1
|
Yee C, Bartölke R, Görtemaker K, Schmidt J, Leberecht B, Mouritsen H, Koch KW. Comparison of retinol binding protein 1 with cone specific G-protein as putative effector molecules in cryptochrome signalling. Sci Rep 2024; 14:28326. [PMID: 39550406 PMCID: PMC11569197 DOI: 10.1038/s41598-024-79699-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024] Open
Abstract
Vision and magnetoreception in navigating songbirds are strongly connected as recent findings link a light dependent radical-pair mechanism in cryptochrome proteins to signalling pathways in cone photoreceptor cells. A previous yeast-two-hybrid screening approach identified six putative candidate proteins showing binding to cryptochrome type 4a. So far, only the interaction of the cone specific G-protein transducin α-subunit was investigated in more detail. In the present study, we compare the binding features of the G-protein α-subunit with those of another candidate from the yeast-two-hybrid screen, cellular retinol binding protein. Purified recombinant European robin retinol binding protein bound retinol with high affinity, displaying an EC50 of less than 5 nM, thereby demonstrating its functional state. We applied surface plasmon resonance and a Förster resonance transfer analysis to test for interactions between retinol binding protein and cryptochrome 4a. In the absence of retinol, we observed no robust binding events, which contrasts the strong interaction we observed between cryptochrome 4a and the G-protein α-subunit. We conclude that retinol binding protein is unlikely to be involved in the primary magnetosensory signalling cascade.
Collapse
Affiliation(s)
- Chad Yee
- Division of Biochemistry, Department of Neuroscience, Carl von Ossietzky Universität Oldenburg, 26111, Oldenburg, Germany
| | - Rabea Bartölke
- Neurosensorics/Animal Navigation, Institute of Biology and Environmental Sciences, Carl von Ossietzky Universität Oldenburg, 26111, Oldenburg, Germany
| | - Katharina Görtemaker
- Division of Biochemistry, Department of Neuroscience, Carl von Ossietzky Universität Oldenburg, 26111, Oldenburg, Germany
| | - Jessica Schmidt
- Neurosensorics/Animal Navigation, Institute of Biology and Environmental Sciences, Carl von Ossietzky Universität Oldenburg, 26111, Oldenburg, Germany
| | - Bo Leberecht
- Animal Biodiversity and Evolutionary Biology, Institute of Biology and Environmental Sciences, Carl von Ossietzky Universität Oldenburg, 26111, Oldenburg, Germany
| | - Henrik Mouritsen
- Neurosensorics/Animal Navigation, Institute of Biology and Environmental Sciences, Carl von Ossietzky Universität Oldenburg, 26111, Oldenburg, Germany.
- Research Center for Neurosensory Sciences, Carl von Ossietzky Universität Oldenburg, 26111, Oldenburg, Germany.
| | - Karl-Wilhelm Koch
- Division of Biochemistry, Department of Neuroscience, Carl von Ossietzky Universität Oldenburg, 26111, Oldenburg, Germany.
- Research Center for Neurosensory Sciences, Carl von Ossietzky Universität Oldenburg, 26111, Oldenburg, Germany.
| |
Collapse
|
2
|
Parmagnani AS, Betterle N, Mannino G, D’Alessandro S, Nocito FF, Ljumovic K, Vigani G, Ballottari M, Maffei ME. The Geomagnetic Field (GMF) Is Required for Lima Bean Photosynthesis and Reactive Oxygen Species Production. Int J Mol Sci 2023; 24:ijms24032896. [PMID: 36769217 PMCID: PMC9917513 DOI: 10.3390/ijms24032896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/18/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Plants evolved in the presence of the Earth's magnetic field (or geomagnetic field, GMF). Variations in MF intensity and inclination are perceived by plants as an abiotic stress condition with responses at the genomic and metabolic level, with changes in growth and developmental processes. The reduction of GMF to near null magnetic field (NNMF) values by the use of a triaxial Helmholtz coils system was used to evaluate the requirement of the GMF for Lima bean (Phaseolus lunatus L.) photosynthesis and reactive oxygen species (ROS) production. The leaf area, stomatal density, chloroplast ultrastructure and some biochemical parameters including leaf carbohydrate, total carbon, protein content and δ13C were affected by NNMF conditions, as were the chlorophyll and carotenoid levels. RubisCO activity and content were also reduced in NNMF. The GMF was required for the reaction center's efficiency and for the reduction of quinones. NNMF conditions downregulated the expression of the MagR homologs PlIScA2 and PlcpIScA, implying a connection between magnetoreception and photosynthetic efficiency. Finally, we showed that the GMF induced a higher expression of genes involved in ROS production, with increased contents of both H2O2 and other peroxides. Our results show that, in Lima bean, the GMF is required for photosynthesis and that PlIScA2 and PlcpIScA may play a role in the modulation of MF-dependent responses of photosynthesis and plant oxidative stress.
