1
|
Liu Z, Wang S, Yang Z, Dong XH. Regioisomeric Giant Triblock Molecules: Role of the Linker. Macromol Rapid Commun 2023; 44:e2200509. [PMID: 35975733 DOI: 10.1002/marc.202200509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/23/2022] [Indexed: 01/11/2023]
Abstract
In this study, polyhedral oligomeric silsesquioxane (POSS) based giant triblock molecules with precisely defined regio-configuration are modularly prepared through highly efficient coupling reactions. The length of the linker connecting neighboring nanoparticles is elaborately designed to regulate the geometric constraints. The triblock molecules adopt a folded packing during phase separation, and the regio-configuration imparts direct influence on the self-assembly behaviors. The ortho-isomers form periodic structures with a larger domain size, larger interfacial curvature, and enhanced phase stability. The regio-effect is closely related to the length and symmetry of the linker. As the linker extends, the neighboring particles gradually decouple, and the regio-effect diminishes. The symmetry of the linker shows an even more profound impact. This work quantitatively scrutinized the role of the linker, opening an avenue for engineering the assembled structures with molecular precision.
Collapse
Affiliation(s)
- Zhongguo Liu
- South China Advanced Institute of Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
| | - Shuai Wang
- South China Advanced Institute of Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
| | - Ze Yang
- South China Advanced Institute of Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
| | - Xue-Hui Dong
- South China Advanced Institute of Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, China
- Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
2
|
Qin B, Zeng D, Gao A. Convergence effect of the Belt and Road Initiative on income disparity: evidence from China. HUMANITIES & SOCIAL SCIENCES COMMUNICATIONS 2022; 9:307. [PMID: 36118841 PMCID: PMC9466325 DOI: 10.1057/s41599-022-01315-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
The international economic effects of the Belt and Road Initiative (BRI) have received much attention, but few studies have focused on the impact of the BRI on domestic regional income disparities. Here, a theoretical framework is proposed based on the logic of public policy analysis in economic geography aiming at studying the impact of the BRI on the convergence of inter-city income disparities in China. Specifically, taking the BRI as a quasi-natural experiment, the impact of the BRI on the convergence of inter-city income disparities in 26 provinces of China is studied empirically using the difference-in-differences method. We find that the BRI has indeed contributed to the convergence of regional income disparities, and this convergence effect is continuously dynamic in its nature. The effects of trade opening and industrial structure transformation are the paths through which the BRI contributes to the convergence of income disparities. Furthermore, we find that there is significant heterogeneity in the effects of the BRI on the convergence of income disparities among cities in different provinces in China. The convergence effect of the BRI on the income disparities among cities in East China is small and insignificant, whereas it can significantly reduce the income disparities among cities in Central and West China. The research in this article has important application value for exploration of the regional income distribution effect of the BRI.
Collapse
Affiliation(s)
- Bo Qin
- School of Economics, Guangxi University, Nanning, China
| | - Dongmei Zeng
- School of Economics, Guangxi University, Nanning, China
| | - Angang Gao
- School of Economics and Management, Guangxi University of Science and Technology, Liuzhou, China
| |
Collapse
|
3
|
Liao J, Wang W, Xu X, Jian H, Yang S. Interfacial Behavior of Giant Amphiphiles Composed of Azobenzene and Polyhedral Oligomeric Silsesquioxane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:1611-1620. [PMID: 35068145 DOI: 10.1021/acs.langmuir.1c03111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Giant amphiphiles containing azobenzene and polyhedral oligomeric silsesquioxane (POSS) units are synthesized by linking 4,4'-azodianiline (ADA) and POSS derivatives by stepwise amidation and further modification. The synthesized giant amphiphiles are photoresponsive and show trans-cis isomerization under ultraviolet (UV) irradiation. These giant amphiphiles are spread on the air-water interface and compressed by the barrier without and under UV irradiation. By compression, the giant amphiphiles undergo a phase transition from gas (G), liquid expanded (LE), liquid condensed (LC), and solid (S) to a final collapse on the water surface. The giant amphiphiles are cis-isomer-rich under UV irradiation and are trans-isomer-rich without UV irradiation. The trans-isomers are straight-shaped, while the cis-isomers are bent, and hence, their phase transition behaviors on the water surface exhibit a distinct difference.
