1
|
Yu H, Maoliniyazi M, Han X, Yang H, Zhang Z, Guo Y, Tang X, Li H, Cao Q, Wang S, Wang X. YUCCA3 interacts with ADF4 to regulate Arabidopsis hypocotyl elongation by organizing actin arrays. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109877. [PMID: 40220667 DOI: 10.1016/j.plaphy.2025.109877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/15/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025]
Abstract
Hypocotyl elongation is critical for plants emerging from the soil, and serves as a model for investigating cell elongation mechanism. It has been reported that auxin biosynthesis enzyme YUCCAs (YUCs) and the cytoskeleton are involved in the regulation of hypocotyl elongation in Arabidopsis. However, whether and how the cytoskeleton is involved in YUCs-regulated hypocotyl elongation is not well understood. Here, we report that YUC3 directly interacted with Actin Depolymerizing Factor 4 (ADF4) to regulate hypocotyl elongation. The yuc3 mutant seedlings produced shorter hypocotyls, while YUC3-OEs seedlings showed longer hypocotyls. Pharmacological analysis showed that microfilament but not microtubule was involved in YUC3-regulated hypocotyl elongation. Consistent with this, defects in actin arrays were observed in the yuc3 seedlings. In addition, YUC3 interacted with ADF4 but not ADF1 in vitro and in vivo. Knock out of ADF4 partially rescued the defects of yuc3 mutant hypocotyl elongation and actin arrays. In summary, our results demonstrate that YUC3 mediates the organization of actin filaments possibly by interacting with ADF4 and affecting its actin depolymerizing/severing activity in the regulation of hypocotyl elongation.
Collapse
Affiliation(s)
- Haiyang Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Mairepaiti Maoliniyazi
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xueping Han
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Hui Yang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Ziheng Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yongchao Guo
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiwen Tang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Huiru Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Qijiang Cao
- College of Life Science and Bioengineering, Shenyang University, Shenyang, 110044, China
| | - Shucai Wang
- Laboratory of Plant Molecular Genetics & Crop Gene Editing, School of Life Sciences, Linyi University, Linyi, 276000, China.
| | - Xianling Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
2
|
Zhang T, Bai L, Guo Y. SCAB1 coordinates sequential Ca 2+ and ABA signals during osmotic stress induced stomatal closure in Arabidopsis. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1-18. [PMID: 38153680 DOI: 10.1007/s11427-023-2480-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/01/2023] [Indexed: 12/29/2023]
Abstract
Hyperosmotic stress caused by drought is a detrimental threat to plant growth and agricultural productivity due to limited water availability. Stomata are gateways of transpiration and gas exchange, the swift adjustment of stomatal aperture has a strong influence on plant drought resistance. Despite intensive investigations of stomatal closure during drought stress in past decades, little is known about how sequential signals are integrated during complete processes. Here, we discovered that the rapid Ca2+ signaling and subsequent abscisic acid (ABA) signaling contribute to the kinetics of both F-actin reorganizations and stomatal closure in Arabidopsis thaliana, while STOMATAL CLOSURE-RELATED ACTIN BINDING PROTEIN1 (SCAB1) is the molecular switch for this entire process. During the early stage of osmotic shock responses, swift elevated calcium signaling promotes SCAB1 phosphorylation through calcium sensors CALCIUM DEPENDENT PROTEIN KINASE3 (CPK3) and CPK6. The phosphorylation restrained the microfilament binding affinity of SCAB1, which bring about the F-actin disassembly and stomatal closure initiation. As the osmotic stress signal continued, both the kinase activity of CPK3 and the phosphorylation level of SCAB1 attenuated significantly. We further found that ABA signaling is indispensable for these attenuations, which presumably contributed to the actin filament reassembly process as well as completion of stomatal closure. Notably, the dynamic changes of SCAB1 phosphorylation status are crucial for the kinetics of stomatal closure. Taken together, our results support a model in which SCAB1 works as a molecular switch, and directs the microfilament rearrangement through integrating the sequentially generated Ca2+ and ABA signals during osmotic stress induced stomatal closure.
