1
|
Guo J, Kong L, Tian L, Han Y, Teng C, Ma H, Tao B. Molecular docking and mutation sites of CYP57A1 enzyme with Fomesafen. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 209:106328. [PMID: 40082025 DOI: 10.1016/j.pestbp.2025.106328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/08/2025] [Accepted: 02/11/2025] [Indexed: 03/16/2025]
Abstract
Fomesafen is a diphenyl ether herbicide developed by Zeneca Group PLC (UK), mainly used in soybean and peanut fields to control annual and perennial broad-leaved weeds. Fomesafen has strong persistence in the soil, slow degradation rate, and is prone to harm subsequent sensitive crops. This study utilized Autodock molecular docking technology to investigate the binding and interaction between degradation enzyme CYP57A1 and small molecules of fomesafen herbicides. The CYP57A1 gene cloned from a fomesafen-resistant fungus Fusarium verticilloids, belongs to a fragment of the P450 family, contains 587 bases, encodes 190 amino acids, and has an isoelectric point of 5.16. Visualization of the active surface of the protein receptor reveals that fomesafen is located in the cavity formed by the CYP57A1 protein and the cavity is small and tightly, the proteins are connected to small molecules through hydrogen bonds, halogen atom and π - cation interactions. Molecular modification of CYP57A1 enzyme was carried out using virtual amino acid mutation technology. Four key amino acids, LEU143, MET52, PHE176, and GLU177, were subjected to site-specific mutations. This study successfully constructed mutant engineered bacteria with stable protein expression. Mutations (1) MET52 > TRP showed a a decrease in enzyme activity, and the degradation rate of fomesafen was only 7.8 % of the wild-type. It is believed that MET52 is a key active site for the binding of CYP57A1 enzyme to small molecules of fomesafen, playing a crucial role in the degradation of fomesafen by this enzyme. This provides new insights into the impact on the degradation activity of fomesafen.
Collapse
Affiliation(s)
- Jing Guo
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China.
| | - Lingwei Kong
- College of Agriculture, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Lijuan Tian
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Yujun Han
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China.
| | - Chunhong Teng
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Hong Ma
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Bo Tao
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China.
| |
Collapse
|
2
|
Xie Y, Wen X, Zhao D, Niu C, Zhao Y, Qi H, Xi Z. Interactions between the ACT Domains and Catalytic Subunits of Acetohydroxyacid Synthases (AHASs) from Different Species. Chembiochem 2018; 19:2387-2394. [DOI: 10.1002/cbic.201800367] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/16/2018] [Indexed: 01/05/2023]
Affiliation(s)
- Yonghui Xie
- State Key Laboratory of Elemento-Organic Chemistry; Department of Chemical Biology; National Pesticide Engineering Research Center (Tianjin); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); College of Chemistry; Nankai University; Tianjin 300071 P.R. China
| | - Xin Wen
- State Key Laboratory of Elemento-Organic Chemistry; Department of Chemical Biology; National Pesticide Engineering Research Center (Tianjin); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); College of Chemistry; Nankai University; Tianjin 300071 P.R. China
| | - Dongmei Zhao
- State Key Laboratory of Elemento-Organic Chemistry; Department of Chemical Biology; National Pesticide Engineering Research Center (Tianjin); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); College of Chemistry; Nankai University; Tianjin 300071 P.R. China
| | - Congwei Niu
- State Key Laboratory of Elemento-Organic Chemistry; Department of Chemical Biology; National Pesticide Engineering Research Center (Tianjin); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); College of Chemistry; Nankai University; Tianjin 300071 P.R. China
| | - Yuefang Zhao
- State Key Laboratory of Elemento-Organic Chemistry; Department of Chemical Biology; National Pesticide Engineering Research Center (Tianjin); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); College of Chemistry; Nankai University; Tianjin 300071 P.R. China
| | - Haoman Qi
- State Key Laboratory of Elemento-Organic Chemistry; Department of Chemical Biology; National Pesticide Engineering Research Center (Tianjin); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); College of Chemistry; Nankai University; Tianjin 300071 P.R. China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry; Department of Chemical Biology; National Pesticide Engineering Research Center (Tianjin); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); College of Chemistry; Nankai University; Tianjin 300071 P.R. China
