antagonism. In contrast, Drosophila-like Nkd does not function in PCP, but is a robust antagonist of Wnt/β-catenin signaling. This work reveals that the zebrafish Nkd1 EF-hand is essential to balance Wnt signaling inputs and modulate the appropriate outputs, while the Drosophila-like EF-Hand primarily functions in β-catenin signaling.
Collapse
Affiliation(s)
- Autumn N Marsden
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Sarah W Derry
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA; Drake University, Des Moines, IA 50311, USA
| | - Igor Schneider
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA; Instituto de Ciencias Biologicas, Universidade Federal do Para, Belem 66075-110, Brazil
| | - C Anthony Scott
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Trudi A Westfall
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Lindy K Brastrom
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA
| | - Madeline A Shea
- Department of Biochemistry, University of Iowa, UA 52242, USA
| | - Deborah V Dawson
- Departments of Pediatric Dentistry&Biostatistics, University of Iowa, Iowa City 52242, USA
| | - Diane C Slusarski
- Department of Biology, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
8
|
Pu F, Chen N, Xue S. Calcium intake, calcium homeostasis and health. FOOD SCIENCE AND HUMAN WELLNESS 2016. [DOI: 10.1016/j.fshw.2016.01.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
McLean R, Hobbs JK, Suits MD, Tuomivaara ST, Jones DR, Boraston AB, Abbott DW. Functional Analyses of Resurrected and Contemporary Enzymes Illuminate an Evolutionary Path for the Emergence of Exolysis in Polysaccharide Lyase Family 2. J Biol Chem 2015; 290:21231-43. [PMID: 26160170 DOI: 10.1074/jbc.m115.664847] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Indexed: 11/06/2022] Open
Abstract
Family 2 polysaccharide lyases (PL2s) preferentially catalyze the β-elimination of homogalacturonan using transition metals as catalytic cofactors. PL2 is divided into two subfamilies that have been generally associated with secretion, Mg(2+) dependence, and endolysis (subfamily 1) and with intracellular localization, Mn(2+) dependence, and exolysis (subfamily 2). When present within a genome, PL2 genes are typically found as tandem copies, which suggests that they provide complementary activities at different stages along a catabolic cascade. This relationship most likely evolved by gene duplication and functional divergence (i.e. neofunctionalization). Although the molecular basis of subfamily 1 endolytic activity is understood, the adaptations within the active site of subfamily 2 enzymes that contribute to exolysis have not been determined. In order to investigate this relationship, we have conducted a comparative enzymatic analysis of enzymes dispersed within the PL2 phylogenetic tree and elucidated the structure of VvPL2 from Vibrio vulnificus YJ016, which represents a transitional member between subfamiles 1 and 2. In addition, we have used ancestral sequence reconstruction to functionally investigate the segregated evolutionary history of PL2 progenitor enzymes and illuminate the molecular evolution of exolysis. This study highlights that ancestral sequence reconstruction in combination with the comparative analysis of contemporary and resurrected enzymes holds promise for elucidating the origins and activities of other carbohydrate active enzyme families and the biological significance of cryptic metabolic pathways, such as pectinolysis within the zoonotic marine pathogen V. vulnificus.
Collapse
Affiliation(s)
- Richard McLean
- From the Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta T1J 4B1, Canada
| | - Joanne K Hobbs
- the Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 3P6, Canada
| | - Michael D Suits
- the Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 3P6, Canada, the Department of Chemistry and Biochemistry, Wilfred Laurier University, Waterloo, Ontario N2L 3C5, Canada, and
| | - Sami T Tuomivaara
- the Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602
| | - Darryl R Jones
- From the Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta T1J 4B1, Canada
| | - Alisdair B Boraston
- the Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8W 3P6, Canada
| | - D Wade Abbott
- From the Lethbridge Research Centre, Agriculture and Agri-Food Canada, Lethbridge, Alberta T1J 4B1, Canada,
| |
Collapse
|
10
|
Calcium binding proteins and calcium signaling in prokaryotes. Cell Calcium 2014; 57:151-65. [PMID: 25555683 DOI: 10.1016/j.ceca.2014.12.006] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/08/2014] [Accepted: 12/09/2014] [Indexed: 11/20/2022]
Abstract
With the continued increase of genomic information and computational analyses during the recent years, the number of newly discovered calcium binding proteins (CaBPs) in prokaryotic organisms has increased dramatically. These proteins contain sequences that closely resemble a variety of eukaryotic calcium (Ca(2+)) binding motifs including the canonical and pseudo EF-hand motifs, Ca(2+)-binding β-roll, Greek key motif and a novel putative Ca(2+)-binding domain, called the Big domain. Prokaryotic CaBPs have been implicated in diverse cellular activities such as division, development, motility, homeostasis, stress response, secretion, transport, signaling and host-pathogen interactions. However, the majority of these proteins are hypothetical, and only few of them have been studied functionally. The finding of many diverse CaBPs in prokaryotic genomes opens an exciting area of research to explore and define the role of Ca(2+) in organisms other than eukaryotes. This review presents the most recent developments in the field of CaBPs and novel advancements in the role of Ca(2+) in prokaryotes.