Collapse
Affiliation(s)
- Tianren Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Li Bai
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yan Guo
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
3
|
Sun Y, Wang D, Shi M, Gong Y, Yin S, Jiao Y, Guo S. Genome-wide identification of actin-depolymerizing factor gene family and their expression patterns under various abiotic stresses in soybean ( Glycine max). FRONTIERS IN PLANT SCIENCE 2023; 14:1236175. [PMID: 37575943 PMCID: PMC10413265 DOI: 10.3389/fpls.2023.1236175] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/14/2023] [Indexed: 08/15/2023]
Abstract
The actin-depolymerizing factor (ADF) encoded by a family of genes is highly conserved among eukaryotes and plays critical roles in the various processes of plant growth, development, and stress responses via the remodeling of the architecture of the actin cytoskeleton. However, the ADF family and the encoded proteins in soybean (Glycine max) have not yet been systematically investigated. In this study, 18 GmADF genes (GmADF1 - GmADF18) were identified in the soybean genome and were mapped to 14 different chromosomes. Phylogenetic analysis classified them into four groups, which was confirmed by their structure and the distribution of conserved motifs in the encoded proteins. Additionally, 29 paralogous gene pairs were identified in the GmADF family, and analysis of their Ka/Ks ratios indicated their purity-based selection during the evolutionary expansion of the soybean genome. The analysis of the expression profiles based on the RNA-seq and qRT-PCR data indicated that GmADFs were diversely expressed in different organs and tissues, with most of them responding actively to drought- and salt-induced stresses, suggesting the critical roles played by them in various biological processes. Overall, our study shows that GmADF genes may play a crucial role in response to various abiotic stresses in soybean, and the highly inducible candidate genes could be used for further functional studies and molecular breeding in soybean.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shangjing Guo
- School of Agricultural Science and Engineering, Liaocheng University, Liaocheng, China
| |
Collapse
|
4
|
Peng L, He J, Yao H, Yu Q, Zhang Q, Li K, Huang Y, Chen L, Li X, Yang Y, Li X. CARK3-mediated ADF4 regulates hypocotyl elongation and soil drought stress in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 13:1065677. [PMID: 36618656 PMCID: PMC9811263 DOI: 10.3389/fpls.2022.1065677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Actin depolymerization factors (ADFs), as actin-binding proteins, act a crucial role in plant development and growth, as well as in response to abiotic and biotic stresses. Here, we found that CARK3 plays a role in regulating hypocotyl development and links a cross-talk between actin filament and drought stress through interaction with ADF4. By using bimolecular fluorescence complementation (BiFC) and GST pull-down, we confirmed that CARK3 interacts with ADF4 in vivo and in vitro. Next, we generated and characterized double mutant adf4cark3-4 and OE-ADF4:cark3-4. The hypocotyl elongation assay indicated that the cark3-4 mutant seedlings were slightly longer hypocotyls when compared with the wild type plants (WT), while CARK3 overexpressing seedlings had no difference with WT. In addition, overexpression of ADF4 significantly inhibited long hypocotyls of cark3-4 mutants. Surprisingly, we found that overexpression of ADF4 markedly enhance drought resistance in soil when compared with WT. On the other hand, drought tolerance analysis showed that overexpression of CARK3 could rescue adf4 drought susceptibility. Taken together, our results suggest that CARK3 acts as a regulator in hypocotyl elongation and drought tolerance likely via regulating ADF4 phosphorylation.