Collapse
Affiliation(s)
- Jianwen Liao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Weijie Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Xian Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Hanxin Jian
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Shuguang Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Center for Advanced Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| |
Collapse
|
4
|
Zhang W, Liu Y, Huang J, Liu T, Xu W, Cheng SZD, Dong XH. Engineering self-assembly of giant molecules in the condensed state based on molecular nanoparticles. SOFT MATTER 2019; 15:7108-7116. [PMID: 31482930 DOI: 10.1039/c9sm01502g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In biological systems, it is well-known that the activities and functions of biomacromolecules are dictated not only by their primary chemistries, but also by their secondary, tertiary, and quaternary hierarchical structures. Achieving control of similar levels in synthetic macromolecules is yet to be demonstrated. Most of the critical molecular parameters associated with molecular and hierarchical structures, such as size, composition, topology, sequence, and stereochemistry, are heterogenous, which impedes the exploration and understanding of structure formation and manipulation. Alternatively, in the past few years we have developed a unique giant molecule system based on molecular nanoparticles, in which the above-mentioned molecular parameters, as well as interactions, are precisely defined and controlled. These molecules could self-assemble into a myriad of unconventional and unique structures in the bulk, thin films, and solution. Giant molecules thus offer a robust platform to manipulate the hierarchical structures via precise and modular assemblies of building blocks in an amplified size level compared with small molecules. It has been found that they are not only scientifically intriguing, but also technologically relevant.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Polymer Science, College of Polymer Science and Polymer Engineering, University of Akron, Akron, OH 44325, USA
| | | | | | | | | | | | | |
Collapse
|
5
|
Li BY, Li YC, Lu ZY. The important role of cosolvent in the amphiphilic diblock copolymer self-assembly process. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.03.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
6
|
Qian Q, Xu J, Zhang M, He J, Ni P. Versatile Construction of Single-Tailed Giant Surfactants with Hydrophobic Poly(ε-caprolactone) Tail and Hydrophilic POSS Head. Polymers (Basel) 2019; 11:E311. [PMID: 30960295 PMCID: PMC6419185 DOI: 10.3390/polym11020311] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/08/2019] [Accepted: 02/09/2019] [Indexed: 11/26/2022] Open
Abstract
Giant surfactants refer to a new kind of amphiphile by incorporating functional molecular nanoparticles with polymer tails. As a size-amplified counterpart of small-molecule surfactants, they serve to bridge the gap between small-molecule surfactants and amphiphilic block copolymers. This work reports the design and synthesis of single-tailed giant surfactants carrying a hydrophobic poly(ε-caprolactone) (PCL) as the tail and a hydrophilic cage-like polyhedral oligomeric silsesquioxane (POSS) nanoparticle as the head. The modular synthetic strategy features an efficient "growing-from" and "click-modification" approach. Starting from a monohydroxyl and heptavinyl substituted POSS (VPOSS-OH), a PCL chain with controlled molecular weight and narrow polydispersity was first grown by the ring-opening polymerization (ROP) of ε-CL under the catalysis of stannous octoate, leading to a PCL chain end-capped with heptavinyl substituted POSS (VPOSS-PCL). To endow the POSS head with adjustable polarity and functionality, three kinds of hydrophilic groups, including hydroxyl groups, carboxylic acids, and amine groups, were installed to the periphery of POSS molecule by a high-efficiency thiol-ene "click" reaction. The compounds were fully characterized by NMR, gel permeation chromatography (GPC), MALDI-TOF mass spectrometry, and TGA analysis. In addition, the preliminary self-assembly study of these giant surfactants was also investigated by TEM and dynamic laser light scattering (DLS), which indicated that they can form spherical nanoparticles with different diameters in aqueous solution. This work affords a straightforward and versatile way for synthesizing single-tailed giant surfactants with diverse head surface functionalities.
