1
|
Zhao S, Song Y, Xu L, Hu H, Wang J, Huang F, Shi L. Self-Assembly Nanochaperone with Tunable Hydrophilic-Hydrophobic Surface for Controlled Protein Refolding. Macromol Biosci 2023; 23:e2300205. [PMID: 37463112 DOI: 10.1002/mabi.202300205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/20/2023]
Abstract
Nanochaperones (nChaps) have significant potential to inhibit protein aggregation and assist in protein refolding. The interaction between nChaps and proteins plays an important role in nChaps performing chaperone-like functions, but the interaction mechanism remains elusive. In this work, a series of nChaps with tunable hydrophilic-hydrophobic surfaces are prepared, and the process of nChaps-assisted denatured protein refolding is systematically explored. It is found that an appropriate hydrophilic-hydrophobic balance on the nChap surface is critical for enhancing protein renaturation. This is because only the optimal interaction between nChap and protein can simultaneously guarantee the suitable capture and sufficient release of client proteins. The findings in this work will provide an effective reference for the design of nChaps and contribute to the development of the potential of nChaps in the future.
Collapse
Affiliation(s)
- Shuyue Zhao
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yiqing Song
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Linlin Xu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Haodong Hu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Jianzu Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, 300387, P. R. China
| | - Fan Huang
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, P. R. China
| | - Linqi Shi
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
2
|
Abaskharon RM, Gai F. Meandering Down the Energy Landscape of Protein Folding: Are We There Yet? Biophys J 2017; 110:1924-32. [PMID: 27166801 DOI: 10.1016/j.bpj.2016.03.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/18/2016] [Accepted: 03/22/2016] [Indexed: 12/11/2022] Open
Abstract
As judged by a single publication metric, the activity in the protein folding field has been declining over the past 5 years, after enjoying a decade-long growth. Does this development indicate that the field is sunsetting or is this decline only temporary? Upon surveying a small territory of its landscape, we find that the protein folding field is still quite active and many important findings have emerged from recent experimental studies. However, it is also clear that only continued development of new techniques and methods, especially those enabling dissection of the fine details and features of the protein folding energy landscape, will fuel this old field to move forward.
Collapse
Affiliation(s)
- Rachel M Abaskharon
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Feng Gai
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania; The Ultrafast Optical Processes Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
3
|
Gupta M, Khatua P, Chakravarty C, Bandyopadhyay S. The sensitivity of folding free energy landscapes of trpzips to mutations in the hydrophobic core. Phys Chem Chem Phys 2017; 19:22813-22825. [DOI: 10.1039/c7cp03825a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The sensitivity of the stability of folded states and free energy landscapes to the differences in the hydrophobic content of the core residues has been studied for the set of 16-residue trpzips, namely, Trpzip4, Trpzip5 and Trpzip6.
Collapse
Affiliation(s)
- Madhulika Gupta
- Department of Chemistry
- Indian Institute of Technology-Delhi
- New Delhi 110016
- India
| | - Prabir Khatua
- Molecular Modeling Laboratory
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur 721302
- India
| | | | - Sanjoy Bandyopadhyay
- Molecular Modeling Laboratory
- Department of Chemistry
- Indian Institute of Technology
- Kharagpur 721302
- India
| |
Collapse
|
4
|
Oh KI, Smith-Dupont KB, Markiewicz BN, Gai F. Kinetics of peptide folding in lipid membranes. Biopolymers 2016; 104:281-90. [PMID: 25808575 DOI: 10.1002/bip.22640] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 02/12/2015] [Accepted: 02/14/2015] [Indexed: 12/31/2022]
Abstract
Despite our extensive understanding of water-soluble protein folding kinetics, much less is known about the folding dynamics and mechanisms of membrane proteins. However, recent studies have shown that for relatively simple systems, such as peptides that form a transmembrane α-helix, helical dimer, or helix-turn-helix, it is possible to assess the kinetics of several important steps, including peptide binding to the membrane from aqueous solution, peptide folding on the membrane surface, helix insertion into the membrane, and helix-helix association inside the membrane. Herein, we provide a brief review of these studies and also suggest new initiation and probing methods that could lead to improved temporal and structural resolution in future experiments.
Collapse
Affiliation(s)
- Kwang-Im Oh
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
| | - Kathryn B Smith-Dupont
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | - Feng Gai
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
5
|
Ding B, Hilaire MR, Gai F. Infrared and Fluorescence Assessment of Protein Dynamics: From Folding to Function. J Phys Chem B 2016; 120:5103-13. [PMID: 27183318 DOI: 10.1021/acs.jpcb.6b03199] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
While folding or performing functions, a protein can sample a rich set of conformational space. However, experimentally capturing all of the important motions with sufficient detail to allow a mechanistic description of their dynamics is nontrivial since such conformational events often occur over a wide range of time and length scales. Therefore, many methods have been employed to assess protein conformational dynamics, and depending on the nature of the conformational transition in question, some may be more advantageous than others. Herein, we describe our recent efforts, and also those of others, wherever appropriate, to use infrared- and fluorescence-based techniques to interrogate protein folding and functional dynamics. Specifically, we focus on discussing how to use extrinsic spectroscopic probes to enhance the structural resolution of these techniques and how to exploit various cross-linking strategies to acquire dynamic and mechanistic information that was previously difficult to attain.