Collapse
|
5
|
Yao H, Li X, Peng L, Hua X, Zhang Q, Li K, Huang Y, Ji H, Wu X, Chen Y, Yang Y, Wang J. Binding of 14-3-3κ to ADF4 is involved in the regulation of hypocotyl growth and response to osmotic stress in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 320:111261. [PMID: 35643603 DOI: 10.1016/j.plantsci.2022.111261] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/12/2022] [Accepted: 03/19/2022] [Indexed: 06/15/2023]
Abstract
14-3-3 proteins, a family of conserved molecules in eukaryotes, target a number of protein clients through their ability to recognize well-defined phosphorylated motifs. ADF4, as one of Actin-Depolymerizing Factor (ADF) family of proteins, is involved in plant development, and response to biotic and abiotic stresses. Here, we show that 14-3-3κ specially interacted with ADF4 in vitro and in vivo. The 14-3-3κ×adf4 double mutant displayed less F-actin bundle and shorter hypocotyl compared with adf4 mutant, indicating that 14-3-3κ acts upstream of ADF4 to mediate the hypocotyl growth in the dark-grown seedlings. Under the osmotic stress, 14-3-3κ mutants displayed less survival rate than wild-type plants. The adf4 mutants exhibited markedly enhanced survival rate under osmotic treatment, while ADF4-overexpressing plants displayed the opposite results, indicating that ADF4 plays a negative role in response to osmotic stress in Arabidopsis. The interaction between ADF4 and 14-3-3κ inhibited the association of ADF4 with actin filament. Moreover, the in vitro phosphorylation assay demonstrates that the phosphorylation of ADF4 by CASEIN KINASE1-LIKE PROTEIN2 (CKL2) was enhanced by binding 14-3-3κ. Collectively, our data infer a fundamental role for the interaction between 14-3-3κ and ADF4 in regulating hypocotyl growth and osmotic tolerance of plants.
Collapse
Affiliation(s)
- Huan Yao
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xiaoyi Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Lu Peng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xinyue Hua
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Qian Zhang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Kexuan Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yaling Huang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Hao Ji
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xiaobo Wu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yihong Chen
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yi Yang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Jianmei Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
6
|
Wang L, Qiu T, Yue J, Guo N, He Y, Han X, Wang Q, Jia P, Wang H, Li M, Wang C, Wang X. Arabidopsis ADF1 is Regulated by MYB73 and is Involved in Response to Salt Stress Affecting Actin Filament Organization. PLANT & CELL PHYSIOLOGY 2021; 62:1387-1395. [PMID: 34086948 DOI: 10.1093/pcp/pcab081] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 05/26/2021] [Accepted: 06/03/2021] [Indexed: 06/12/2023]
Abstract
Actin cytoskeleton and transcription factors play key roles in plant response to salt stress; however, little is known about the link between the two regulators in response to salt stress. Actin-depolymerizing factors (ADFs) are conserved actin-binding proteins in eukaryotes. Here, we revealed that the expression level of ADF1 was induced by salt stress. The adf1 mutants showed significantly reduced survival rate, increased percentage of actin cable and reduced density of actin filaments, while ADF1 overexpression seedlings displayed the opposite results when compared with WT under the same condition. Furthermore, biochemical assays revealed that MYB73, a R2R3 MYB transcription factor, binds to the promoter of ADF1 and represses its expression via the MYB-binding site core motif ACCTAC. Taken together, our results indicate that ADF1 participates in salt stress by regulating actin organization and may also serve as a potential downstream target of MYB73, which is a negative regulator of salt stress.
