1
|
Lan Y, Zeng X, Xiao J, Hu L, Tan L, Liang M, Wang X, Lu S, Long F, Peng T. New advances in quantitative proteomics research and current applications in asthma. Expert Rev Proteomics 2021; 18:1045-1057. [PMID: 34890515 DOI: 10.1080/14789450.2021.2017777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Asthma is the most common chronic respiratory disease and has been declared a global public health problem by the World Health Organization. Due to the high heterogeneity and complexity, asthma can be classified into different 'phenotypes' and it is still difficult to assess the phenotypes and stages of asthma by traditional methods. In recent years, mass spectrometry-based proteomics studies have made significant progress in sensitivity and accuracy of protein identification and quantitation, and are able to obtain differences in protein expression across samples, which provides new insights into the mechanisms and classification of asthma. AREAS COVERED In this article, we summarize research strategies in quantitative proteomics, including labeled, label-free and targeted quantification, and highlight the advantages and disadvantages of each. In addition, new applications of quantitative proteomics and the current status of research in asthma have also been discussed. In this study, online resources such as PubMed and Google Scholar were used for literature retrieval. EXPERT OPINION The application of quantitative proteomics in asthma has an important role in identifying asthma subphenotypes, revealing potential pathogenesis and therapeutic targets. But the proteomic studies on asthma are not sufficient, as most of them are in the phase of biomarker discovery.
Collapse
Affiliation(s)
- Yanting Lan
- Sino-French Hoffmann Institute of Immunology, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, College of Basic-Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Xiaoyin Zeng
- Sino-French Hoffmann Institute of Immunology, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, College of Basic-Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Jing Xiao
- Sino-French Hoffmann Institute of Immunology, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, College of Basic-Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Longbo Hu
- Sino-French Hoffmann Institute of Immunology, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, College of Basic-Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Long Tan
- Sino-French Hoffmann Institute of Immunology, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, College of Basic-Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Mengdi Liang
- Sino-French Hoffmann Institute of Immunology, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, College of Basic-Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Xufei Wang
- Sino-French Hoffmann Institute of Immunology, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, College of Basic-Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Shaohua Lu
- Sino-French Hoffmann Institute of Immunology, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, College of Basic-Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Fei Long
- Sino-French Hoffmann Institute of Immunology, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, College of Basic-Medical Science, Guangzhou Medical University, Guangzhou, China
| | - Tao Peng
- Sino-French Hoffmann Institute of Immunology, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, College of Basic-Medical Science, Guangzhou Medical University, Guangzhou, China.,Guangdong South China Vaccine Co. Ltd, Guangzhou, China
| |
Collapse
|
2
|
Luo Z, Hu H, Liu S, Zhang Z, Li Y, Zhou L. Comprehensive analysis of the translatome reveals the relationship between the translational and transcriptional control in high fat diet-induced liver steatosis. RNA Biol 2021; 18:863-874. [PMID: 32967529 PMCID: PMC8081042 DOI: 10.1080/15476286.2020.1827193] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 09/14/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022] Open
Abstract
Translational regulation plays a critical role in gene expression. However, there are few genome-wide studies on translational regulation in non-alcoholic fatty liver disease (NAFLD), which is a severe non-communicable epidemic worldwide. In this study, we performed RNC-mRNA (mRNAs bound to ribosome-nascent chain complex) sequencing and mRNA sequencing to probe the translation status of high-fat-diet (HFD) induced mouse fatty liver. Generally, in the HFD group compared to the control group, changes of translation ratios and changes in mRNA abundance had a negative correlation. The relative abundance of RNC-mRNAs and mRNAs were positively correlated, yet the former changed more slowly than the latter. However, the rate of change became more balanced when it came to the livers of mice that were fed the HFD plus lycopene, an antioxidant. This indicated relatively independent roles of translational modulation and transcriptional regulation. Furthermore, many genes were differentially regulated at the transcriptional or translational levels, suggesting a new screening strategy for functional genes. In conclusion, our analysis revealed the different and correlated role of translational control with transcriptional regulation in the HFD-induced mouse fatty liver relative to the control, which indicates critical roles of translational control for liver steatosis; thus, adding a new dimension towards a better understanding and improvement of treatment for NAFLD.
