1
|
Yin Q, Xiang L, Han X, Zhang Y, Lyu R, Yuan L, Chen S. The evolutionary advantage of artemisinin production by Artemisia annua. TRENDS IN PLANT SCIENCE 2025; 30:213-226. [PMID: 39362811 DOI: 10.1016/j.tplants.2024.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/27/2024] [Accepted: 09/12/2024] [Indexed: 10/05/2024]
Abstract
Artemisinin, a potent antimalarial compound, is predominantly derived from Artemisia annua. The uniqueness of artemisinin production in A. annua lies in its complex biochemical pathways and genetic composition, distinguishing it from other plant species, even within the Asteraceae family. In this review, we investigate the potential of A. annua for artemisinin production, drawing evidence from natural populations and mutants. Leveraging high-quality whole-genome sequence analyses, we offer insights into the evolution of artemisinin biosynthesis. We also highlight current understanding of the protective functions of artemisinin in A. annua in response to both biotic and abiotic stresses. In addition, we explore the mechanisms used by A. annua to mitigate the phytotoxicity generated by artemisinin catabolism.
Collapse
Affiliation(s)
- Qinggang Yin
- Artemisinin Research Center, Institute of Chinese Materia Medica, State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, China Academy of Chinese Medical Sciences, Beijing 100700, China; Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA; The Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - Li Xiang
- Artemisinin Research Center, Institute of Chinese Materia Medica, State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaoyan Han
- China National Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yujun Zhang
- Artemisinin Research Center, Institute of Chinese Materia Medica, State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ruiqing Lyu
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA; The Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - Ling Yuan
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA; The Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA.
| | - Shilin Chen
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
2
|
He J, Yao L, Pecoraro L, Liu C, Wang J, Huang L, Gao W. Cold stress regulates accumulation of flavonoids and terpenoids in plants by phytohormone, transcription process, functional enzyme, and epigenetics. Crit Rev Biotechnol 2022:1-18. [PMID: 35848841 DOI: 10.1080/07388551.2022.2053056] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Plants make different defense mechanisms in response to different environmental stresses. One common way is to produce secondary metabolites. Temperature is the main environmental factor that regulates plant secondary metabolites, especially flavonoids and terpenoids. Stress caused by temperature decreasing to 4-10 °C is conducive to the accumulation of flavonoids and terpenoids. However, the accumulation mechanism under cold stress still lacks a systematic explanation. In this review, we summarize three aspects of cold stress promoting the accumulation of flavonoids and terpenoids in plants, that is, by affecting (1) the content of endogenous plant hormones, especially jasmonic acid and abscisic acid; (2) the expression level and activity of important transcription factors, such as bHLH and MYB families. This aspect also includes post-translational modification of transcription factors caused by cold stress; (3) key enzyme genes expression and activity in the biosynthesis pathway, in addition, the rate-limiting enzyme and glycosyltransferases genes are responsive to cold stress. The systematic understanding of cold stress regulates flavonoids, and terpenoids will contribute to the future research of genetic engineering breeding, metabolism regulation, glycosyltransferases mining, and plant synthetic biology.