Collapse
Affiliation(s)
- Lu Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang Liaoning 110866, China
- College of Horticulture, Shenyang Agricultural University, Shenyang Liaoning 110866, China
| | - Tianqi Qiu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang Liaoning 110866, China
| | - Jianru Yue
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang Liaoning 110866, China
| | - Nannan Guo
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang Liaoning 110866, China
| | - Yunjian He
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang Liaoning 110866, China
| | - Xueping Han
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang Liaoning 110866, China
| | - Qiuyang Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang Liaoning 110866, China
| | - Pengfei Jia
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang Liaoning 110866, China
| | - Hongdan Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang Liaoning 110866, China
| | - Muzi Li
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang Liaoning 110866, China
| | - Che Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang Liaoning 110866, China
| | - Xianling Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang Liaoning 110866, China
| |
Collapse
|
7
|
Hu T, Yin S, Sun J, Linghu Y, Ma J, Pan J, Wang C. Clathrin light chains regulate hypocotyl elongation by affecting the polarization of the auxin transporter PIN3 in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1922-1936. [PMID: 34478221 DOI: 10.1111/jipb.13171] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/01/2021] [Indexed: 05/26/2023]
Abstract
PIN-FORMED (PIN)-dependent directional auxin transport is crucial for plant development. Although the redistribution of auxin mediated by the polarization of PIN3 plays key roles in modulating hypocotyl cell expansion, how PIN3 becomes repolarized to the proper sites within hypocotyl cells is poorly understood. We previously generated the clathrin light chain clc2-1 clc3-1 double mutant in Arabidopsis thaliana and found that it has an elongated hypocotyl phenotype compared to the wild type. Here, we performed genetic, cell biology, and pharmacological analyses combined with live-cell imaging to elucidate the molecular mechanism underlying the role of clathrin light chains in hypocotyl elongation. Our analyses indicated that the defects of the double mutant enhanced auxin maxima in epidermal cells, thus, promoting hypocotyl elongation. PIN3 relocated to the lateral sides of hypocotyl endodermal cells in clc2-1 clc3-1 mutants to redirect auxin toward the epidermal cell layers. Moreover, the loss of function of PIN3 largely suppressed the long hypocotyl phenotype of the clc2-1 clc3-1 double mutant, as did treatment with auxin transport inhibitors. Based on these data, we propose that clathrin modulates PIN3 abundance and polarity to direct auxin flux and inhibit cell elongation in the hypocotyl, providing novel insights into the regulation of hypocotyl elongation.
Collapse
Affiliation(s)
- Tianwei Hu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Shoupeng Yin
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Jingbo Sun
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004, China
| | - Yuting Linghu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jiaqi Ma
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jianwei Pan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Chao Wang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
- College of Life Sciences, Shaoxing University, Shaoxing, 312000, China
| |
Collapse
|
8
|
Hloušková P, Černý M, Kořínková N, Luklová M, Minguet EG, Brzobohatý B, Galuszka P, Bergougnoux V. Affinity chromatography revealed 14-3-3 interactome of tomato (Solanum lycopersicum L.) during blue light-induced de-etiolation. J Proteomics 2018; 193:44-61. [PMID: 30583044 DOI: 10.1016/j.jprot.2018.12.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/09/2018] [Accepted: 12/14/2018] [Indexed: 10/27/2022]
Abstract
De-etiolation is the first developmental process under light control allowing the heterotrophic seedling to become autotrophic. The phytohormones cytokinins (CKs) largely contribute to this process. Reversible phosphorylation is a key event of cell signaling, allowing proteins to become active or generating a binding site for specific protein interaction. 14-3-3 proteins regulate a variety of plant responses. The expression, hormonal regulation, and proteomic network under the control of 14-3-3s were addressed in tomato (Solanum lycopersicum L.) during blue light-induced photomorphogenesis. Two isoforms were specifically investigated due to their high expression during tomato de-etiolation. The multidisciplinary approach demonstrated that TFT9 expression, but not TFT6, was regulated by CKs and identified cis-regulating elements required for this response. Our study revealed >130 potential TFT6/9 interactors. Their functional annotation predicted that TFTs might regulate the activity of proteins involved notably in cell wall strengthening or primary metabolism. Several potential interactors were also predicted to be CK-responsive. For the first time, the 14-3-3 interactome linked to de-etiolation was investigated and evidenced that 14-3-3s might be involved in CK signaling pathway, cell expansion inhibition and steady-state growth rate establishment, and reprograming from heterotrophy to autotrophy. BIOLOGICAL SIGNIFICANCE: Tomato (Solanum lycopersicum L.) is one of the most important vegetables consumed all around the world and represents probably the most preferred garden crop. Regulation of hypocotyl growth by light plays an important role in the early development of a seedling, and consequently the homogeneity of the culture. The present study focuses on the importance of tomato 14-3-3/TFT proteins in this process. We provide here the first report of 14-3-3 interactome in the regulation of light-induced de-etiolation and subsequent photomorphogenesis. Our data provide new insights into light-induced de-etiolation and open new horizons for dissecting the post-transcriptional regulations.