Collapse
Affiliation(s)
- Zupeng Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, P.R. China
| | - Hailong Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, P.R. China
| | - Siqi Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, P.R. China
| | - Zhiwang Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, P.R. China
| | - Yixing Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, P.R. China
| | - Lei Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Animal Science and Technology, Guangxi University, Nanning, P.R. China
| |
Collapse
|
3
|
Cao X, Guo Z, Wang H, Dong Y, Lu S, He QY, Sun X, Zhang G. Autoactivation of Translation Causes the Bloom of Prorocentrum donghaiense in Harmful Algal Blooms. J Proteome Res 2021; 20:3179-3187. [PMID: 33955761 DOI: 10.1021/acs.jproteome.1c00051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Harmful algal blooms (HABs) are symptomatic of ecosystem imbalance, leading to major worldwide marine natural disasters, and seriously threaten the human health. Some HAB algae's exceptional genome size prohibited the genomic investigations on molecular mechanisms, for example, Prorocentrum. This study performed translatome sequencing (RNC-seq) for Prorocentrum donghaiense to assemble the translatome reference sequences on appropriate cost to enable the global molecular study at translatome and proteome levels. By analyzing the translatome and proteome of P. donghaiense in phosphor-rich, phosphor-deficient, and phosphor-restored media, we found massive up-regulation of energy and material production pathways in phosphor-rich conditions that enables autoactivation of translation, which is the key to its exponential growth in HABs. To break down the autoactivation, we demonstrated that mild translation delay using very low concentrations of cycloheximide efficiently controls the blooming without harming other aquatic organisms and humans. Our result provides a novel hint for controlling HABs and demonstrated the RNC-seq as an economic strategy on investigating functions of organisms with large and unknown genomes.
Collapse
Affiliation(s)
- Xin Cao
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Zhong Guo
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Hualong Wang
- Key Laboratory of Eutrophication and Red Tide Prevention, Research Center for Harmful Algae and Marine Biology, Jinan University, Guangzhou 510632, China
| | - Yuelei Dong
- Key Laboratory of Eutrophication and Red Tide Prevention, Research Center for Harmful Algae and Marine Biology, Jinan University, Guangzhou 510632, China
| | - Songhui Lu
- Key Laboratory of Eutrophication and Red Tide Prevention, Research Center for Harmful Algae and Marine Biology, Jinan University, Guangzhou 510632, China
| | - Qing-Yu He
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Xuesong Sun
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Gong Zhang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| |
Collapse
|
4
|
Zhang G, Zhang Y, Jin J. The Ultrafast and Accurate Mapping Algorithm FANSe3: Mapping a Human Whole-Genome Sequencing Dataset Within 30 Minutes. PHENOMICS (CHAM, SWITZERLAND) 2021; 1:22-30. [PMID: 36939746 PMCID: PMC9584123 DOI: 10.1007/s43657-020-00008-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 10/28/2020] [Accepted: 11/10/2020] [Indexed: 11/26/2022]
Abstract
Aligning billions of reads generated by the next-generation sequencing (NGS) to reference sequences, termed "mapping", is the time-consuming and computationally-intensive process in most NGS applications. A Fast, accurate and robust mapping algorithm is highly needed. Therefore, we developed the FANSe3 mapping algorithm, which can map a 30 × human whole-genome sequencing (WGS) dataset within 30 min, a 50 × human whole exome sequencing (WES) dataset within 30 s, and a typical mRNA-seq dataset within seconds in a single-server node without the need for any hardware acceleration feature. Like its predecessor FANSe2, the error rate of FANSe3 can be kept as low as 10-9 in most cases, this is more robust than the Burrows-Wheeler transform-based algorithms. Error allowance hardly affected the identification of a driver somatic mutation in clinically relevant WGS data and provided robust gene expression profiles regardless of the parameter settings and sequencer used. The novel algorithm, designed for high-performance cloud-computing after infrastructures, will break the bottleneck of speed and accuracy in NGS data analysis and promote NGS applications in various fields. The FANSe3 algorithm can be downloaded from the website: http://www.chi-biotech.com/fanse3/.