Collapse
Affiliation(s)
- Junping He
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, China.,School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Lu Yao
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, China.,School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Lorenzo Pecoraro
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, China.,School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Changxiao Liu
- Tianjin Pharmaceutical Research Institute, Tianjin, China
| | - Juan Wang
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, China.,School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Luqi Huang
- National Resource Center for Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenyuan Gao
- Wenzhou Safety (Emergency) Institute of Tianjin University, Wenzhou, China.,School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
3
|
Naeem M, Aftab T, Ansari AA, Khan MMA. Carrageenan oligomers and salicylic acid act in tandem to escalate artemisinin production by suppressing arsenic uptake and oxidative stress in Artemisia annua (sweet wormwood) cultivated in high arsenic soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:42706-42721. [PMID: 33818725 DOI: 10.1007/s11356-021-13241-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/26/2021] [Indexed: 06/12/2023]
Abstract
The present study is aimed to elucidate the effects of concomitant application of irradiated carrageenan (IC) oligomers and salicylic acid (SA) on Artemisia annua L. varieties, viz. "CIM-Arogya" (tolerant) and "Jeevan Raksha" (sensitive) exposed to arsenic (As) stress. Artemisia annua has been known for its sesqui-terpene molecule artemisinin, which is useful in curing malaria. The two compounds, IC and SA, have been established as effective plant growth-promoting molecules for several agricultural and horticultural crops. To test the stress tolerance providing efficacy of IC and SA, the characterization of various physiological and biochemical parameters, growth as well as yield attributes was done in the present experiment. A. annua plants were given various treatments viz. (i) Control (0) (ii) 45 mg As kg-1 of soil (iii) 80 mg L-1 IC+45 mg As kg-1 of soil (iv) 10-6 M SA+45 mg As kg-1 of soil (vi) 45 mg As kg-1 soil+80 mg L-1 IC+10-6 M SA. Plants of A. annua suffered from prominent injuries due to oxidative stress generated by As. At 90 and 120 days after planting (DAP), As toxicity was manifested in reduction of most of the studied growth parameters. However, antioxidant activities such as catalase (CAT), peroxidase (POX), superoxide dismutase (SOD), and ascorbate peroxidase (APX) were enhanced in As-stressed conditions and their activities were further enhanced in IC+SA-treated plants. Application of As significantly produced the highest artemisinin content and yield in "CIM-Arogya" over "Jeevan Raksha." Noticeably, the selected plant growth regulators (PGRs) (IC and SA) applied individually through foliage were found efficient, though, the concomitant effect of PGRs was much pronounced compared to their alone application in countering the toxicity of As. The interactive action of PGRs escalated the overall production (yield) of artemisinin (58.7% and 53.8%) in tolerant and sensitive varieties of A. annua in the presence of soil As. Conclusively, the concomitant application of IC and SA proved much effective and successful over their individual use in exploring the overall development of A. annua subjected to As stress.
Collapse
Affiliation(s)
- Muhammad Naeem
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| | - Tariq Aftab
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| | - Abid Ali Ansari
- Faculty of Science, Department of Biology, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | | |
Collapse
|
4
|
Naeem M, Sadiq Y, Jahan A, Nabi A, Aftab T, Khan MMA. Salicylic acid restrains arsenic induced oxidative burst in two varieties of Artemisia annua L. by modulating antioxidant defence system and artemisinin production. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 202:110851. [PMID: 32673966 DOI: 10.1016/j.ecoenv.2020.110851] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/05/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Arsenic is a harmful and toxic substance to the growth and development of plants. Salicylic acid (SA) acts as a signaling molecule, plays pivotal roles in the overall growth and development of plants under various environmental stresses. Artemisinin extracted from the leaves of A. annua helps in malarial treatment. The present investigation is aimed to find out the possible ameliorative role of exogenously-applied salicylic acid (SA) on two varieties of Artemisia annua L., namely 'CIM-Arogya' and 'Jeevan Raksha' under arsenic (As) stress conditions. For this, growth, physiological and biochemical characterization, and artemisinin production was assessed. The various treatments applied on the plants were Control, 10-6 M SA, 10-5 M SA, 45 mg kg-1As, 45 mg kg-1 As + 10-6 M SA, and 45 mg kg-1 As + 10-5 M SA. Arsenic at 45 mg kg-1 of soil, reducing the overall performance of both varieties at 90 and 120 DAP. However, the levels of antioxidants were enhanced in As-stressed plants, and the supplementation of SA further increased these antioxidants in SA-treated plants. It has been observed that minimum reduction in growth and yield occurs with enhanced production of artemisinin in the case of 'CIM-Arogya' compared to 'Jeevan Raksha' under As stress (45 mg kg-1 of soil). Leaf-applied SA significantly increased the content (49.0% & 43.4%) and yield (53.3% & 46.3%) of artemisinin in both tolerant and sensitive varieties as compared to their respective controls. Thus, the variety 'CIM-Arogya' showed tolerant behavior over 'Jeevan Raksha' and is much adapted to higher As stress.