Collapse
Affiliation(s)
- Petra Hloušková
- Department of Molecular Biology, Centre of the Region Hana for Biotechnological and Agricultural Research, Palacky University in Olomouc, Šlechtitelu 27, 783 71 Olomouc, Czechia
| | - Martin Černý
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR and CEITEC-Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czechia
| | - Nikola Kořínková
- Department of Molecular Biology, Centre of the Region Hana for Biotechnological and Agricultural Research, Palacky University in Olomouc, Šlechtitelu 27, 783 71 Olomouc, Czechia
| | - Markéta Luklová
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR and CEITEC-Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czechia
| | - Eugenio Gómez Minguet
- Instituto de Biología Molecular y Celular de Plantas (UPV-Consejo Superior de Investigaciones Científicas), Universidad Politécnica de Valencia, 46022, Valencia, Spain
| | - Břetislav Brzobohatý
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR and CEITEC-Central European Institute of Technology, Mendel University in Brno, Zemědělská 1, 613 00 Brno, Czechia
| | - Petr Galuszka
- Department of Molecular Biology, Centre of the Region Hana for Biotechnological and Agricultural Research, Palacky University in Olomouc, Šlechtitelu 27, 783 71 Olomouc, Czechia
| | - Véronique Bergougnoux
- Department of Molecular Biology, Centre of the Region Hana for Biotechnological and Agricultural Research, Palacky University in Olomouc, Šlechtitelu 27, 783 71 Olomouc, Czechia.
| |
Collapse
|
9
|
Overexpression of GhPFN2 enhances protection against Verticillium dahliae invasion in cotton. SCIENCE CHINA-LIFE SCIENCES 2017; 60:861-867. [PMID: 28741129 DOI: 10.1007/s11427-017-9067-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 05/03/2017] [Indexed: 12/12/2022]
Abstract
Growing evidence indicates that actin cytoskeleton is involved in plant innate immune responses, but the functional mechanism remains largely unknown. Here, we investigated the behavior of a cotton profilin gene (GhPFN2) in response to Verticillium dahliae invasion, and evaluated its contribution to plant defense against this soil-borne fungal pathogen. GhPFN2 expression was up-regulated when cotton root was inoculated with V. dahliae, and the actin architecture was reorganized in the infected root cells, with a clear increase in the density of filamentous actin and the extent of actin bundling. Compared to the wild type, GhPFN2-overexpressing cotton plants showed enhanced protection against V. dahliae infection and the actin cytoskeleton organization in root epidermal cells was clearly altered, which phenocopied that of the wild-type (WT) root cells challenged with V. dahliae. These results provide a solid line of evidence showing that actin cytoskeleton reorganization involving GhPFN2 is important for defense against V. dahliae infection.
Collapse
|
10
|
Inada N. Plant actin depolymerizing factor: actin microfilament disassembly and more. JOURNAL OF PLANT RESEARCH 2017; 130:227-238. [PMID: 28044231 PMCID: PMC5897475 DOI: 10.1007/s10265-016-0899-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/14/2016] [Indexed: 05/19/2023]
Abstract
ACTIN DEPOLYMERIZING FACTOR (ADF) is a conserved protein among eukaryotes. The main function of ADF is the severing and depolymerizing filamentous actin (F-actin), thus regulating F-actin organization and dynamics and contributing to growth and development of the organisms. Mammalian genomes contain only a few ADF genes, whereas angiosperm plants have acquired an expanding number of ADFs, resulting in the differentiation of physiological functions. Recent studies have revealed functions of ADFs in plant growth and development, and various abiotic and biotic stress responses. In biotic stress responses, ADFs are involved in both susceptibility and resistance, depending on the pathogens. Furthermore, recent studies have highlighted a new role of ADF in the nucleus, possibly in the regulation of gene expression. In this review, I will summarize the current status of plant ADF research and discuss future research directions.