Collapse
Affiliation(s)
- Gong Zhang
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632 China
- Chi-Biotech Co. Ltd., Shenzhen, 518000 China
| | | | - Jingjie Jin
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou, 510632 China
| |
Collapse
|
5
|
Ye M, Zhang J, Wei M, Liu B, Dong K. Emerging role of long noncoding RNA-encoded micropeptides in cancer. Cancer Cell Int 2020; 20:506. [PMID: 33088214 PMCID: PMC7565808 DOI: 10.1186/s12935-020-01589-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/19/2020] [Accepted: 10/01/2020] [Indexed: 12/19/2022] Open
Abstract
Increasing evidence has indicated that long noncoding RNAs (lncRNAs) play various important roles in the development of cancers. The widespread applications of ribosome profiling and ribosome nascent chain complex sequencing revealed that some short open reading frames of lncRNAs have micropeptide-coding potential. The resulting micropeptides have been shown to participate in N6-methyladenosine modification, tumor angiogenesis, cancer metabolism, and signal transduction. This review summarizes current information regarding the reported roles of lncRNA-encoded micropeptides in cancer, and explores the potential clinical value of these micropeptides in the development of anti-cancer drugs and prognostic tumor biomarkers.
Collapse
Affiliation(s)
- Mujie Ye
- Department of Pediatric Surgery, Children's Hospital of Fudan University, No.399 Wanyuan Road, Minhang District, Shanghai, 201102 China.,Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, 201102 China
| | - Jingjing Zhang
- Department of Medical Imaging, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing, 210001 China
| | - Meng Wei
- Department of Pediatric Surgery, Children's Hospital of Fudan University, No.399 Wanyuan Road, Minhang District, Shanghai, 201102 China.,Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, 201102 China
| | - Baihui Liu
- Department of Pediatric Surgery, Children's Hospital of Fudan University, No.399 Wanyuan Road, Minhang District, Shanghai, 201102 China.,Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, 201102 China
| | - Kuiran Dong
- Department of Pediatric Surgery, Children's Hospital of Fudan University, No.399 Wanyuan Road, Minhang District, Shanghai, 201102 China.,Key Laboratory of Neonatal Disease, Ministry of Health, Shanghai, 201102 China
| |
Collapse
|
6
|
Lu S, Zhang J, Lian X, Sun L, Meng K, Chen Y, Sun Z, Yin X, Li Y, Zhao J, Wang T, Zhang G, He QY. A hidden human proteome encoded by 'non-coding' genes. Nucleic Acids Res 2019; 47:8111-8125. [PMID: 31340039 PMCID: PMC6735797 DOI: 10.1093/nar/gkz646] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/07/2019] [Accepted: 07/15/2019] [Indexed: 01/27/2023] Open
Abstract
It has been a long debate whether the 98% ‘non-coding’ fraction of human genome can encode functional proteins besides short peptides. With full-length translating mRNA sequencing and ribosome profiling, we found that up to 3330 long non-coding RNAs (lncRNAs) were bound to ribosomes with active translation elongation. With shotgun proteomics, 308 lncRNA-encoded new proteins were detected. A total of 207 unique peptides of these new proteins were verified by multiple reaction monitoring (MRM) and/or parallel reaction monitoring (PRM); and 10 new proteins were verified by immunoblotting. We found that these new proteins deviated from the canonical proteins with various physical and chemical properties, and emerged mostly in primates during evolution. We further deduced the protein functions by the assays of translation efficiency, RNA folding and intracellular localizations. As the new protein UBAP1-AST6 is localized in the nucleoli and is preferentially expressed by lung cancer cell lines, we biologically verified that it has a function associated with cell proliferation. In sum, we experimentally evidenced a hidden human functional proteome encoded by purported lncRNAs, suggesting a resource for annotating new human proteins.