Collapse
Affiliation(s)
- Ambra S. Parmagnani
- Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy
| | - Nico Betterle
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Giuseppe Mannino
- Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy
| | - Stefano D’Alessandro
- Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy
| | - Fabio F. Nocito
- Dipartimento di Scienze Agrarie e Ambientali—Produzione, Territorio, Agroenergia, Università degli Studi di Milano, 20133 Milano, Italy
| | - Kristina Ljumovic
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Gianpiero Vigani
- Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy
| | - Matteo Ballottari
- Dipartimento di Biotecnologie, Università degli Studi di Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Massimo E. Maffei
- Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy
- Correspondence: ; Tel.: +39-011-6705967
| |
Collapse
|
3
|
Parmagnani AS, D'Alessandro S, Maffei ME. Iron-sulfur complex assembly: Potential players of magnetic induction in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111483. [PMID: 36183809 DOI: 10.1016/j.plantsci.2022.111483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/19/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Iron-sulfur (Fe-S) clusters are involved in fundamental biological reactions and represent a highly regulated process involving a complex sequence of mitochondrial, cytosolic and nuclear-catalyzed protein-protein interactions. Iron-sulfur complex assembly (ISCA) scaffold proteins are involved in Fe-S cluster biosynthesis, nitrogen and sulfur metabolism. ISCA proteins are involved in abiotic stress responses and in the pigeon they act as a magnetic sensor by forming a magnetosensor (MagS) complex with cryptochrome (Cry). MagR gene exists in the genomes of humans, plants, and microorganisms and the interaction between Cry and MagR is highly conserved. Owing to the extensive presence of ISCA proteins in plants and the occurrence of homology between animal and human MagR with at least four Arabidopsis ISCAs and several ISCAs from different plant species, we believe that a mechanism similar to pigeon magnetoperception might be present in plants. We suggest that plant ISCA proteins, homologous of the animal MagR, are good candidates and could contribute to a better understanding of plant magnetic induction. We thus urge more studies in this regard to fully uncover the plant molecular mechanisms underlying MagR/Cry mediated magnetic induction and the possible coupling between light and magnetic induction.
Collapse
Affiliation(s)
- Ambra S Parmagnani
- Dept. Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy
| | - Stefano D'Alessandro
- Dept. Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy
| | - Massimo E Maffei
- Dept. Life Sciences and Systems Biology, University of Turin, Via Quarello 15/a, 10135 Turin, Italy.
| |
Collapse
|
4
|
Tang LS, Fan ZX, Tian XF, He SM, Ji C, Chen AQ, Ren DL. The influences and regulatory mechanisms of magnetic fields on circadian rhythms. Chronobiol Int 2022; 39:1307-1319. [PMID: 35880245 DOI: 10.1080/07420528.2022.2105231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A variety of devices used in daily life and biomedical field will generate magnetic fields with different parameters, raising concern about their influences on people's physiological functions. Multiple experimental works have been devoted to the influences of magnetic fields on circadian rhythms, yet the findings were not always consistent due to the differences in magnetic field parameters and experimental organisms. Also, clear regulatory mechanisms have not been found. By systematizing the major achievements in research on magnetic and circadian rhythms based on magnetic flux density and analyzing the potential mechanisms of the magnetic fields affecting circadian rhythms, this review sheds light on the effects of magnetic fields on circadian rhythms and the potential applications in biomedicine.