Collapse
Affiliation(s)
- M Naeem
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202 002, India.
| | - Yawar Sadiq
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202 002, India
| | - Ajmat Jahan
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202 002, India
| | - Aarifa Nabi
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202 002, India
| | - Tariq Aftab
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202 002, India
| | - M Masroor A Khan
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202 002, India
| |
Collapse
|
5
|
Liu W, Wang H, Chen Y, Zhu S, Chen M, Lan X, Chen G, Liao Z. Cold stress improves the production of artemisinin depending on the increase in endogenous jasmonate. Biotechnol Appl Biochem 2016; 64:305-314. [DOI: 10.1002/bab.1493] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/04/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Wanhong Liu
- Key Laboratory of Biorheological Science and Technology (Ministry of Education) College of Bioengineering; Chongqing University; Chongqing People's Republic of China
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education); SWU-TAAHC Medicinal Plant Joint R&D Centre; School of Life Sciences; Southwest University; Chongqing People's Republic of China
- School of Chemistry and Chemical Engineering; Chongqing University of Science and Technology; Chongqing People's Republic of China
| | - Huanyan Wang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education); SWU-TAAHC Medicinal Plant Joint R&D Centre; School of Life Sciences; Southwest University; Chongqing People's Republic of China
| | - Yupei Chen
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education); SWU-TAAHC Medicinal Plant Joint R&D Centre; School of Life Sciences; Southwest University; Chongqing People's Republic of China
| | - Shunqin Zhu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education); SWU-TAAHC Medicinal Plant Joint R&D Centre; School of Life Sciences; Southwest University; Chongqing People's Republic of China
| | - Min Chen
- SWU-TAAHC Medicinal Plant Joint R&D Centre; College of Pharmaceutical Sciences; Southwest University; Chongqing People's Republic of China
| | - Xiaozhong Lan
- TAAHC-SWU Medicinal Plant Joint R&D Centre; Agricultural and Animal Husbandry College; Tibet University; Nyingchi of Tibe People's Republic of China
| | - Guoping Chen
- Key Laboratory of Biorheological Science and Technology (Ministry of Education) College of Bioengineering; Chongqing University; Chongqing People's Republic of China
| | - Zhihua Liao
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education); SWU-TAAHC Medicinal Plant Joint R&D Centre; School of Life Sciences; Southwest University; Chongqing People's Republic of China
| |
Collapse
|
6
|
Awasthi P, Mahajan V, Rather IA, Gupta AP, Rasool S, Bedi YS, Vishwakarma RA, Gandhi SG. Plant Omics: Isolation, Identification, and Expression Analysis of Cytochrome P450 Gene Sequences fromColeus forskohlii. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2015; 19:782-92. [DOI: 10.1089/omi.2015.0148] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Praveen Awasthi
- Indian Institute of Integrative Medicine (CSIR-IIIM), Council of Scientific and Industrial Research, Jammu, India
- Shri Mata Vaishno Devi University, Katra, India
| | - Vidushi Mahajan
- Indian Institute of Integrative Medicine (CSIR-IIIM), Council of Scientific and Industrial Research, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India
| | - Irshad Ahmad Rather
- Indian Institute of Integrative Medicine (CSIR-IIIM), Council of Scientific and Industrial Research, Jammu, India
| | - Ajai Prakash Gupta
- Indian Institute of Integrative Medicine (CSIR-IIIM), Council of Scientific and Industrial Research, Jammu, India
| | | | - Yashbir S. Bedi
- Indian Institute of Integrative Medicine (CSIR-IIIM), Council of Scientific and Industrial Research, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India
| | - Ram A. Vishwakarma
- Indian Institute of Integrative Medicine (CSIR-IIIM), Council of Scientific and Industrial Research, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India
| | - Sumit G. Gandhi
- Indian Institute of Integrative Medicine (CSIR-IIIM), Council of Scientific and Industrial Research, Jammu, India
- Academy of Scientific and Innovative Research (AcSIR), Anusandhan Bhawan, New Delhi, India
| |
Collapse
|
7
|
Nair P, Misra A, Singh A, Shukla AK, Gupta MM, Gupta AK, Gupta V, Khanuja SPS, Shasany AK. Differentially expressed genes during contrasting growth stages of Artemisia annua for artemisinin content. PLoS One 2013; 8:e60375. [PMID: 23573249 PMCID: PMC3616052 DOI: 10.1371/journal.pone.0060375] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 02/26/2013] [Indexed: 11/19/2022] Open
Abstract
Artemisia annua is the source of antimalarial phytomolecule, artemisinin. It is mainly produced and stored in the glandular secretory trichomes present in the leaves of the plant. Since, the artemisinin biosynthesis steps are yet to be worked out, in this investigation a microarray chip was strategized for the first time to shortlist the differentially expressing genes at a stage of plant producing highest artemisinin compared to the stage with no artemisinin. As the target of this study was to analyze differential gene expression associated with contrasting artemisinin content in planta and a genotype having zero/negligible artemisinin content was unavailable, it was decided to compare different stages of the same genotype with contrasting artemisinin content (seedling - negligible artemisinin, mature leaf - high artemisinin). The SCAR-marked artemisinin-rich (∼1.2%) Indian variety ‘CIM-Arogya’ was used in the present study to determine optimal plant stage and leaf ontogenic level for artemisinin content. A representative EST dataset from leaf trichome at the stage of maximal artemisinin biosynthesis was established. The high utility small scale custom microarray chip of A. annua containing all the significant artemisinin biosynthesis-related genes, the established EST dataset, gene sequences isolated in-house and strategically selected candidates from the A. annua Unigene database (NCBI) was employed to compare the gene expression profiles of two stages. The expression data was validated through semiquantitative and quantitative RT-PCR followed by putative annotations through bioinformatics-based approaches. Many candidates having probable role in artemisinin metabolism were identified and described with scope for further functional characterization.
