1
|
Lingas R, Charistos ND, Muñoz-Castro A. Charge delocalization and aromaticity of doubly reduced double-walled carbon nanohoops. Phys Chem Chem Phys 2023. [PMID: 37448229 DOI: 10.1039/d3cp01994b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
Cycloparaphenylenes (CPPs) exhibit selective host capabilities, featuring the ability to incorporate smaller CPPs to form double-walled host-guest complexes. Moreover, CPPs can also be stabilized by global aromaticity under twofold oxidation or reduction, involving electronic conjugation along with the overall structural backbone. Herein we explore the structural modifications, bonding, electron delocalization and magnetic properties of doubly reduced double-walled CPP complexes with DFT methods, in the isolated and aggregate [n + 5]CPP⊃[n]CPP2- (n = 5-8) species. Our results show that the hosts undergo structural, bonding and delocalization deformations towards quinoidal configurations and exhibit global long-ranged shielding cones similar to global aromatic free dianionic CPPs, accounting for charge delocalization on the outer nanohoops, whereas the guests preserve local aromatic benzenoid configurations, resulting in global and local aromatic circuits within the host-guest aggregate. This observation suggests that in multi-layered related species electronic delocalization will be retained at the outer structural surface. The aromaticity of the hosts is manifested in the strong upfield shifts of the guests 1H-NMR signals. Hence, CPP complexes can be extended to doubly reduced species stabilized by global host aromaticity expanding our understanding of doubled-walled nanotubes at the nanoscale regime.
Collapse
Affiliation(s)
- Rafael Lingas
- Department of Chemistry, Laboratory of Quantum and Computational Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54 124, Greece.
| | - Nickolas D Charistos
- Department of Chemistry, Laboratory of Quantum and Computational Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54 124, Greece.
| | - Alvaro Muñoz-Castro
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Bellavista 7, Santiago, 8420524, Chile.
| |
Collapse
|
2
|
Hou B, Li K, He H, Hu J, Xu Z, Xiang Q, Wang P, Chen X, Sun Z. Stable Crystalline Nanohoop Radical and Its Self-Association Promoted by van der Waals Interactions. Angew Chem Int Ed Engl 2023; 62:e202301046. [PMID: 36754831 DOI: 10.1002/anie.202301046] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/10/2023]
Abstract
A stable nanohoop radical (OR3) combining the structures of cycloparaphenylene and an olympicenyl radical is synthesized and isolated in the crystalline state. X-ray crystallographic analysis reveals that OR3 forms a unique head-to-tail dimer that further aggregates into a one-dimensional chain in the solid state. Variable-temperature NMR and concentration-dependent absorption measurements indicate that the π-dimer is not formed in solution. An energy decomposition analysis indicates that van der Waals interactions are the driving force for the self-association process, in contrast with other olympicenyl derivatives that favor π-dimerization. The physical properties in solution phase have been studied, and the stable cationic species obtained by one-electron chemical oxidation. This study offers a new molecular design to modulate the self-association of organic radicals for overcoming the spin-Peierls transition, and to prepare novel nanohoop compounds with spin-related properties.
Collapse
Affiliation(s)
- Bingxia Hou
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| | - Ke Li
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| | - Huijie He
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| | - Jinlian Hu
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| | - Zhuofan Xu
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| | - Qin Xiang
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| | - Peng Wang
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| | - Xing Chen
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| | - Zhe Sun
- Institute of Molecular Plus, Department of Chemistry and Haihe Laboratory of Sustainable Chemical Transformations, Tianjin university, 92 Weijin Road, Tianjin, 300072, China
| |
Collapse
|
3
|
Terabayashi T, Kayahara E, Zhang Y, Mizuhata Y, Tokitoh N, Nishinaga T, Kato T, Yamago S. Synthesis of Twisted [n]Cycloparaphenylene by Alkene Insertion. Angew Chem Int Ed Engl 2023; 62:e202214960. [PMID: 36349975 DOI: 10.1002/anie.202214960] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Indexed: 11/10/2022]
Abstract
Mono-alkene-inserted [n]cycloparaphenylenes 1 [(ene)-[n]CPP] with n=6, 8, and 10, mono-ortho-phenylene-inserted [6]CPP 2, and di-alkene-insertved [n]CPP 3 [(ene)2 -[n]CPP] with n=4, 6, and 8 were synthesized by fusing CPP precursors and alkene or ortho- phenylene groups through coupling reactions. Single-crystal X-ray diffraction analyses reveal that the strips formed by the π-surfaces of 1 and 2 exhibited a Möbius topology in the solid state. While the Möbius topology in the parent 1 and 2 in solution was lost due to the free rotation of the paraphenylene unit even at low temperatures, ene-[6]CPP 4 with eight 1-pyrrolyl groups preserved the Möbius topology even in solution. Despite a twist, 1 has in-plane conjugation and possesses a unique size dependence of the electronic properties: namely, the opposite size dependency of the HOMO-LUMO energy relative to conventional π-conjugated molecules.