Collapse
Affiliation(s)
- Shaohua Lu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jing Zhang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xinlei Lian
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.,Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Li Sun
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Kun Meng
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yang Chen
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Zhenghua Sun
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Xingfeng Yin
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yaxing Li
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jing Zhao
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Tong Wang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Gong Zhang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qing-Yu He
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
7
|
Liu W, Xiang L, Zheng T, Jin J, Zhang G. TranslatomeDB: a comprehensive database and cloud-based analysis platform for translatome sequencing data. Nucleic Acids Res 2019; 46:D206-D212. [PMID: 29106630 PMCID: PMC5753366 DOI: 10.1093/nar/gkx1034] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 10/17/2017] [Indexed: 01/08/2023] Open
Abstract
Translation is a key regulatory step, linking transcriptome and proteome. Two major methods of translatome investigations are RNC-seq (sequencing of translating mRNA) and Ribo-seq (ribosome profiling). To facilitate the investigation of translation, we built a comprehensive database TranslatomeDB (http://www.translatomedb.net/) which provides collection and integrated analysis of published and user-generated translatome sequencing data. The current version includes 2453 Ribo-seq, 10 RNC-seq and their 1394 corresponding mRNA-seq datasets in 13 species. The database emphasizes the analysis functions in addition to the dataset collections. Differential gene expression (DGE) analysis can be performed between any two datasets of same species and type, both on transcriptome and translatome levels. The translation indices translation ratios, elongation velocity index and translational efficiency can be calculated to quantitatively evaluate translational initiation efficiency and elongation velocity, respectively. All datasets were analyzed using a unified, robust, accurate and experimentally-verifiable pipeline based on the FANSe3 mapping algorithm and edgeR for DGE analyzes. TranslatomeDB also allows users to upload their own datasets and utilize the identical unified pipeline to analyze their data. We believe that our TranslatomeDB is a comprehensive platform and knowledgebase on translatome and proteome research, releasing the biologists from complex searching, analyzing and comparing huge sequencing data without needing local computational power.
Collapse
Affiliation(s)
- Wanting Liu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | | | - Tingkai Zheng
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Jingjie Jin
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China
| | - Gong Zhang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, Jinan University, Guangzhou 510632, China.,Chi-Biotech Co. Ltd., Shenzhen 518000, China
| |
Collapse
|
8
|
Wang B, Wang LN, Cheng FF, Lv HT, Sun L, Wei DK, Pu Y, Wu J, Hou YY, Wen B, Xu XP, Yan WH. MiR-222-3p in Platelets Serves as a Distinguishing Marker for Early Recognition of Kawasaki Disease. Front Pediatr 2019; 7:237. [PMID: 31316949 PMCID: PMC6611386 DOI: 10.3389/fped.2019.00237] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 05/24/2019] [Indexed: 12/19/2022] Open
Abstract
Kawasaki disease (KD) is an acute vasculitis, which leads to 20% of sufferers developing coronary artery aneurysm in children if not appropriately treated. Therefore, the early diagnosis of KD is essential for alleviating the risk of developing heart disease. MicroRNAs (miRNAs) are a large class of small non-coding RNAs which post-transcriptionally regulate gene expression and have been shown to play critical roles in numerous biological processes and diseases. In this study, we used high-throughput miRNA sequencing and found dozens of miRNAs are highly expressed in platelets. By comparing the miRNA expression profile of platelets of acute KD patients and other febrile patients, miR-222-3p is validated to be significantly upregulated in platelets of acute KD patients. Furthermore, KEGG pathway analysis shows that targets of miR-222-3p are enriched in immune-related signaling pathways. Our study uncovers the potential of miR-222-3p in platelets as biomarker for early diagnosis of Kawasaki disease.
Collapse
Affiliation(s)
- Bo Wang
- Internal Medicine-Cardiovascular Department, Children's Hospital of Soochow University, Suzhou, China
| | - Li-Nong Wang
- Internal Medicine-Cardiovascular Department, Children's Hospital of Soochow University, Suzhou, China
| | - Fang-Fang Cheng
- Internal Medicine-Cardiovascular Department, Children's Hospital of Soochow University, Suzhou, China
| | - Hai-Tao Lv
- Internal Medicine-Cardiovascular Department, Children's Hospital of Soochow University, Suzhou, China
| | - Ling Sun
- Internal Medicine-Cardiovascular Department, Children's Hospital of Soochow University, Suzhou, China