| |
Collapse
|
3
|
Qu RY, Yang JF, Devendar P, Kang WM, Liu YC, Chen Q, Niu CW, Xi Z, Yang GF. Discovery of New 2-[(4,6-Dimethoxy-1,3,5-triazin-2-yl)oxy]-6-(substituted phenoxy)benzoic Acids as Flexible Inhibitors of Arabidopsis thaliana Acetohydroxyacid Synthase and Its P197L Mutant. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:11170-11178. [PMID: 29186952 DOI: 10.1021/acs.jafc.7b05198] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In the search for new antiresistance acetohydroxyacid synthase (AHAS, EC 2.2.1.6) inhibitors to combat weed resistance associated with AHAS mutations, a series of 2-[(4,6-dimethoxy-1,3,5-triazin-2-yl)oxy]-6-(substituted phenoxy)benzoic acids 11-38 were designed and synthesized via the strategy of conformational flexibility analysis. Compounds 21, 22, 26, 33, 36, and 38 with high potency against both wild-type AtAHAS and its P197L mutant were identified as promising candidates with low resistance factors (RF, defined as the ratio between the ki values toward P197L mutant and wild-type AHAS) ranging from 0.73 to 6.32. Especially, compound 22 (RF = 0.73) was further identified as the most potent antiresistance AHAS inhibitor because of its significantly reduced resistance level compared with that of tribenuron-methyl (RF = 2650) and bispyribac (RF = 4.57). Furthermore, compounds 26, 33, 36, and 38 also displayed promising herbicidal activities against sensitive and resistant (P197L) Descurainia sophia at the dosage of 75-150 g of active ingredient (ai)/ha. Notably, compounds 33 and 38 still maintained over 60% herbicidal activity toward the resistant weed even at much lower dosages (37.5 g ai/ha). Therefore, the designed scaffold has the great potential to discover new candidate compounds for the control of weed resistance associated with AHAS mutation.
Collapse
Affiliation(s)
- Ren-Yu Qu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University (CCNU) , Wuhan 430079, PR China
| | - Jing-Fang Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University (CCNU) , Wuhan 430079, PR China
| | - Ponnam Devendar
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University (CCNU) , Wuhan 430079, PR China
| | - Wei-Ming Kang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University (CCNU) , Wuhan 430079, PR China
| | - Yu-Chao Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University (CCNU) , Wuhan 430079, PR China
| | - Qiong Chen
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University (CCNU) , Wuhan 430079, PR China
| | - Cong-Wei Niu
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University (NKU) , Tianjin 300071, PR China
| | - Zhen Xi
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University (NKU) , Tianjin 300071, PR China
- Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 30071, PR China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University (CCNU) , Wuhan 430079, PR China
- Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 30071, PR China
| |
Collapse
|
4
|
Fang J, Wu P, Yang R, Gao L, Li C, Wang D, Wu S, Liu AL, Du GH. Inhibition of acetylcholinesterase by two genistein derivatives: kinetic analysis, molecular docking and molecular dynamics simulation. Acta Pharm Sin B 2014; 4:430-7. [PMID: 26579414 PMCID: PMC4629110 DOI: 10.1016/j.apsb.2014.10.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 08/27/2014] [Accepted: 09/24/2014] [Indexed: 01/14/2023] Open
Abstract
In this study two genistein derivatives (G1 and G2) are reported as inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), and differences in the inhibition of AChE are described. Although they differ in structure by a single methyl group, the inhibitory effect of G1 (IC50=264 nmol/L) on AChE was 80 times stronger than that of G2 (IC50=21,210 nmol/L). Enzyme-kinetic analysis, molecular docking and molecular dynamics (MD) simulations were conducted to better understand the molecular basis for this difference. The results obtained by kinetic analysis demonstrated that G1 can interact with both the catalytic active site and peripheral anionic site of AChE. The predicted binding free energies of two complexes calculated by the molecular mechanics/generalized born surface area (MM/GBSA) method were consistent with the experimental data. The analysis of the individual energy terms suggested that a difference between the net electrostatic contributions (ΔEele+ΔGGB) was responsible for the binding affinities of these two inhibitors. Additionally, analysis of the molecular mechanics and MM/GBSA free energy decomposition revealed that the difference between G1 and G2 originated from interactions with Tyr124, Glu292, Val294 and Phe338 of AChE. In conclusion, the results reveal significant differences at the molecular level in the mechanism of inhibition of AChE by these structurally related compounds.
