1
|
Lemmens S, Van Eijgen J, Van Keer K, Jacob J, Moylett S, De Groef L, Vancraenendonck T, De Boever P, Stalmans I. Hyperspectral Imaging and the Retina: Worth the Wave? Transl Vis Sci Technol 2020; 9:9. [PMID: 32879765 PMCID: PMC7442879 DOI: 10.1167/tvst.9.9.9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 06/23/2020] [Indexed: 02/07/2023] Open
Abstract
Purpose Hyperspectral imaging is gaining attention in the biomedical field because it generates additional spectral information to study physiological and clinical processes. Several technologies have been described; however an independent, systematic literature overview is lacking, especially in the field of ophthalmology. This investigation is the first to systematically overview scientific literature specifically regarding retinal hyperspectral imaging. Methods A systematic literature review was conducted, in accordance with PRISMA Statement 2009 criteria, in four bibliographic databases: Medline, Embase, Cochrane Database of Systematic Reviews, and Web of Science. Results Fifty-six articles were found that meet the review criteria. A range of techniques was reported: Fourier analysis, liquid crystal tunable filters, tunable laser sources, dual-slit monochromators, dispersive prisms and gratings, computed tomography, fiber optics, and Fabry-Perrot cavity filter covered complementary metal oxide semiconductor. We present a narrative synthesis and summary tables of findings of the included articles, because methodologic heterogeneity and diverse research topics prevented a meta-analysis being conducted. Conclusions Application in ophthalmology is still in its infancy. Most previous experiments have been performed in the field of retinal oximetry, providing valuable information in the diagnosis and monitoring of various ocular diseases. To date, none of these applications have graduated to clinical practice owing to the lack of sufficiently large validation studies. Translational Relevance Given the promising results that smaller studies show for hyperspectral imaging (e.g., in Alzheimer's disease), advanced research in larger validation studies is warranted to determine its true clinical potential.
Collapse
Affiliation(s)
- Sophie Lemmens
- University Hospitals UZ Leuven, Department of Ophthalmology, Leuven, Belgium
- KU Leuven, Biomedical Sciences Group, Department of Neurosciences, Research Group Ophthalmology, Leuven, Belgium
- VITO (Flemish Institute for Technological Research), Health Unit, Boeretang, Belgium
| | - Jan Van Eijgen
- University Hospitals UZ Leuven, Department of Ophthalmology, Leuven, Belgium
- KU Leuven, Biomedical Sciences Group, Department of Neurosciences, Research Group Ophthalmology, Leuven, Belgium
- VITO (Flemish Institute for Technological Research), Health Unit, Boeretang, Belgium
| | - Karel Van Keer
- University Hospitals UZ Leuven, Department of Ophthalmology, Leuven, Belgium
- KU Leuven, Biomedical Sciences Group, Department of Neurosciences, Research Group Ophthalmology, Leuven, Belgium
| | - Julie Jacob
- University Hospitals UZ Leuven, Department of Ophthalmology, Leuven, Belgium
- KU Leuven, Biomedical Sciences Group, Department of Neurosciences, Research Group Ophthalmology, Leuven, Belgium
| | - Sinéad Moylett
- Department of Psychiatry, University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Cambridge, UK
| | - Lies De Groef
- Neural Circuit Development and Regeneration Research Group, Department of Biology, KU Leuven, Leuven, Belgium
| | - Toon Vancraenendonck
- VITO (Flemish Institute for Technological Research), Health Unit, Boeretang, Belgium
| | - Patrick De Boever
- VITO (Flemish Institute for Technological Research), Health Unit, Boeretang, Belgium
- Hasselt University, Centre of Environmental Sciences, Agoralaan, Belgium
| | - Ingeborg Stalmans
- University Hospitals UZ Leuven, Department of Ophthalmology, Leuven, Belgium
- KU Leuven, Biomedical Sciences Group, Department of Neurosciences, Research Group Ophthalmology, Leuven, Belgium
| |
Collapse
|
2
|
Ortega S, Halicek M, Fabelo H, Callico GM, Fei B. Hyperspectral and multispectral imaging in digital and computational pathology: a systematic review [Invited]. BIOMEDICAL OPTICS EXPRESS 2020; 11:3195-3233. [PMID: 32637250 PMCID: PMC7315999 DOI: 10.1364/boe.386338] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 03/28/2020] [Accepted: 05/08/2020] [Indexed: 05/06/2023]
Abstract
Hyperspectral imaging (HSI) and multispectral imaging (MSI) technologies have the potential to transform the fields of digital and computational pathology. Traditional digitized histopathological slides are imaged with RGB imaging. Utilizing HSI/MSI, spectral information across wavelengths within and beyond the visual range can complement spatial information for the creation of computer-aided diagnostic tools for both stained and unstained histological specimens. In this systematic review, we summarize the methods and uses of HSI/MSI for staining and color correction, immunohistochemistry, autofluorescence, and histopathological diagnostic research. Studies include hematology, breast cancer, head and neck cancer, skin cancer, and diseases of central nervous, gastrointestinal, and genitourinary systems. The use of HSI/MSI suggest an improvement in the detection of diseases and clinical practice compared with traditional RGB analysis, and brings new opportunities in histological analysis of samples, such as digital staining or alleviating the inter-laboratory variability of digitized samples. Nevertheless, the number of studies in this field is currently limited, and more research is needed to confirm the advantages of this technology compared to conventional imagery.
Collapse
Affiliation(s)
- Samuel Ortega
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
- Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria (ULPGC), Campus de Tafira, 35017, Las Palmas de Gran Canaria, Las Palmas, Spain
- These authors contributed equally to this work
| | - Martin Halicek
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
- Department of Biomedical Engineering, Georgia Inst. of Tech. and Emory University, Atlanta, GA 30322, USA
- These authors contributed equally to this work
| | - Himar Fabelo
- Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria (ULPGC), Campus de Tafira, 35017, Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Gustavo M Callico
- Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria (ULPGC), Campus de Tafira, 35017, Las Palmas de Gran Canaria, Las Palmas, Spain
| | - Baowei Fei
- Department of Bioengineering, University of Texas at Dallas, Richardson, TX 75080, USA
- University of Texas Southwestern Medical Center, Advanced Imaging Research Center, Dallas, TX 75235, USA
- University of Texas Southwestern Medical Center, Department of Radiology, Dallas, TX 75235, USA
| |
Collapse
|