Collapse
Affiliation(s)
- Priya Nair
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
| | - Amita Misra
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
| | - Alka Singh
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
| | - Ashutosh K. Shukla
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
| | - Madan M. Gupta
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
| | - Anil K. Gupta
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
| | - Vikrant Gupta
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
| | - Suman P. S. Khanuja
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
| | - Ajit K. Shasany
- CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, Uttar Pradesh, India
- * E-mail:
| |
Collapse
|
8
|
Ngo LT, Okogun JI, Folk WR. 21st century natural product research and drug development and traditional medicines. Nat Prod Rep 2013; 30:584-92. [PMID: 23450245 PMCID: PMC3652390 DOI: 10.1039/c3np20120a] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Natural products and related structures are essential sources of new pharmaceuticals, because of the immense variety of functionally relevant secondary metabolites of microbial and plant species. Furthermore, the development of powerful analytical tools based upon genomics, proteomics, metabolomics, bioinformatics and other 21st century technologies are greatly expediting identification and characterization of these natural products. Here we discuss the synergistic and reciprocal benefits of linking these 'omics technologies with robust ethnobotanical and ethnomedical studies of traditional medicines, to provide critically needed improved medicines and treatments that are inexpensive, accessible, safe and reliable. However, careless application of modern technologies can challenge traditional knowledge and biodiversity that are the foundation of traditional medicines. To address such challenges while fulfilling the need for improved (and new) medicines, we encourage the development of Regional Centres of 'omics Technologies functionally linked with Regional Centres of Genetic Resources, especially in regions of the world where use of traditional medicines is prevalent and essential for health.
Collapse
Affiliation(s)
- Linh T Ngo
- Genetics Area Program, University of Missouri, Columbia, MO 65211, USA
| | | | | |
Collapse
|
9
|
Li J, Zhao GZ, Varma A, Qin S, Xiong Z, Huang HY, Zhu WY, Zhao LX, Xu LH, Zhang S, Li WJ. An endophytic Pseudonocardia species induces the production of artemisinin in Artemisia annua. PLoS One 2012; 7:e51410. [PMID: 23251523 PMCID: PMC3520919 DOI: 10.1371/journal.pone.0051410] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 10/30/2012] [Indexed: 11/18/2022] Open
Abstract
Endophytic actinobacteria colonize internal tissues of their host plants and are considered as a rich and reliable source of diverse species and functional microorganisms. In this study, endophytic actinobacterial strain YIM 63111 was isolated from surface-sterilized tissue of the medicinal plant Artemisia annua. We identified strain YIM 63111 as a member of the genus Pseudonocardia. A. annua seedlings grown under both sterile and greenhouse conditions were inoculated with strain YIM 63111. The growth of A. annua seedlings was strongly reduced when YIM 63111 was inoculated at higher concentrations under sterile conditions. However, no growth inhibition was observed when A. annua was grown under greenhouse conditions. Using an enhanced green fluorescent protein (EGFP) expressing YIM 63111 strain, we also observed the endophytic colonization of A. annua seedling using confocal laser-scanning microscopy. The transcription levels of the key genes involved in artemisinin biosynthesis were investigated using real time RT-PCR, revealing that cytochrome P450 monooxygenase (CYP71AV1) and cytochrome P450 oxidoreductase (CPR) expression were up-regulated in A. annua upon inoculation with strain YIM 63111 under certain conditions. The up-regulation of these genes was associated with the increased accumulation of artemisinin. These results suggest that endophytic actinobacteria effectively stimulate certain plant defense responses. Our data also demonstrate the use of Pseudonocardia sp. strain YIM 63111 as a promising means to enhance artemisinin production in plants.