Collapse
Key Words
- ACh, acetylcholine
- AChE, acetylcholinesterase
- AChEIs, acetylcholinesterase inhibitors
- AD, Alzheimer׳s disease
- Acetylcholinesterase (AChE)
- BuChE, butyrylcholinesterase
- BuSCh, S-butyrylthiocholine chloride
- CAS, catalytic active site
- DTNB, 5,5′-dithiobis-(2-nitrobenzoic acid)
- G1, 3-(4-methoxyphenyl)-7-(2-(piperidin-1-yl)ethoxy)-4H-chromen-4-one
- G2, (S)-3-(4-methoxyphenyl)-7-(2-(2-methylpiperidin-1-yl)ethoxy)-4H-chromen-4-one
- GAFF, generalized AMBER force field
- Genistein derivatives
- Kinetics analysis
- MD, molecular dynamics
- MM/GBSA
- MM/GBSA, molecular mechanics/generalized born surface area
- Molecular docking
- Molecular dynamics simulation
- PAS, peripheral anionic site
- PDB, protein data bank
- PME, particle mesh Ewald
- RMSD, root-mean-square deviation
- S-ACh, acetylthiocholine iodide
- SASA, solvent accessible surface area
- iso-OMPA, tetraisopropyl pyrophosphoramide
- ΔEMM, gas-phase interaction energy between receptor and ligand
- ΔEele, electrostatic energy contribution
- ΔEvdw, van der Waals energy contribution
- ΔGGB, polar desolvation energy term
- ΔGSA, nonpolar desolvation energy term
- ΔGexp, experimental binding free energy
- ΔGpred, total binding free energy
- ΔS, conformational entropy contribution
Collapse
|
5
|
Lu Q, Cai Z, Fu J, Luo S, Liu C, Li X, Zhao D. Molecular docking and molecular dynamics studies on the interactions of hydroxylated polybrominated diphenyl ethers to estrogen receptor alpha. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 101:83-89. [PMID: 24507131 DOI: 10.1016/j.ecoenv.2013.12.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 12/17/2013] [Accepted: 12/20/2013] [Indexed: 06/03/2023]
Abstract
Environmental estrogens have attracted great concerns. Recent studies have indicated that some hydroxylated polybrominated diphenyl ethers (HO-PBDEs) can interact with estrogen receptor (ER), and exhibit estrogenic activity. However, interactions between HO-PBDEs and ER are not well understood. In this work, molecular docking and molecular dynamics (MD) simulations were performed to characterize interactions of two HO-PBDEs (4'-HO-BDE30 and 4'-HO-BDE121) with ERα. Surflex-Dock was employed to reveal the probable binding conformations of the compounds at the active site of ERα; MD simulation was used to determine the detailed binding process. The driving forces of the binding between HO-PBDEs and ERα were van der Waals and electrostatic interactions. The decomposition of the binding free energy indicated that the hydrogen bonds between the residues Glu353, Gly521 and ligands were crucial for anchoring the ligands into the active site of ERα and stabilizing their conformations. The results showed that different interaction modes and different specific interactions with some residues were responsible for the different estrogenic activities of the two HO-PBDEs.