Collapse
Affiliation(s)
- Long-Sheng Tang
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China.,School of Statistics and Applied Mathematics, Anhui University of Finance & Economics, Bengbu, China
| | - Zi-Xuan Fan
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xiao-Fei Tian
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Shi-Min He
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Cheng Ji
- School of Biology & Basic Medical Sciences, Suzhou Medical College of Soochow University, Soochow University, Suzhou, China
| | - An-Qi Chen
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Da-Long Ren
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| |
Collapse
|
5
|
Abstract
The ability to detect magnetic fields is a sensory modality that is used by many animals to navigate. While first postulated in the 1800s, for decades, it was considered a biological myth. A series of elegant behavioral experiments in the 1960s and 1970s showed conclusively that the sense is real; however, the underlying mechanism(s) remained unresolved. Consequently, this has given rise to a series of beliefs that are critically analyzed in this manuscript. We address six assertions: (1) Magnetoreception does not exist; (2) It has to be magnetite; (3) Birds have a conserved six loci magnetic sense system in their upper beak; (4) It has to be cryptochrome; (5) MagR is a protein biocompass; and (6) The electromagnetic induction hypothesis is dead. In advancing counter-arguments for these beliefs, we hope to stimulate debate, new ideas, and the design of well-controlled experiments that can aid our understanding of this fascinating biological phenomenon.
Collapse
Affiliation(s)
- Simon Nimpf
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, 82152 Munich, Germany
| | - David A Keays
- Division of Neurobiology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, 82152 Munich, Germany.,University of Cambridge, Department of Physiology, Development & Neuroscience, Downing Street, CB2 3EG Cambridge, UK.,Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus- Vienna-Biocenter 1, 1030 Vienna, Austria
| |
Collapse
|
6
|
Yang P, Cai T, Zhang L, Yu D, Guo Z, Zhang Y, Li G, Zhang X, Xie C. A Rationally Designed Building Block of the Putative Magnetoreceptor MagR. Bioelectromagnetics 2022; 43:317-326. [PMID: 35598081 DOI: 10.1002/bem.22413] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 04/21/2022] [Accepted: 05/04/2022] [Indexed: 11/06/2022]
Abstract
The ability of animals to perceive guidance cues from Earth's magnetic field for orientation and navigation has been supported by a wealth of behavioral experiments, yet the nature of this sensory modality remains fascinatingly unresolved and wide open for discovery. MagR has been proposed as a putative magnetoreceptor based on its intrinsic magnetism and its complexation with a previously suggested key protein in magnetosensing, cryptochrome, to form a rod-like polymer structure. Here, we report a rationally designed single-chain tetramer of MagR (SctMagR), serving as the building block of the hierarchical assembly of MagR polymer. The magnetic trapping experiment and direct magnetic measurement of SctMagR demonstrated the possibility of magnetization of nonmagnetic cells via overexpressing a single protein, which has great potential in various applications. SctMagR, as reported in this study, serves as a prototype of designed magnetic biomaterials inspired by animal magnetoreception. The features of SctMagR provide insights into the unresolved origin of the intrinsic magnetic moment, which is of considerable interest in both biology and physics. © 2022 Bioelectromagnetics Society.