Collapse
Affiliation(s)
- Jie Li
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education and Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University, Kunming, China
- Key Laboratory of Marine Bioresource Sustainable Utilization CAS, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Guo-Zhen Zhao
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education and Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University, Kunming, China
| | - Ajit Varma
- Amity Institute of Microbial Technology, Amity University Uttar Pradesh, Noida, India
| | - Sheng Qin
- Key Laboratory of Biotechnology for Medicinal Plant of Jiangsu Province, Jiangsu Normal University, Xuzhou, China
| | - Zhi Xiong
- School of Forestry Resources, Southwest Forestry University, Kunming, China
| | - Hai-Yu Huang
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education and Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University, Kunming, China
| | - Wen-Yong Zhu
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education and Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University, Kunming, China
| | - Li-Xing Zhao
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education and Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University, Kunming, China
| | - Li-Hua Xu
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education and Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University, Kunming, China
| | - Si Zhang
- Key Laboratory of Marine Bioresource Sustainable Utilization CAS, RNAM Center for Marine Microbiology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
| | - Wen-Jun Li
- Key Laboratory of Microbial Diversity in Southwest China, Ministry of Education and Laboratory for Conservation and Utilization of Bio-Resources, Yunnan Institute of Microbiology, Yunnan University, Kunming, China
- Key Laboratory of Biogeography and Bioresource in Arid Land CAS, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Ürümqi, China
- * E-mail:
| |
Collapse
|
10
|
Zeng QP, Zeng LX, Lu WJ, Feng LL, Yang RY, Qiu F. Enhanced artemisinin production from engineered yeast precursors upon biotransformation. BIOCATAL BIOTRANSFOR 2012. [DOI: 10.3109/10242422.2012.661723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
11
|
Durante M, Caretto S, Quarta A, De Paolis A, Nisi R, Mita G. β-Cyclodextrins enhance artemisinin production in Artemisia annua suspension cell cultures. Appl Microbiol Biotechnol 2011; 90:1905-13. [PMID: 21468706 DOI: 10.1007/s00253-011-3232-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 02/22/2011] [Accepted: 03/02/2011] [Indexed: 10/18/2022]
Abstract
Artemisinin is a sesquiterpene antimalarial compound produced, though at low levels (0.1-1% dry weight), in Artemisia annua in which it accumulates in the glandular trichomes of the plant. Due to its antimalarial properties and short supply, efforts are being made to improve our understanding of artemisinin biosynthesis and its production. Native β-cyclodextrins, as well as the chemically modified heptakis(2,6-di-O-methyl)-β-cyclodextrin (DIMEB) and 2-hydroxypropyl-β-cyclodextrins, were added to the culture medium of A. annua suspension cultures, and their effects on artemisinin production were analysed. The effects of a joint cyclodextrin and methyl jasmonate treatment were also investigated. Fifty millimolar DIMEB, as well as a combination of 50 mM DIMEB and 100 μM methyl jasmonate, was highly effective in increasing the artemisinin levels in the culture medium. The observed artemisinin level (27 μmol g(-1) dry weight) was about 300-fold higher than that observed in untreated suspensions. The influence of β-cyclodextrins and methyl jasmonate on the expression of artemisinin biosynthetic genes was also investigated.
Collapse
Affiliation(s)
- Miriana Durante
- Istituto di Scienze delle Produzioni Alimentari, Consiglio Nazionale delle Ricerche, Via Monteroni, Lecce, Italy
| | | | | | | | | | | |
Collapse
|
12
|
Caretto S, Quarta A, Durante M, Nisi R, De Paolis A, Blando F, Mita G. Methyl jasmonate and miconazole differently affect arteminisin production and gene expression in Artemisia annua suspension cultures. PLANT BIOLOGY (STUTTGART, GERMANY) 2011; 13:51-8. [PMID: 21143725 DOI: 10.1111/j.1438-8677.2009.00306.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Artemisia annua L. is a herb traditionally used for treatment of fevers. The glandular trichomes of this plant accumulate, although at low levels, artemisinin, which is highly effective against malaria. Due to the great importance of this compound, many efforts have been made to improve knowledge on artemisinin production both in plants and in cell cultures. In this study, A. annua suspension cultures were established in order to investigate the effects of methyl jasmonate (MeJA) and miconazole on artemisinin biosynthesis. Twenty-two micro molar MeJA induced a three-fold increase of artemisinin production in around 30 min; while 200 μm miconazole induced a 2.5-fold increase of artemisinin production after 24 h, but had severe effects on cell viability. The influence of these treatments on expression of biosynthetic genes was also investigated. MeJA induced up-regulation of CYP71AV1, while miconazole induced up-regulation of CPR and DBR2.