Collapse
|
11
|
Denessiouk K, Permyakov S, Denesyuk A, Permyakov E, Johnson MS. Two structural motifs within canonical EF-hand calcium-binding domains identify five different classes of calcium buffers and sensors. PLoS One 2014; 9:e109287. [PMID: 25313560 PMCID: PMC4196763 DOI: 10.1371/journal.pone.0109287] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 08/29/2014] [Indexed: 11/18/2022] Open
Abstract
Proteins with EF-hand calcium-binding motifs are essential for many cellular processes, but are also associated with cancer, autism, cardiac arrhythmias, and Alzheimer's, skeletal muscle and neuronal diseases. Functionally, all EF-hand proteins are divided into two groups: (1) calcium sensors, which function to translate the signal to various responses; and (2) calcium buffers, which control the level of free Ca2+ ions in the cytoplasm. The borderline between the two groups is not clear, and many proteins cannot be described as definitive buffers or sensors. Here, we describe two highly-conserved structural motifs found in all known different families of the EF-hand proteins. The two motifs provide a supporting scaffold for the DxDxDG calcium binding loop and contribute to the hydrophobic core of the EF hand domain. The motifs allow more precise identification of calcium buffers and calcium sensors. Based on the characteristics of the two motifs, we could classify individual EF-hand domains into five groups: (1) Open static; (2) Closed static; (3) Local dynamic; (4) Dynamic; and (5) Local static EF-hand domains.
Collapse
Affiliation(s)
- Konstantin Denessiouk
- Biochemistry, Department of Biosciences, Åbo Akademi University, Turku, Finland
- * E-mail:
| | - Sergei Permyakov
- Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Russia
| | - Alexander Denesyuk
- Biochemistry, Department of Biosciences, Åbo Akademi University, Turku, Finland
| | - Eugene Permyakov
- Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Russia
| | - Mark S. Johnson
- Biochemistry, Department of Biosciences, Åbo Akademi University, Turku, Finland
| |
Collapse
|
12
|
Xue S, Qiao J, Jiang J, Hubbard K, White N, Wei L, Li S, Liu ZR, Yang JJ. Design of ProCAs (protein-based Gd(3+) MRI contrast agents) with high dose efficiency and capability for molecular imaging of cancer biomarkers. Med Res Rev 2014; 34:1070-99. [PMID: 24615853 DOI: 10.1002/med.21313] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Magnetic resonance imaging (MRI) is the leading imaging technique for disease diagnostics, providing high resolution, three-dimensional images noninvasively. MRI contrast agents are designed to improve the contrast and sensitivity of MRI. However, current clinically used MRI contrast agents have relaxivities far below the theoretical upper limit, which largely prevent advancing molecular imaging of biomarkers with desired sensitivity and specificity. This review describes current progress in the development of a new class of protein-based MRI contrast agents (ProCAs) with high relaxivity using protein design to optimize the parameters that govern relaxivity. Further, engineering with targeting moiety allows these contrast agents to be applicable for molecular imaging of prostate cancer biomarkers by MRI. The developed protein-based contrast agents also exhibit additional in vitro and in vivo advantages for molecular imaging of disease biomarkers, such as high metal-binding stability and selectivity, reduced toxicity, proper blood circulation time, and higher permeability in tumor tissue in addition to improved relaxivities.
Collapse
Affiliation(s)
- Shenghui Xue
- Departments of Chemistry and Biology, Georgia State University, Atlanta, Georgia; Center for Diagnostics & Therapeutics (CDT), Georgia State University, Atlanta, Georgia; Center for Biotechnology and Drug Design, Georgia State University, Atlanta, Georgia
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Molecular imaging of EGFR/HER2 cancer biomarkers by protein MRI contrast agents. J Biol Inorg Chem 2013; 19:259-70. [PMID: 24366655 DOI: 10.1007/s00775-013-1076-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 12/06/2013] [Indexed: 12/22/2022]
Abstract
Epidermal growth factor receptor (EGFR) and HER2 are major prognosis biomarkers and drug targets overexpressed in various types of cancer cells. There is a pressing need to develop MRI contrast agents capable of enhancing the contrast between normal tissues and tumors with high relaxivity, capable of targeting tumors, and with high intratumoral distribution and minimal toxicity. In this review, we first discuss EGFR signaling and its role in tumor progression as a major drug target. We then report our progress in the development of protein contrast agents with significant improvement of both r1 and r2 relaxivities, pharmacokinetics, in vivo retention time, and in vivo dose efficiency. Finally, we report our effort in the development of EGFR-targeted protein contrast agents with the capability to cross the endothelial boundary and with good tissue distribution across the entire tumor mass. The noninvasive capability of MRI to visualize spatially and temporally the intratumoral distribution as well as quantify the levels of EGFR and HER2 would greatly improve our ability to track changes of the biomarkers during tumor progression, monitor treatment efficacy, aid in patient selection, and further develop novel targeted therapies for clinical application.