Collapse
Affiliation(s)
- Peilin Yang
- State Key Laboratory of Membrane Biology, Laboratory of Molecular Biophysics, School of Life Sciences, Peking University, Beijing, China
| | - Tiantian Cai
- State Key Laboratory of Membrane Biology, Laboratory of Molecular Biophysics, School of Life Sciences, Peking University, Beijing, China
| | - Lei Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, China
| | - Daqi Yu
- State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, China
| | - Zhen Guo
- State Key Laboratory of Membrane Biology, Laboratory of Molecular Biophysics, School of Life Sciences, Peking University, Beijing, China
| | - Yuebin Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Guohui Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Xin Zhang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, China.,International Magnetobiology Frontier Research Center, Science Island, Hefei, China
| | - Can Xie
- State Key Laboratory of Membrane Biology, Laboratory of Molecular Biophysics, School of Life Sciences, Peking University, Beijing, China.,High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Science Island, Hefei, China.,International Magnetobiology Frontier Research Center, Science Island, Hefei, China.,Beijing Computational Science Research Center, The Chinese Academy of Engineering Physics, Beijing, China
| |
Collapse
|
7
|
Krylov VV, Izvekov EI, Pavlova VV, Pankova NA, Osipova EA. Magnetic Fluctuations Entrain the Circadian Rhythm of Locomotor Activity in Zebrafish: Can Cryptochrome Be Involved? BIOLOGY 2022; 11:biology11040591. [PMID: 35453790 PMCID: PMC9025847 DOI: 10.3390/biology11040591] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/05/2022] [Accepted: 04/11/2022] [Indexed: 12/16/2022]
Abstract
Simple Summary Most physiological processes are subject to biological circadian rhythms maintained by a complex cascade of biochemical events. The circadian rhythmicity of behavior allows organisms to use energy and resources optimally under changing environmental conditions. To that end, endogenous circadian rhythms are synchronized with external pacemakers (zeitgebers), especially daily changes in illumination. In the 1960s, it was assumed that, in addition to this primary photic cue, animals can use diurnal geomagnetic variation as a secondary zeitgeber. Earlier research found that slow magnetic fluctuations can affect some behavioral endpoints of circadian rhythms by modulating an organism’s physiological state. However, no direct experiments to test such an entrainment of biological clocks by artificial magnetic fields were performed due to the technical difficulty of eliminating natural geomagnetic variation. For the first time, we carried out such tests in a fully controlled magnetic environment using zebrafish as a research model. The experimental treatments included various light/dark cycles and continuous illumination coupled with pre-recorded natural geomagnetic variations. The obtained results indicate that slow magnetic fluctuations can entrain endogenous rhythmical activity in vertebrates. Probably, cryptochromes play a key role in this process. This research provides promising opportunities for the magnetic control of circadian processes, e.g., correcting circadian dysfunctions. Abstract In the 1960s, it was hypothesized that slow magnetic fluctuations could be a secondary zeitgeber for biological circadian rhythms. However, no comprehensive experimental research has been carried out to test the entrainment of free-running circadian rhythms by this zeitgeber. We studied the circadian patterns of the locomotor activity of zebrafish (Danio rerio) under different combinations of light regimes and slow magnetic fluctuations, based on a record of natural geomagnetic variation. A rapid synchronization of activity rhythms to an unusual 24:12 light/dark cycle was found under magnetic fluctuations with a period of 36 h. Under constant illumination, significant locomotor activity rhythms with 26.17 h and 33.07 h periods were registered in zebrafish exposed to magnetic fluctuations of 26.8 h and 33.76 h, respectively. The results reveal the potential of magnetic fluctuations for entrainment of circadian rhythms in zebrafish and genuine prospects to manipulate circadian oscillators via magnetic fields. The putative mechanisms responsible for the entrainment are discussed, including the possible role of cryptochromes.
Collapse
Affiliation(s)
- Viacheslav V. Krylov
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, 152742 Borok, Russia; (E.I.I.); (V.V.P.); (N.A.P.); (E.A.O.)
- Scientific and Technological Center of Unique Instrumentation, Russian Academy of Sciences, 117342 Moscow, Russia
- Correspondence:
| | - Evgeny I. Izvekov
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, 152742 Borok, Russia; (E.I.I.); (V.V.P.); (N.A.P.); (E.A.O.)
| | - Vera V. Pavlova
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, 152742 Borok, Russia; (E.I.I.); (V.V.P.); (N.A.P.); (E.A.O.)
| | - Natalia A. Pankova
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, 152742 Borok, Russia; (E.I.I.); (V.V.P.); (N.A.P.); (E.A.O.)
| | - Elena A. Osipova
- Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, 152742 Borok, Russia; (E.I.I.); (V.V.P.); (N.A.P.); (E.A.O.)
