1
|
Marquardt N, von der Haar F, Schaate A. Transition metal and lanthanide modified MOF-808 for barcode design. Dalton Trans 2024; 53:8608-8618. [PMID: 38691371 DOI: 10.1039/d4dt00501e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
This study explores the utilization of metal-organic frameworks (MOFs), particularly those incorporating lanthanide-based elements for their fluorescence capabilities, to create an advanced barcode system. By exploiting the modular nature of MOFs, we have developed a material capable of dynamic information encoding and robust against counterfeiting efforts. We introduce a novel barcode prototype that exhibits visible color shifts and fluorescence modulation when exposed to a specific sequence of chemical and thermal stimuli. The barcode is composed of MOF-808, which is modified with transition metals like iron or cobalt, and europium cations. These components are embedded within polyvinylidene fluoride (PVDF) to form a composite. This embedding process ensures that the MOF particles remain reactive to specific trigger molecules, enabling a distinct read-out sequence. The decoding process, involving exposure to ammonia, heating at 120 °C, and treatment with HCl, triggers observable changes in fluorescence and color, depending on the transition metal used. Our investigations with Eu,Co-MOF-808, and Eu,Fe-MOF-808 composites have resulted in the creation of a barcode prototype that demonstrates the feasibility of using europium-modified and unmodified transition metal modified MOF-808@PVDF composites for enhanced security applications.
Collapse
Affiliation(s)
- Nele Marquardt
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstr. 9, 30167, Hannover, Germany.
| | - Frederike von der Haar
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstr. 9, 30167, Hannover, Germany.
| | - Andreas Schaate
- Institute of Inorganic Chemistry, Leibniz University Hannover, Callinstr. 9, 30167, Hannover, Germany.
| |
Collapse
|
2
|
Pooja, Dwivedi Y. Comparative spectroscopic study of Tb:Ce(Sal) 3Phen complex inhibited PVA nanofibres for flexible moisture sensor. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123078. [PMID: 37418903 DOI: 10.1016/j.saa.2023.123078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/17/2023] [Accepted: 06/26/2023] [Indexed: 07/09/2023]
Abstract
In the present work, we report a systematic study on optical alteration in Tb:Ce(Sal)3Phen, Tb(Sal)3Phen complexes, and TbCl3·6H2O inhibited in polyvinyl alcohol (PVA) polymeric nanofibres. We also report the feasibility of Tb:Ce(Sal)3Phen complex dispersed electrospun nanofibres for opto-humidity sensor. Structural, morphological, and spectroscopic properties of the synthesized nanofibres were systematically compared using Fourier transform infrared spectroscopy, scanning electron microscopy, and Photoluminescence analysis. Synthesized Tb(Sal)3Phen complex inhibited in nanofibres yields characteristic bright green photoluminescence of Tb3+ under UV excitations, which is at least two manifolds enhanced on the addition of Ce3+ ions in the same complex. The presence of Ce3+ ions, the salicylate ligand, and the Tb3+ ion help to expand the absorption range (290 nm-400 nm) and, subsequently, the photoluminescence in blue and green regions. Our analysis revealed the linear enhancement of photoluminescence intensity with the addition of Ce3+ ions. Upon exposing the flexible Tb:Ce(Sal)3Phen complex dispersed nanofibres mat in different humidity environments, photoluminescence intensity shows a linear variation. The prepared nanofibres film shows good reversibility, small hysteresis, cyclic stability, and acceptable response and recovery times i.e. 35 and 45 s. The humidity sensing mechanism was proposed on the basis of infrared absorption analysis of dry and humid nanofibres.
Collapse
Affiliation(s)
- Pooja
- Department of Physics, National Institute of Technology Kurukshetra, Haryana 136119, India
| | - Y Dwivedi
- Department of Physics, National Institute of Technology Kurukshetra, Haryana 136119, India.