| | - Dong-Kai Wei
- QIAGEN (Suzhou) Translational Medicine Co., Ltd., Suzhou, China
| | - Yu Pu
- QIAGEN (Suzhou) Translational Medicine Co., Ltd., Suzhou, China
| | - Jie Wu
- QIAGEN (Suzhou) Translational Medicine Co., Ltd., Suzhou, China
| | - Yuan-Yuan Hou
- QIAGEN (Suzhou) Translational Medicine Co., Ltd., Suzhou, China
| | - Bin Wen
- QIAGEN (Suzhou) Translational Medicine Co., Ltd., Suzhou, China
| | - Xia-Ping Xu
- QIAGEN (Suzhou) Translational Medicine Co., Ltd., Suzhou, China
| | - Wen-Hua Yan
- Internal Medicine-Cardiovascular Department, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
9
|
Jia HL, Liu CW, Zhang L, Xu WJ, Gao XJ, Bai J, Xu YF, Xu MG, Zhang G. Sets of serum exosomal microRNAs as candidate diagnostic biomarkers for Kawasaki disease. Sci Rep 2017; 7:44706. [PMID: 28317854 PMCID: PMC5357789 DOI: 10.1038/srep44706] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/13/2017] [Indexed: 12/29/2022] Open
Abstract
Although Kawasaki disease is the main cause of acquired heart disease in children, no diagnostic biomarkers are available. We aimed to identify candidate biomarkers for diagnosing Kawasaki disease using serum exosomal microRNAs (miRNAs). Using frozen serum samples from a biobank, high-throughput microarray technologies, two-stage real-time quantitative PCR, and a self-referencing strategy for data normalization, we narrowed down the list of biomarker candidates to a set of 4 miRNAs. We further validated the diagnostic capabilities of the identified miRNAs (namely, CT(miR-1246)-CT(miR-4436b-5p) and CT(miR-197-3p)-CT(miR-671-5p)) in 79 samples from two hospitals. We found that this 4-miRNA set could distinguish KD patients from other febrile patients as well as from healthy individuals in a single pass, with a minimal rate of false positives and negatives. We thus propose, for the first time, that serum exosomal miRNAs represent candidate diagnostic biomarkers for Kawasaki disease. Additionally, we describe an effective strategy of screening for biomarkers of complex diseases even when little mechanistic knowledge is available.
Collapse
Affiliation(s)
- Hong-Ling Jia
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong, China
| | - Chao-Wu Liu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070, Guangdong, China
| | - Li Zhang
- Guangzhou Women and Children’s Medical Center, Guangzhou 510120, Guangdong, China
| | - Wei-Jun Xu
- Information Center, Shenzhen Children’s Hospital, Shenzhen, 518038, Guangdong, China
| | - Xue-Juan Gao
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong, China
| | - Jun Bai
- Foshan Women and Children’s Hospital, Foshan, 528000, Guangdong, China
| | - Yu-Fen Xu
- Guangzhou Women and Children’s Medical Center, Guangzhou 510120, Guangdong, China
| | - Ming-Guo Xu
- Department of Pediatric Cardiology, Shenzhen Children’s Hospital, Shenzhen, 518038, Guangdong, China
| | - Gong Zhang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong, China
| |
Collapse
|
10
|
Yang XY, He K, Du G, Wu X, Yu G, Pan Y, Zhang G, Sun X, He QY. Integrated Translatomics with Proteomics to Identify Novel Iron-Transporting Proteins in Streptococcus pneumoniae. Front Microbiol 2016; 7:78. [PMID: 26870030 PMCID: PMC4738293 DOI: 10.3389/fmicb.2016.00078] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 01/15/2016] [Indexed: 01/05/2023] Open
Abstract
Streptococcus pneumoniae (S.pneumoniae) is a major human pathogen causing morbidity and mortality worldwide. Efficiently acquiring iron from the environment is critical for S. pneumoniae to sustain growth and cause infection. There are only three known iron-uptake systems in Streptococcal species responsible for iron acquisition from the host, including ABC transporters PiaABC, PiuABC, and PitABC. Besides, no other iron-transporting system has been suggested. In this work, we employed our newly established translating mRNA analysis integrated with proteomics to evaluate the possible existence of novel iron transporters in the bacterium. We simultaneously deleted the iron-binding protein genes of the three iron-uptake systems to construct a piaA/piuA/pitA triple mutant (Tri-Mut) of S. pneumoniae D39, in which genes and proteins related to iron transport should be regulated in response to the deletion. With ribosome associated mRNA sequencing-based translatomics focusing on translating mRNA and iTRAQ quantitative proteomics based on the covalent labeling of peptides with tags of varying mass, we indeed observed a large number of genes and proteins representing various coordinated biological pathways with significantly altered expression levels in the Tri-Mut mutant. Highlighted in this observation is the identification of several new potential iron-uptake ABC transporters participating in iron metabolism of Streptococcus. In particular, putative protein SPD_1609 in operon 804 was verified to be a novel iron-binding protein with similar function to PitA in S. pneumoniae. These data derived from the integrative translatomics and proteomics analyses provided rich information and insightful clues for further investigations on iron-transporting mechanism in bacteria and the interplay between Streptococcal iron availability and the biological metabolic pathways.