Collapse
Affiliation(s)
| | - Eiichi Kayahara
- Institute for Chemical Research, Kyoto University, Uji, 611-0011, Japan
| | - Yichen Zhang
- Institute for Chemical Research, Kyoto University, Uji, 611-0011, Japan
| | | | - Norihiro Tokitoh
- Institute for Chemical Research, Kyoto University, Uji, 611-0011, Japan
| | - Tohru Nishinaga
- Department of Chemistry, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Tatsuhisa Kato
- Institute for Chemical Research, Kyoto University, Uji, 611-0011, Japan
| | - Shigeru Yamago
- Institute for Chemical Research, Kyoto University, Uji, 611-0011, Japan
| |
Collapse
|
4
|
Li N, Sun M. Optical Physical Mechanisms of Helicene Carbon Nanohoop with Möbius Topology. Chemphyschem 2023; 24:e202200846. [PMID: 36594674 DOI: 10.1002/cphc.202200846] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/03/2023] [Accepted: 01/03/2023] [Indexed: 01/04/2023]
Abstract
Optical and spectral properties of carbon nanohoop with Möbius topology is of great interest in nano-science and nano-technology. And it can be imagined that it has a lot of unexpected potential application prospects. However, theoretical calculations based on some figure-of-eight helicene carbon nanohoop with Möbius topology are still insufficient. Therefore, in this paper, we theoretically study the optical and spectral properties of figure-of-eight helicene carbon nanohoop with Möbius topology. Optical and spectral properties are analyzed with visualization method of transition density matrix and charge density difference, which reveal the unique characterization of carbon nanohoop with Möbius topology. Our results can not only deepen the understanding of the optical physical mechanisms of the nanorings with mobius carbons, but also provide deeper insight on optical properties and potential design on optical nanodevices.
Collapse
Affiliation(s)
- Ning Li
- School of Mathematics and Physics, University of Science and Technology Beijing, 100083, Beijing, China
| | - Mengtao Sun
- School of Mathematics and Physics, University of Science and Technology Beijing, 100083, Beijing, China
| |
Collapse
|
5
|
Malinčík J, Gaikwad S, Mora‐Fuentes JP, Boillat M, Prescimone A, Häussinger D, Campaña AG, Šolomek T. Circularly Polarized Luminescence in a Möbius Helicene Carbon Nanohoop**. Angew Chem Int Ed Engl 2022; 61:e202208591. [PMID: 35856293 PMCID: PMC9543836 DOI: 10.1002/anie.202208591] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Indexed: 11/13/2022]
Abstract
We present the first helicene carbon nanoohop that integrates a [6]helicene into [7]cycloparaphenylene. The [6]helicene endows the helicene carbon nanohoop with chiroptical properties and configurational stability typical for higher helicenes, while the radially conjugated seven para‐phenylenes largely determine the optoelectronic properties. The structure of the helicene carbon nanoohop was unambiguously characterized by NMR, MS and X‐ray analysis that revealed that it possesses a topology of a Möbius strip in the solid state and in solution. The chirality transfers from the [6]helicene to the para‐phenylenes and leads to a pronounced circular dichroism and bright circularly polarized luminescence, which is affected by the structural topology of the nanohoop.