| |
Collapse
|
3
|
Mogharbel AT, Pashameah RA, Alluhaybi AA, Almahri A, Abumelha HM, Habeebullah TM, El-Metwaly NM. Development of a “Turn-off” fluorescent sensor for acetone from rice straw-derived carbon dots immobilized onto textile cotton mask. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Alshareef M, Snari RM, Alaysuy O, Aldawsari AM, Abumelha HM, Katouah H, El-Metwaly NM. Optical Detection of Acetone Using " Turn-Off" Fluorescent Rice Straw Based Cellulose Carbon Dots Imprinted onto Paper Dipstick for Diabetes Monitoring. ACS OMEGA 2022; 7:16766-16777. [PMID: 35601306 PMCID: PMC9118203 DOI: 10.1021/acsomega.2c01492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/26/2022] [Indexed: 05/08/2023]
Abstract
Persistent bad breath has been reported as a sign of serious diabetes health conditions. If an individual's breath has a strong odor of acetone, it may indicate high levels of ketones in the blood owing to diabetic ketoacidosis. Thus, acetone gas in the breath of patients with diabetes can be detected using the current easy-to-use fluorescent test dipstick. In another vein, rice straw waste is the most well-known solid pollutant worldwide. Thus, finding a simple technique to change rice straw into a valuable material is highly important. A straightforward and environmentally friendly approach for reprocessing rice straw as a starting material for the creation of fluorescent nitrogen-doped carbon dots (NCDs) has been established. The preparation process of NCDs was carried out via one-pot hydrothermal carbonization using NH4OH as a passivation substance. A testing strip was developed on the basis of cellulose CD nanoparticles (NPs) immobilized onto cellulose paper assay. The NCDs demonstrated a quantum yield of 23.76%. A fluorescence wavelength was detected at 443 nm upon applying an excitation wavelength of 354 nm. NCDs demonstrated remarkable selectivity for acetone gas as their fluorescence was definitely exposed to quenching by acetone as a consequence of the inner filter effect. A linear correlation was observed across the concentration range of 0.5-150 mM. To detect and measure acetone gas, the present cellulose paper strip has a "switch off" fluorescent signal. A readout limit was accomplished for an aqueous solution of acetone as low as 0.5 mM under ambient conditions. The chromogenic fluorescence of the cellulose assay responsiveness depends on the fluorescence quenching characteristic of the cellulose carbon dots in acetone. A thin fluorescent cellulose carbon dot layer was deposited onto the surface of cellulose strips by a simple impregnation process. CDs were made using NP morphology and analyzed using infrared spectroscopy and transmission electron microscopy. The carbon dot distribution on the paper strip was evaluated by scanning electron microscope and energy-dispersive X-ray analysis. The absorption and fluorescence spectral analyses were investigated. The paper sheets' mechanical qualities were also examined.
Collapse
Affiliation(s)
- Mubark Alshareef
- Department
of Chemistry, Faculty of Applied Science, Umm Al Qura University, Makkah 24230, Saudi Arabia
| | - Razan M. Snari
- Department
of Chemistry, Faculty of Applied Science, Umm Al Qura University, Makkah 24230, Saudi Arabia
| | - Omaymah Alaysuy
- Department
of Chemistry, College of Science, University
of Tabuk, 71474 Tabuk, Saudi Arabia
| | - Afrah M. Aldawsari
- Department
of Chemistry, Faculty of Applied Science, Umm Al Qura University, Makkah 24230, Saudi Arabia
- King
Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11442, Saudi Arabia
| | - Hana M. Abumelha
- Department
of Chemistry, College of Science, Princess
Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Hanadi Katouah
- Department
of Chemistry, Faculty of Applied Science, Umm Al Qura University, Makkah 24230, Saudi Arabia
| | - Nashwa M. El-Metwaly
- Department
of Chemistry, Faculty of Applied Science, Umm Al Qura University, Makkah 24230, Saudi Arabia
- Department
of Chemistry, Faculty of Science, Mansoura
University, El-Gomhoria
Street, Mansoura 35516, Egypt
- ;
| |
Collapse
|
5
|
Lei M, Jia Y, Zhang W, Xie J, Xu Z, Wang Y, Du W, Liu W. Ultrasensitive and Selective Detection of Uranium by a Luminescent Terbium-Organic Framework. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51086-51094. [PMID: 34694793 DOI: 10.1021/acsami.1c16742] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Detection and remediation of radioactive components have become the focus of worldwide research interest due to the ever-increasing generation of nuclear waste and the concerns on nuclear accidents. Among the numerous radionuclides, uranium and its isotopes receive the most attention because of their high proportion in nuclear waste and long half-life. Herein, a highly luminescent terbium-organic framework, formulated as [Tb4(C29O8H17)2(NO3)4(DMF)4(H2O)4]·4H2O·8.5DMF (YTU-100), with exceptional sensitivity and selectivity toward uranium was successfully prepared. The material exhibits fast adsorption kinetics and moderate sorption capacity. Interestingly, the luminescence intensity variation highly correlates to the amount of adsorbed uranium, which results in a quantitative, accurate, and selective uranium detection manner. The detection limits in deionized water and tap water were determined to be 1.07 and 0.75 ppb, respectively, which are lower than the US Environmental Protection Agency standard of the maximum contamination of uranium in drinking water. YTU-100 offers an alternative approach for building multifunctional MOFs used for simultaneous detection and removal of uranium from aqueous solutions.
Collapse
Affiliation(s)
- Min Lei
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Yuyu Jia
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Wei Zhang
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Jian Xie
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, China
| | - Zhijun Xu
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Yanlong Wang
- School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Ren'ai Road, Suzhou 215123, China
| | - Wei Du
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Wei Liu
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| |
Collapse
|