Collapse
Affiliation(s)
- Qiangyu Qian
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, China.
| | - Jun Xu
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, China.
| | - Mingzu Zhang
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, China.
| | - Jinlin He
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, China.
| | - Peihong Ni
- College of Chemistry, Chemical Engineering and Materials Science, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Soochow University, Suzhou 215123, China.
| |
Collapse
|
7
|
Zhou S, Wang L, Yuan Z, Chen M, Zhang G, Li H. Preparation and Self-Assembly of a 2:1 Polyoxometalate-Fullerene C60
Shape Amphiphile. Eur J Inorg Chem 2018. [DOI: 10.1002/ejic.201800717] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shengju Zhou
- State Key Laboratory of Solid Lubrication & Laboratory of Clean Energy Chemistry and Materials; Lanzhou Institute of Chemical Physics; Chinese Academy of Sciences; 730000 Lanzhou China
- University of Chinese Academy of Sciences; 100049 Beijing China
| | - Lin Wang
- Analytical center of Qilu Normal University; 250100 Jinan China
| | - Zaiwu Yuan
- State Key Laboratory of Biobased Material and Green Papermaking; School of Chemistry and Pharmaceutical Engineering; Qilu University of Technology (Shandong Academy of Sciences); 250353 Jinan China
| | - Mengjun Chen
- Key Laboratory of Colloid and Interface Chemistry& Key Laboratory of Special Aggregated Materials; Ministry of education; Shandong University; 250100 Jinan China
| | - Geping Zhang
- Key Laboratory of Colloid and Interface Chemistry& Key Laboratory of Special Aggregated Materials; Ministry of education; Shandong University; 250100 Jinan China
| | - Hongguang Li
- State Key Laboratory of Solid Lubrication & Laboratory of Clean Energy Chemistry and Materials; Lanzhou Institute of Chemical Physics; Chinese Academy of Sciences; 730000 Lanzhou China
| |
Collapse
|
8
|
Lin Y, Wu Y, Wang R, Tao G, Luo PF, Lin X, Huang G, Li J, Yang HH. Two-dimensional tellurium nanosheets for photoacoustic imaging-guided photodynamic therapy. Chem Commun (Camb) 2018; 54:8579-8582. [PMID: 30019046 DOI: 10.1039/c8cc04653k] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We report the synthesis of two-dimensional Te nanosheets through a facile liquid exfoliation method. The as-synthesized Te nanosheets can produce reactive oxygen species under light irradiation and show high photoacoustic imaging performance due to their strong near-infrared absorbance, and can be engineered as a nanoplatform for simultaneous photoacoustic imaging and photodynamic therapy.
Collapse
Affiliation(s)
- Yan Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China.
| | - Ying Wu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China.
| | - Rong Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China.
| | - Guo Tao
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China.
| | - Pei-Fu Luo
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China.
| | - Xiang Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China.
| | - Guoming Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China.
| | - Juan Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China.
| | - Huang-Hao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China.
| |
Collapse
|
9
|
Liu M, Ouyang G, Niu D, Sang Y. Supramolecular gelatons: towards the design of molecular gels. Org Chem Front 2018. [DOI: 10.1039/c8qo00620b] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The concept of supramolecular gelatons for the design of gels was proposed and described.
Collapse
Affiliation(s)
- Minghua Liu
- Beijing National Laboratory for Molecular Science
- CAS Key Laboratory of Colloid
- Interface and Chemical Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Guanghui Ouyang
- Beijing National Laboratory for Molecular Science
- CAS Key Laboratory of Colloid
- Interface and Chemical Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Dian Niu
- Beijing National Laboratory for Molecular Science
- CAS Key Laboratory of Colloid
- Interface and Chemical Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
| | - Yutao Sang
- Beijing National Laboratory for Molecular Science
- CAS Key Laboratory of Colloid
- Interface and Chemical Thermodynamics
- Institute of Chemistry
- Chinese Academy of Sciences
| |
Collapse
|