Collapse
Affiliation(s)
- Juraj Malinčík
- Department of Chemistry University of Basel St. Johann's-Ring 19 4056 Basel Switzerland
- Prievidza Chemical Society M. Hodžu 10/16 971 01 Prievidza Slovakia
| | - Sudhakar Gaikwad
- Department of Chemistry University of Basel St. Johann's-Ring 19 4056 Basel Switzerland
| | - Juan P. Mora‐Fuentes
- Department of Organic Chemistry University of Granada Avda Fuentenueva, s/n 18 071 Granada Spain
| | - Marc‐Aurèle Boillat
- Department of Chemistry University of Basel St. Johann's-Ring 19 4056 Basel Switzerland
| | - Alessandro Prescimone
- Department of Chemistry University of Basel St. Johann's-Ring 19 4056 Basel Switzerland
| | - Daniel Häussinger
- Department of Chemistry University of Basel St. Johann's-Ring 19 4056 Basel Switzerland
| | - Araceli G. Campaña
- Department of Organic Chemistry University of Granada Avda Fuentenueva, s/n 18 071 Granada Spain
| | - Tomáš Šolomek
- Department of Chemistry University of Basel St. Johann's-Ring 19 4056 Basel Switzerland
- Department of Chemistry Biochemistry and Pharamaceutical Sciences University of Bern Freiestrasse 3 3012 Bern Switzerland
- Prievidza Chemical Society M. Hodžu 10/16 971 01 Prievidza Slovakia
| |
Collapse
|
6
|
Malinčík J, Gaikwad S, Mora-Fuentes JP, Boillat MA, Prescimone A, Häussinger D, Campaña AG, Šolomek T. Circularly Polarized Luminescence in a Möbius Helicene Carbon Nanohoop. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Juraj Malinčík
- University of Basel: Universitat Basel Department of Chemistry SWITZERLAND
| | - Sudhakar Gaikwad
- University of Basel: Universitat Basel Department of Chemistry SWITZERLAND
| | - Juan P. Mora-Fuentes
- University of Granada: Universidad de Granada Department of Organic Chemistry SPAIN
| | | | | | - Daniel Häussinger
- University of Basel: Universitat Basel Department of Chemistry SWITZERLAND
| | - Araceli G. Campaña
- University of Granada: Universidad de Granada Department of Organic Chemistry SPAIN
| | - Tomáš Šolomek
- University of Bern: Universitat Bern Department of Chemistry, Biochemistry and Pharmaceutical Sciences Freiestrasse 3 3012 Bern SWITZERLAND
| |
Collapse
|
7
|
Chen XW, Chu KS, Wei RJ, Qiu ZL, Tang C, Tan YZ. Phenylene segments of zigzag carbon nanotubes synthesized by metal-mediated dimerization. Chem Sci 2022; 13:1636-1640. [PMID: 35282620 PMCID: PMC8826628 DOI: 10.1039/d1sc05459g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/07/2022] [Indexed: 12/27/2022] Open
Abstract
Well-studied cycloparaphenylenes (CPPs) correspond to the simplest segments of armchair CNTs, whereas the corresponding macrocyclic oligophenylene strip of zigzag CNTs is still missing. Herein, we present two series of conjugated macrocycles (CM2PP and CN2PP) containing two meta-phenylene or 2,7-naphthylene units facing each other in the strip. CM2PP and CN2PP can be regarded as the shortest cyclic primitive segments of zigzag CNTs. They were synthesized by gold-mediated dimerization and unambiguously characterized. They adopted the tubular structures and can further pack into one-dimensional supramolecular nanotubes. In particular, the supramolecular nanotube of CM2P4P mimics the CNT(9, 0) structure. Structural analysis and theoretical calculation accounted for the reduced ring strain in CM2PPs and CN2PPs. CM2PPs and CN2PPs exhibited a large optical extinction coefficient and high photoluminescence quantum yield. CN2P8P can accommodate fullerene C60, forming a Saturn-like C60@CN2P8P complex, a mimic structure of zigzag CNT peapods.