Collapse
Affiliation(s)
- Xiao-Yan Yang
- The First Affiliated Hospital of Jinan UniversityGuangzhou, China; Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan UniversityGuangzhou, China
| | - Ke He
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University Guangzhou, China
| | - Gaofei Du
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University Guangzhou, China
| | - Xiaohui Wu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University Guangzhou, China
| | - Guangchuang Yu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University Guangzhou, China
| | - Yunlong Pan
- The First Affiliated Hospital of Jinan University Guangzhou, China
| | - Gong Zhang
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University Guangzhou, China
| | - Xuesong Sun
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University Guangzhou, China
| | - Qing-Yu He
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, Institute of Life and Health Engineering, College of Life Science and Technology, Jinan University Guangzhou, China
| |
Collapse
|
11
|
Biochemical and structural characterization of a novel ubiquitin-conjugating enzyme E2 from Agrocybe aegeria reveals Ube2w family-specific properties. Sci Rep 2015; 5:16056. [PMID: 26525192 PMCID: PMC4630614 DOI: 10.1038/srep16056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 10/01/2015] [Indexed: 11/08/2022] Open
Abstract
Ubiquitination is a post-translational modification that is involved in myriad cellar regulation and disease pathways. The ubiquitin-conjugating enzyme (E2) is an important player in the ubiquitin transfer pathway. Although many E2 structures are available, not all E2 families have known structures, and three-dimensional structures from fungal organisms other than yeast are lacking. We report here the crystal structure of UbcA1, which is a novel ubiquitin-conjugating enzyme identified from the edible and medicinal mushroom Agrocybe aegerita and displays potential antitumor properties. The protein belongs to the Ube2w family and shows similar biochemical characteristics to human Ube2w, including monomer-dimer equilibrium in solution, α-NH2 ubiquitin-transfer activity and a mechanism to recognize backbone atoms of intrinsically disordered N-termini in substrates. Its structure displays a unique C-terminal conformation with an orientation of helix α3 that is completely different from the reported E2 structures but similar to a recently reported NMR ensemble of Ube2w. A mutagenesis study on this novel enzyme revealed that an intact C-terminus is significant for protein dimerization and enzymatic activity. As the first crystallized full-length protein of this family, UbcA1 may supersede the truncated X-ray structure of Ube2w (PDB entry 2A7L) as the representative structure of the Ube2w family.
Collapse
|
12
|
Proteomic Analysis of Anticancer TCMs Targeted at Mitochondria. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:539260. [PMID: 26568766 PMCID: PMC4629060 DOI: 10.1155/2015/539260] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 07/30/2015] [Indexed: 12/16/2022]
Abstract
Traditional Chinese medicine (TCM) is a rich resource of anticancer drugs. Increasing bioactive natural compounds extracted from TCMs are known to exert significant antitumor effects, but the action mechanisms of TCMs are far from clear. Proteomics, a powerful platform to comprehensively profile drug-regulated proteins, has been widely applied to the mechanistic investigation of TCMs and the identification of drug targets. In this paper, we discuss several bioactive TCM products including terpenoids, flavonoids, and glycosides that were extensively investigated by proteomics to illustrate their antitumor mechanisms in various cancers. Interestingly, many of these natural compounds isolated from TCMs mostly exert their tumor-suppressing functions by specifically targeting mitochondria in cancer cells. These TCM components induce the loss of mitochondrial membrane potential, the release of cytochrome c, and the accumulation of ROS, initiating apoptosis cascade signaling. Proteomics provides systematic views that help to understand the molecular mechanisms of the TCM in tumor cells; it bears the inherent limitations in uncovering the drug-protein interactions, however. Subcellular fractionation may be coupled with proteomics to capture and identify target proteins in mitochondria-enriched lysates. Furthermore, translating mRNA analysis, a new technology profiling the drug-regulated genes in translatome level, may be integrated into the systematic investigation, revealing global information valuable for understanding the action mechanism of TCMs.
Collapse
|