Collapse
Affiliation(s)
- S Caretto
- Istituto di Scienze delle Produzioni Alimentari, CNR, Lecce, Italy.
| | | | | | | | | | | | | |
Collapse
|
13
|
Hooper PL, Hooper PL, Tytell M, Vígh L. Xenohormesis: health benefits from an eon of plant stress response evolution. Cell Stress Chaperones 2010; 15:761-70. [PMID: 20524162 PMCID: PMC3024065 DOI: 10.1007/s12192-010-0206-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 05/17/2010] [Accepted: 05/18/2010] [Indexed: 02/07/2023] Open
Abstract
Xenohormesis is a biological principle that explains how environmentally stressed plants produce bioactive compounds that can confer stress resistance and survival benefits to animals that consume them. Animals can piggyback off products of plants' sophisticated stress response which has evolved as a result of their stationary lifestyle. Factors eliciting the plant stress response can judiciously be employed to maximize yield of health-promoting plant compounds. The xenohormetic plant compounds can, when ingested, improve longevity and fitness by activating the animal's cellular stress response and can be applied in drug discovery, drug production, and nutritional enhancement of diet.
Collapse
Affiliation(s)
- Philip L. Hooper
- Division of Endocrinology, Metabolism, and Diabetes, University of Colorado Denver, School of Medicine, Aurora, CO USA
- P.O. Box 245, Glen Haven, CO 80532 USA
| | - Paul L. Hooper
- Department of Anthropology and Program in Interdisciplinary Biological and Biomedical Sciences, University of New Mexico, Albuquerque, NM USA
| | - Michael Tytell
- Department of Neurobiology and Anatomy, Wake Forest University School of Medicine, Winston-Salem, NC USA
| | - Lászlo Vígh
- Institute of Biochemistry, Biological Research Center of the Hungarian Academy of Sciences, Szeged, Hungary
| |
Collapse
|
14
|
A golden phoenix arising from the herbal nest — A review and reflection on the study of antimalarial drug Qinghaosu. ACTA ACUST UNITED AC 2010. [DOI: 10.1007/s11458-010-0214-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
15
|
Pu GB, Ma DM, Chen JL, Ma LQ, Wang H, Li GF, Ye HC, Liu BY. Salicylic acid activates artemisinin biosynthesis in Artemisia annua L. PLANT CELL REPORTS 2009; 28:1127-35. [PMID: 19521701 DOI: 10.1007/s00299-009-0713-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 04/20/2009] [Accepted: 05/08/2009] [Indexed: 05/19/2023]
Abstract
This paper provides evidence that salicylic acid (SA) can activate artemisinin biosynthesis in Artemisia annua L. Exogenous application of SA to A. annua leaves was followed by a burst of reactive oxygen species (ROS) and the conversion of dihydroartemisinic acid into artemisinin. In the 24 h after application, SA application led to a gradual increase in the expression of the 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) gene and a temporary peak in the expression of the amorpha-4,11-diene synthase (ADS) gene. However, the expression of the farnesyl diphosphate synthase (FDS) gene and the cytochrome P450 monooxygenase (CYP71AV1) gene showed little change. At 96 h after SA (1.0 mM) treatment, the concentration of artemisinin, artemisinic acid and dihydroartemisinic acid were 54, 127 and 72% higher than that of the control, respectively. Taken together, these results suggest that SA induces artemisinin biosynthesis in at least two ways: by increasing the conversion of dihydroartemisinic acid into artemisinin caused by the burst of ROS, and by up-regulating the expression of genes involved in artemisinin biosynthesis.
Collapse
Affiliation(s)
- Gao-Bin Pu
- Key Laboratory of Photosynthesis and Environmental Molecular Physiology, Institute of Botany, The Chinese Academy of Sciences, Nanxincun 20, Xiangshan, Haidian District, 100093, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|