Collapse
Affiliation(s)
- Xuan-Wen Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Ke-Shan Chu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Rong-Jing Wei
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Zhen-Lin Qiu
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Chun Tang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Yuan-Zhi Tan
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| |
Collapse
|
8
|
Ruffin H, Fihey A, Boitrel B, Le Gac S. Möbius Zn
II
‐Hexaphyrins Bearing a Chiral Coordinating Arm: A Chiroptical Switch Featuring P/M Twist Inversion Controlled by Achiral Effectors. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hervé Ruffin
- Univ Rennes CNRS, ISCR Institut des Sciences Chimiques de Rennes)-UMR 6226 35000 Rennes France
| | - Arnaud Fihey
- Univ Rennes CNRS, ISCR Institut des Sciences Chimiques de Rennes)-UMR 6226 35000 Rennes France
| | - Bernard Boitrel
- Univ Rennes CNRS, ISCR Institut des Sciences Chimiques de Rennes)-UMR 6226 35000 Rennes France
| | - Stéphane Le Gac
- Univ Rennes CNRS, ISCR Institut des Sciences Chimiques de Rennes)-UMR 6226 35000 Rennes France
| |
Collapse
|
9
|
Zhan L, Dai C, Zhang G, Zhu J, Zhang S, Wang H, Zeng Y, Tung C, Wu L, Cong H. A Conjugated Figure‐of‐Eight Oligoparaphenylene Nanohoop with Adaptive Cavities Derived from Cyclooctatetrathiophene Core. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202113334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Lijie Zhan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry School of Future Technology University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| | - Chenshu Dai
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Guohui Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry Department of Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Shaoguang Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education) Department of Chemistry Tsinghua University Beijing 100084 China
| | - Hua Wang
- Engineering Research Center for Nanomaterials Henan University Kaifeng 475004 China
| | - Yi Zeng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry School of Future Technology University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| | - Chen‐Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry School of Future Technology University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| | - Li‐Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry School of Future Technology University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| | - Huan Cong
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry School of Future Technology University of Chinese Academy of Sciences Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
10
|
Yao B, Liu X, Guo T, Sun H, Wang W. Molecular Möbius Strips: Twist for A Bright Future. Org Chem Front 2022. [DOI: 10.1039/d2qo00829g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Attributed to their unique structural features and associated intriguing properties, molecular Möbius strips have attracted considerable attention. However, the precise synthesis of such attractive molecules remains a great challenge. Recently,...
Collapse
|
11
|
Zhan L, Dai C, Zhang G, Zhu J, Zhang S, Wang H, Zeng Y, Tung CH, Wu LZ, Cong H. A Conjugated Figure-of-Eight Oligoparaphenylene Nanohoop with Adaptive Cavities Derived from Cyclooctatetrathiophene Core. Angew Chem Int Ed Engl 2021; 61:e202113334. [PMID: 34817926 DOI: 10.1002/anie.202113334] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/09/2021] [Indexed: 11/06/2022]
Abstract
A fully conjugated figure-of-eight nanohoop is presented with facile synthesis. The molecule's lemniscular skeleton features the combination of two strained oligoparaphenylene loops and a flexible cyclooctatetrathiophene core. Its rigid yet guest-adaptive cavities enable the formation of the peanut-like 1:2 host-guest complexes with C60 or C70 , which have been confirmed by X-ray crystallography and characterized in solution. Further computational studies suggest notable geometric variations and non-covalent interactions of the cavities upon binding with different fullerenes, as well as overall conjugation comparable to cycloparaphenylenes.