Collapse
Affiliation(s)
- Bei Ding
- Department of Chemistry and ‡The Ultrafast Optical Processes Laboratory, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Mary Rose Hilaire
- Department of Chemistry and ‡The Ultrafast Optical Processes Laboratory, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| | - Feng Gai
- Department of Chemistry and ‡The Ultrafast Optical Processes Laboratory, University of Pennsylvania , Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
6
|
Abaskharon RM, Gai F. Direct measurement of the tryptophan-mediated photocleavage kinetics of a protein disulfide bond. Phys Chem Chem Phys 2016; 18:9602-7. [PMID: 26997094 PMCID: PMC4814302 DOI: 10.1039/c6cp00865h] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Disulfide cleavage is one of the major causes underlying ultraviolet (UV) light-induced protein damage. While previous studies have provided strong evidence to support the notion that this process is mediated by photo-induced electron transfer from the excited state of an aromatic residue (e.g., tryptophan) to the disulfide bond, many mechanistic details are still lacking. For example, we do not know how quickly this process occurs in a protein environment. Herein, we design an experiment, which uses the unfolding kinetics of a protein as an observable, to directly assess the kinetics and mechanism of photo-induced disulfide cleavage. Our results show that this disulfide bond cleavage event takes place in ∼2 μs via a mechanism involving electron transfer from the triplet state of a tryptophan (Trp) residue to the disulfide bond. Furthermore, we find that one of the photoproducts of this reaction, a Trp-SR adduct, is formed locally, thus preventing the protein from re-cross-linking. Taken together, these findings suggest that a Trp-disulfide pair could be used as a photo-trigger to initiate protein folding dynamics and control the biological activities of disulfide-containing peptides.
Collapse
Affiliation(s)
- Rachel M Abaskharon
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
7
|
Hilaire MR, Abaskharon RM, Gai F. Biomolecular Crowding Arising from Small Molecules, Molecular Constraints, Surface Packing, and Nano-Confinement. J Phys Chem Lett 2015; 6:2546-53. [PMID: 26266732 PMCID: PMC4610718 DOI: 10.1021/acs.jpclett.5b00957] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The effect of macromolecular crowding on the structure, dynamics, and reactivity of biomolecules is well established and the relevant research has been extensively reviewed. Herein, we focus our discussion on crowding effects arising from small cosolvent molecules and densely packed surface conditions. In addition, we highlight recent efforts that capitalize on the excluded volume effect for various tailored biochemical and biophysical applications. Specifically, we discuss how a targeted increase in local mass density can be exploited to gain insight into the folding dynamics of the protein of interest and how confinement via reverse micelles can be used to study a range of biophysical questions, from protein hydration dynamics to amyloid formation.
Collapse
Affiliation(s)
| | | | - Feng Gai
- To whom correspondence should be addressed; ; Phone: 215-573-6256; Fax: 215-573-2112
| |
Collapse
|
8
|
Abaskharon RM, Culik RM, Woolley GA, Gai F. Tuning the Attempt Frequency of Protein Folding Dynamics via Transition-State Rigidification: Application to Trp-Cage. J Phys Chem Lett 2015; 6:521-6. [PMID: 26120378 PMCID: PMC4479204 DOI: 10.1021/jz502654q] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 01/22/2015] [Indexed: 05/23/2023]
Abstract
The attempt frequency or prefactor (k0) of the transition-state rate equation of protein folding kinetics has been estimated to be on the order of 10(6) s(-1), which is many orders of magnitude smaller than that of chemical reactions. Herein we use the mini-protein Trp-cage to show that it is possible to significantly increase the value of k0 for a protein folding reaction by rigidifying the transition state. This is achieved by reducing the conformational flexibility of a key structural element (i.e., an α-helix) formed in the transition state via photoisomerization of an azobenzene cross-linker. We find that this strategy not only decreases the folding time of the Trp-cage peptide by more than an order of magnitude (to ∼100 ns at 25°C) but also exposes parallel folding pathways, allowing us to provide, to the best of our knowledge, the first quantitative assessment of the curvature of the transition-state free-energy surface of a protein.
Collapse
Affiliation(s)
- Rachel M. Abaskharon
- Department of Chemistry and Department
of Biochemistry & Biophysics, University of Pennsylvania,
231 South 34th Street, Philadelphia, Pennsylvania 19104, United
States
| | - Robert M. Culik
- Department of Chemistry and Department
of Biochemistry & Biophysics, University of Pennsylvania,
231 South 34th Street, Philadelphia, Pennsylvania 19104, United
States
| | - G. Andrew Woolley
- Department of Chemistry, University of
Toronto, 80 Saint George Street, Toronto, Ontario M5S 3H6,
Canada
| | - Feng Gai
- Department of Chemistry and Department
of Biochemistry & Biophysics, University of Pennsylvania,
231 South 34th Street, Philadelphia, Pennsylvania 19104, United
States
| |
Collapse
|