Collapse
Affiliation(s)
- Qun Lu
- Huazhong University of Science and Technology Wenhua College, Wuhan 430074, China
| | - Zhengqing Cai
- Environmental Engineering Program, Department of Civil Engineering, Auburn University, Auburn, AL 36849, USA
| | - Jie Fu
- Environmental Engineering Program, Department of Civil Engineering, Auburn University, Auburn, AL 36849, USA.
| | - Siyi Luo
- School of Environmental and Municipal Engineering, Qingdao Technological University, Qingdao 266033, China
| | - Chunsheng Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiaolin Li
- Yunnan Entry-Exit Inspection and Quarantine Bureau, Kunming 650228, China
| | - Dongye Zhao
- Environmental Engineering Program, Department of Civil Engineering, Auburn University, Auburn, AL 36849, USA.
| |
Collapse
|
6
|
He Y, Niu C, Wen X, Xi Z. Molecular Drug Resistance Prediction for Acetohydroxyacid Synthase Mutants Against Chlorsulfuron Using MB-QSAR. CHINESE J CHEM 2013. [DOI: 10.1002/cjoc.201300417] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
7
|
Zhao Y, Niu C, Wen X, Xi Z. The minimum activation peptide from ilvH can activate the catalytic subunit of AHAS from different species. Chembiochem 2013; 14:746-52. [PMID: 23512804 DOI: 10.1002/cbic.201200680] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2012] [Indexed: 11/10/2022]
Abstract
Acetohydroxyacid synthases (AHASs), which catalyze the first step in the biosynthesis of branched-chain amino acids, are composed of a catalytic subunit (CSU) and a regulatory subunit (RSU). The CSU harbors the catalytic site, and the RSU is responsible for the activation and feedback regulation of the CSU. Previous results from Chipman and co-workers and our lab have shown that heterologous activation can be achieved among isozymes of Escherichia coli AHAS. It would be interesting to find the minimum peptide of ilvH (the RSU of E. coli AHAS III) that could activate other E. coli CSUs, or even those of ## species. In this paper, C-terminal, N-terminal, and C- and N-terminal truncation mutants of ilvH were constructed. The minimum peptide to activate ilvI (the CSU of E. coli AHAS III) was found to be ΔN 14-ΔC 89. Moreover, this peptide could not only activate its homologous ilvI and heterologous ilvB (CSU of E. coli AHAS I), but also heterologously activate the CSUs of AHAS from Saccharomyces cerevisiae, Arabidopsis thaliana, and Nicotiana plumbaginifolia. However, this peptide totally lost its ability for feedback regulation by valine, thus suggesting different elements for enzymatic activation and feedback regulation. Additionally, the apparent dissociation constant (Kd ) of ΔN 14-ΔC 89 when binding CSUs of different species was found to be 9.3-66.5 μM by using microscale thermophoresis. The ability of this peptide to activate different CSUs does not correlate well with its binding ability (Kd ) to these CSUs, thus implying that key interactions by specific residues is more important than binding ability in promoting enzymatic reactions. The high sequence similarity of the peptide ΔN 14-ΔC 89 to RSUs across species hints that this peptide represents the minimum activation motif in RSU and that it regulates all AHASs.
Collapse
Affiliation(s)
- Yuefang Zhao
- Department of Chemical Biology and State Key Laboratory of Elemento-organic Chemistry, Nankai University, Weijin 94, Tianjin 300071, China
| | | | | | | |
Collapse
|
8
|
He Y, Niu C, Li H, Wen X, Xi Z. Experimental and computational correlation and prediction on herbicide resistance for acetohydroxyacid synthase mutants to Bispyribac. Sci China Chem 2013. [DOI: 10.1007/s11426-013-4841-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
9
|
Zhao Y, Wen X, Niu C, Xi Z. Arginine 26 and Aspartic Acid 69 of the Regulatory Subunit are Key Residues of Subunits Interaction of Acetohydroxyacid Synthase Isozyme III fromE. coli. Chembiochem 2012; 13:2445-54. [DOI: 10.1002/cbic.201200362] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Indexed: 11/08/2022]
|