Collapse
Affiliation(s)
- Lijie Zhan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chenshu Dai
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Guohui Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jun Zhu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Shaoguang Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Hua Wang
- Engineering Research Center for Nanomaterials, Henan University, Kaifeng, 475004, China
| | - Yi Zeng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| | - Huan Cong
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, School of Future Technology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
12
|
Ruffin H, Fihey A, Boitrel B, Le Gac S. Möbius Zn II -Hexaphyrins Bearing a Chiral Coordinating Arm: A Chiroptical Switch Featuring P/M Twist Inversion Controlled by Achiral Effectors. Angew Chem Int Ed Engl 2021; 61:e202113844. [PMID: 34813138 DOI: 10.1002/anie.202113844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Indexed: 11/07/2022]
Abstract
By their conformational flexibility, Möbius aromatic hexaphyrins provide a dynamic chirality attractive to develop stimuli responsive systems such as chiroptical switches. A regular [28]hexaphyrin has been equipped with a chiral coordinating arm to achieve transfer of chirality from a fix stereogenic element to the dynamic Möbius one. The arm allows straightforward formation of labile monometallic ZnII complexes with an exogenous ligand, either a carboxylato or an amino with opposite inwards/outwards orientations relative to the Möbius ring. As a corollary, the chiral coordinating arm is constrained over the ring or laterally, inducing opposite P and M Möbius configurations with unprecedented high stereoselectivity (diast. excess greater than 95 %). By tuning the transfer of chirality, these achiral effectors generate electronic circular dichroism spectra with bisignate Cotton effect of opposite signs. Switching between distinct chiroptical states was ultimately achieved in mild conditions owing to ligand exchange, with high robustness (10 cycles).
Collapse
Affiliation(s)
- Hervé Ruffin
- Univ Rennes, CNRS, ISCR, Institut des Sciences Chimiques de Rennes)-UMR 6226, 35000, Rennes, France
| | - Arnaud Fihey
- Univ Rennes, CNRS, ISCR, Institut des Sciences Chimiques de Rennes)-UMR 6226, 35000, Rennes, France
| | - Bernard Boitrel
- Univ Rennes, CNRS, ISCR, Institut des Sciences Chimiques de Rennes)-UMR 6226, 35000, Rennes, France
| | - Stéphane Le Gac
- Univ Rennes, CNRS, ISCR, Institut des Sciences Chimiques de Rennes)-UMR 6226, 35000, Rennes, France
| |
Collapse
|
13
|
Mauksch M, Tsogoeva SB. Disclosure of Ground-State Zimmerman-Möbius Aromaticity in the Radical Anion of [6]Helicene and Evidence for 4π Periodic Aromatic Ring Currents in a Molecular "Metallic" Möbius Strip. Chemistry 2021; 27:14660-14671. [PMID: 34375466 PMCID: PMC8596793 DOI: 10.1002/chem.202102230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Indexed: 12/19/2022]
Abstract
In 1966, Zimmerman proposed a type of Möbius aromaticity that involves through-space electron delocalization; it has since been widely applied to explain reactivity in pericyclic reactions, but is considered to be limited to transition-state structures. Although the easily accessible hexahelicene radical anion has been known for more than half a century, it was overlooked that it exhibits a ground-state minimum and robust Zimmerman-Möbius aromaticity in its central noose-like opening, becoming, hence, the oldest existing Möbius aromatic system and with smallest Möbius cycle known. Despite its overall aromatic stabilization energy of 13.6 kcal mol-1 (at B3LYP/6-311+G**), the radical also features a strong, globally induced paramagnetic ring current along its outer edge. Exclusive global paramagnetic currents can also be found in other fully delocalized radical anions of 4N+2 π-electron aromatic polycyclic benzenoid hydrocarbons (PAH), thus questioning the established magnetic criterion of antiaromaticity. As an example of a PAH with nontrivial topology, we studied a novel Möbius[16]cyclacene that has a non-orientable surface manifold and a stable closed-shell singlet ground state at several density functional theory levels. Its metallic monoanion radical (0.0095 eV band gap at HSE06/6-31G* level) is also wave-function stable and displays an unusual 4π-periodic, magnetically induced ring current (reminiscent of the transformation behaviour of spinors under spatial rotation), thus indicating the existence of a new, Hückel-rule-evading type of aromaticity.
Collapse
Affiliation(s)
- Michael Mauksch
- Department of Chemistry and PharmacyInstitute of Theoretical ChemistryComputer Chemistry CenterFriedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Nägelsbachstrasse 25a91052ErlangenGermany
| | - Svetlana B. Tsogoeva
- Department of Chemistry and PharmacyOrganic Chemistry Chair I andInterdisciplinary Center for Molecular Materials (ICMM)Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)Nikolaus-Fiebinger Str. 1091058ErlangenGermany
| |
Collapse
|