Collapse
Affiliation(s)
- Noriko Inada
- The Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma-shi, Nara, 630-0192, Japan.
| |
Collapse
|
11
|
Jin W, Zhou Q, Wei Y, Yang J, Hao F, Cheng Z, Guo H, Liu W. NtWRKY-R1, a Novel Transcription Factor, Integrates IAA and JA Signal Pathway under Topping Damage Stress in Nicotiana tabacum. FRONTIERS IN PLANT SCIENCE 2017; 8:2263. [PMID: 29379516 PMCID: PMC5775218 DOI: 10.3389/fpls.2017.02263] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 12/27/2017] [Indexed: 05/14/2023]
Abstract
Topping damage can induce the nicotine synthesis in tobacco roots, which involves the activation of JA and auxin signal transduction. It remains unclear how these hormone signals are integrated to regulate nicotine synthesis. Here we isolated a transcription factor NtWRKY-R1 from the group IIe of WRKY family and it had strong negative correlation with the expression of putrescine N-methyltransferase, the key enzyme of nicotine synthesis pathway. NtWRKY-R1 was specifically and highly expressed in tobacco roots, and it contains two transcriptional activity domains in the N- and C-terminal. The promoter region of NtWRKY-R1 contains two cis-elements which are responding to JA and auxin signals, respectively. Deletion of NtWRKY-R1 promoter showed that JA and auxin signals were subdued by NtWRKY-R1, and the expression of NtWRKY-R1 was more sensitive to auxin than JA. Furthermore, Yeast two-hybrid experiment demonstrated that NtWRKY-R1 can interact with the actin-binding protein. Our data showed that the intensity of JA and auxin signals can be translated into the expression of NtWRKY-R1, which regulates the balance of actin polymerization and depolymerization through binding actin-binding protein, and then regulates the expression of genes related to nicotine synthesis. The results will help us better understand the function of the WRKY-IIe family in the signaling crosstalk of JA and auxin under damage stress.
Collapse
|
12
|
Lv Q, Lan Y, Shi Y, Wang H, Pan X, Li P, Shi T. AtPID: a genome-scale resource for genotype-phenotype associations in Arabidopsis. Nucleic Acids Res 2016; 45:D1060-D1063. [PMID: 27899679 PMCID: PMC5210528 DOI: 10.1093/nar/gkw1029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 10/16/2016] [Accepted: 11/08/2016] [Indexed: 01/01/2023] Open
Abstract
AtPID (Arabidopsis thalianaProtein Interactome Database, available at http://www.megabionet.org/atpid) is an integrated database resource for protein interaction network and functional annotation. In the past few years, we collected 5564 mutants with significant morphological alterations and manually curated them to 167 plant ontology (PO) morphology categories. These single/multiple-gene mutants were indexed and linked to 3919 genes. After integrated these genotype–phenotype associations with the comprehensive protein interaction network in AtPID, we developed a Naïve Bayes method and predicted 4457 novel high confidence gene-PO pairs with 1369 genes as the complement. Along with the accumulated novel data for protein interaction and functional annotation, and the updated visualization toolkits, we present a genome-scale resource for genotype–phenotype associations for Arabidopsis in AtPID 5.0. In our updated website, all the new genotype–phenotype associations from mutants, protein network, and the protein annotation information can be vividly displayed in a comprehensive network view, which will greatly enhance plant protein function and genotype–phenotype association studies in a systematical way.