Collapse
|
14
|
Zhou Y, Xue S, Yang JJ. Calciomics: integrative studies of Ca2+-binding proteins and their interactomes in biological systems. Metallomics 2013; 5:29-42. [PMID: 23235533 DOI: 10.1039/c2mt20009k] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Calcium ion (Ca(2+)), the fifth most common chemical element in the earth's crust, represents the most abundant mineral in the human body. By binding to a myriad of proteins distributed in different cellular organelles, Ca(2+) impacts nearly every aspect of cellular life. In prokaryotes, Ca(2+) plays an important role in bacterial movement, chemotaxis, survival reactions and sporulation. In eukaryotes, Ca(2+) has been chosen through evolution to function as a universal and versatile intracellular signal. Viruses, as obligate intracellular parasites, also develop smart strategies to manipulate the host Ca(2+) signaling machinery to benefit their own life cycles. This review focuses on recent advances in applying both bioinformatic and experimental approaches to predict and validate Ca(2+)-binding proteins and their interactomes in biological systems on a genome-wide scale (termed "calciomics"). Calmodulin is used as an example of Ca(2+)-binding protein (CaBP) to demonstrate the role of CaBPs on the regulation of biological functions. This review is anticipated to rekindle interest in investigating Ca(2+)-binding proteins and Ca(2+)-modulated functions at the systems level in the post-genomic era.
Collapse
Affiliation(s)
- Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, TX 77030, USA
| | | | | |
Collapse
|
15
|
Probing Ca2+-binding capability of viral proteins with the EF-hand motif by grafting approach. Methods Mol Biol 2013; 963:37-53. [PMID: 23296603 DOI: 10.1007/978-1-62703-230-8_3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Ca(2+) is implicated in almost every step of the life cycle of viruses, including virus entry into host cells, virus replication, virion assembly, maturation, and release. However, due to the lack of prediction algorithms and rigorous validation methods, only limited cases of viral Ca(2+)-binding sites are reported. Here, we introduce a method to predict continuous EF-hand or EF-hand-like motifs in the viral genomes based on their primary sequences. We then introduce a grafting approach, and the use of luminescence resonance energy transfer and Ca(2+) competition assay for experimental verification of predicted Ca(2+)-binding sites. This protocol will be valuable for the prediction and identification of unknown Ca(2+)-binding sites in virus.
Collapse
|
16
|
Zhao K, Wang X, Wong HC, Wohlhueter R, Kirberger MP, Chen G, Yang JJ. Predicting Ca2+ -binding sites using refined carbon clusters. Proteins 2012; 80:2666-79. [PMID: 22821762 DOI: 10.1002/prot.24149] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2012] [Revised: 06/14/2012] [Accepted: 07/11/2012] [Indexed: 12/13/2022]
Abstract
Identifying Ca(2+) -binding sites in proteins is the first step toward understanding the molecular basis of diseases related to Ca(2+) -binding proteins. Currently, these sites are identified in structures either through X-ray crystallography or NMR analysis. However, Ca(2+) -binding sites are not always visible in X-ray structures due to flexibility in the binding region or low occupancy in a Ca(2+) -binding site. Similarly, both Ca(2+) and its ligand oxygens are not directly observed in NMR structures. To improve our ability to predict Ca(2+) -binding sites in both X-ray and NMR structures, we report a new graph theory algorithm (MUG(C) ) to predict Ca(2+) -binding sites. Using carbon atoms covalently bonded to the chelating oxygen atoms, and without explicit reference to side-chain oxygen ligand co-ordinates, MUG(C) is able to achieve 94% sensitivity with 76% selectivity on a dataset of X-ray structures composed of 43 Ca(2+) -binding proteins. Additionally, prediction of Ca(2+) -binding sites in NMR structures was obtained by MUG(C) using a different set of parameters, which were determined by the analysis of both Ca(2+) -constrained and unconstrained Ca(2+) -loaded structures derived from NMR data. MUG(C) identified 20 of 21 Ca(2+) -binding sites in NMR structures inferred without the use of Ca(2+) constraints. MUG(C) predictions are also highly selective for Ca(2+) -binding sites as analyses of binding sites for Mg(2+) , Zn(2+) , and Pb(2+) were not identified as Ca(2+) -binding sites. These results indicate that the geometric arrangement of the second-shell carbon cluster is sufficient not only for accurate identification of Ca(2+) -binding sites in NMR and X-ray structures but also for selective differentiation between Ca(2+) and other relevant divalent cations.
Collapse
Affiliation(s)
- Kun Zhao
- Department of Mathematics and Statistics, Georgia State University, Atlanta, GA 30303, USA
| | | | | | | | | | | | | |
Collapse
|