Collapse
Affiliation(s)
- Qi Lv
- Center for Bioinformatics and Computational Biology, and the Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China.,School of Finance and Statistics, East China Normal University, Shanghai 200241, China
| | - Yiheng Lan
- Center for Bioinformatics and Computational Biology, and the Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yan Shi
- Center for Bioinformatics and Computational Biology, and the Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Huan Wang
- Center for Bioinformatics and Computational Biology, and the Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xia Pan
- Center for Bioinformatics and Computational Biology, and the Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Peng Li
- Center for Bioinformatics and Computational Biology, and the Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Tieliu Shi
- Center for Bioinformatics and Computational Biology, and the Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
13
|
Takáč T, Bekešová S, Šamaj J. Actin depolymerization-induced changes in proteome of Arabidopsis roots. J Proteomics 2016; 153:89-99. [PMID: 27321584 DOI: 10.1016/j.jprot.2016.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/27/2016] [Accepted: 06/11/2016] [Indexed: 10/25/2022]
Abstract
Actin cytoskeleton is a vital cellular structure primarily known for controlling cell integrity, division and expansion. Here we present a proteomic dissection of Arabidopsis roots treated by actin depolymerizing agent latrunculin B. Pharmacological disintegration of the actin cytoskeleton by latrunculin B caused downregulation of several proteins involved in the actin organization and dynamics. Moreover, this approach helped to identify new protein candidates involved in gene transcription, due to the altered abundance of proteins involved in mRNA nuclear export. Finally, latrunculin B negatively affected the abundance of abscisic acid (ABA) responsive proteins. SIGNIFICANCE This article substantially contributes to the current knowledge about the importance of actin organization and dynamics in proteome remodelling. We employed gel based and gel free proteomic analyses and identified several new protein candidates and protein networks linking actin dynamics to the gene transcription and to the ABA response in Arabidopsis.
Collapse
Affiliation(s)
- Tomáš Takáč
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Slávka Bekešová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Jozef Šamaj
- Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
14
|
Zhao S, Jiang Y, Zhao Y, Huang S, Yuan M, Zhao Y, Guo Y. CASEIN KINASE1-LIKE PROTEIN2 Regulates Actin Filament Stability and Stomatal Closure via Phosphorylation of Actin Depolymerizing Factor. THE PLANT CELL 2016; 28:1422-39. [PMID: 27268429 PMCID: PMC4944410 DOI: 10.1105/tpc.16.00078] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 06/06/2016] [Indexed: 05/03/2023]
Abstract
The opening and closing of stomata are crucial for plant photosynthesis and transpiration. Actin filaments undergo dynamic reorganization during stomatal closure, but the underlying mechanism for this cytoskeletal reorganization remains largely unclear. In this study, we identified and characterized Arabidopsis thaliana casein kinase 1-like protein 2 (CKL2), which responds to abscisic acid (ABA) treatment and participates in ABA- and drought-induced stomatal closure. Although CKL2 does not bind to actin filaments directly and has no effect on actin assembly in vitro, it colocalizes with and stabilizes actin filaments in guard cells. Further investigation revealed that CKL2 physically interacts with and phosphorylates actin depolymerizing factor 4 (ADF4) and inhibits its activity in actin filament disassembly. During ABA-induced stomatal closure, deletion of CKL2 in Arabidopsis alters actin reorganization in stomata and renders stomatal closure less sensitive to ABA, whereas deletion of ADF4 impairs the disassembly of actin filaments and causes stomatal closure to be more sensitive to ABA Deletion of ADF4 in the ckl2 mutant partially recues its ABA-insensitive stomatal closure phenotype. Moreover, Arabidopsis ADFs from subclass I are targets of CKL2 in vitro. Thus, our results suggest that CKL2 regulates actin filament reorganization and stomatal closure mainly through phosphorylation of ADF.
Collapse
Affiliation(s)
- Shuangshuang Zhao
- Key Laboratory of Plant Stress, Life Science College, Shandong Normal University, Jinan 250014, China State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuxiang Jiang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Science, Beijing 100093, China
| | - Yang Zhao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shanjin Huang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Science, Beijing 100093, China Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ming Yuan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yanxiu Zhao
- Key Laboratory of Plant Stress, Life Science College, Shandong Normal University, Jinan 250014, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|