| |
Collapse
|
8
|
Dybus A, Kulig H, Yu YH, Lanckriet R, Proskura W, Cheng YH. CRY1 Gene Polymorphism and Racing Performance of Homing Pigeons. Animals (Basel) 2021; 11:2632. [PMID: 34573598 PMCID: PMC8466513 DOI: 10.3390/ani11092632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022] Open
Abstract
Cryptochromes (CRY) are the family of proteins proposed as the putative magnetoreceptor molecules. In birds, among others in pigeons, CRY1 is widely expressed in a retina. Homing pigeons are known for their navigational abilities, and pigeon racing is a popular sport. So, the purpose of this study was to analyze the variability of the nucleotide sequence of the homing pigeon CRY1 gene, spanning the region coding the two amino acids W320 and W374 of Trp-triad, and estimate the relationship between genotypes and the racing performance. Investigations were carried out on 129 pigeons. Analysis of sequencing results indicated the AG to TT change within the seventh intron of CRY1 gene. Genotypes were determined by the forced PCR-RFLP method. The influence of detected polymorphism on the results of racing pigeons in 100-400 km flights was shown. The AG/TT individuals achieved significantly higher (p ≤ 0.05) mean values of ace points (AP) than the AG/AG ones. Regarding the detected nucleotide change localization, the polymorphism may be involved in CRY1 gene expression modulation. The AG to TT change in CRY1 gene may be considered as a potential genetic marker of racing performance in homing pigeons.
Collapse
Affiliation(s)
- Andrzej Dybus
- Department of Genetics, West Pomeranian University of Technology, 70-311 Szczecin, Poland;
| | - Hanna Kulig
- Department of Genetics, West Pomeranian University of Technology, 70-311 Szczecin, Poland;
| | - Yu-Hsiang Yu
- Department of Biotechnology and Animal Science, National Ilan University, Yilan 26047, Taiwan; (Y.-H.Y.); (Y.-H.C.)
| | | | - Witold Proskura
- Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology in Szczecin, 71-270 Szczecin, Poland;
| | - Yeong-Hsiang Cheng
- Department of Biotechnology and Animal Science, National Ilan University, Yilan 26047, Taiwan; (Y.-H.Y.); (Y.-H.C.)
| |
Collapse
|
9
|
Lu HM, Li JD, Zhang YD, Lu XL, Xu C, Huang Y, Gribskov M. The Evolution History of Fe-S Cluster A-Type Assembly Protein Reveals Multiple Gene Duplication Events and Essential Protein Motifs. Genome Biol Evol 2020; 12:160-173. [PMID: 32108236 PMCID: PMC7144353 DOI: 10.1093/gbe/evaa038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2020] [Indexed: 01/15/2023] Open
Abstract
Iron-sulfur (Fe-S) clusters play important roles in electron transfer, metabolic and biosynthetic reactions, and the regulation of gene expression. Understanding the biogenesis of Fe-S clusters is therefore relevant to many fields. In the complex process of Fe-S protein formation, the A-type assembly protein (ATAP) family, which consists of several subfamilies, plays an essential role in Fe-S cluster formation and transfer and is highly conserved across the tree of life. However, the taxonomic distribution, motif compositions, and the evolutionary history of the ATAP subfamilies are not well understood. To address these problems, our study investigated the taxonomic distribution of 321 species from a broad cross-section of taxa. Then, we identified common and specific motifs in multiple ATAP subfamilies to explain the functional conservation and nonredundancy of the ATAPs, and a novel, essential motif was found in Eumetazoa IscA1, which has a newly found magnetic function. Finally, we used phylogenetic analytical methods to reconstruct the evolution history of this family. Our results show that two types of ErpA proteins (nonproteobacteria-type ErpA1 and proteobacteria-type ErpA2) exist in bacteria. The ATAP family, consisting of seven subfamilies, can be further classified into two types of ATAPs. Type-I ATAPs include IscA, SufA, HesB, ErpA1, and IscA1, with an ErpA1-like gene as their last common ancestor, whereas type-II ATAPs consist of ErpA2 and IscA2, duplicated from an ErpA2-like gene. During the mitochondrial endosymbiosis, IscA became IscA1 in eukaryotes and ErpA2 became IscA2 in eukaryotes, respectively.
Collapse
Affiliation(s)
- Hui-Meng Lu
- School of Life Sciences, Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi’an, Shaanxi, PR China
| | - Jing-Di Li
- School of Life Sciences, Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi’an, Shaanxi, PR China
| | - Yu-Dan Zhang
- School of Life Sciences, Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi’an, Shaanxi, PR China
| | - Xiao-Li Lu
- School of Life Sciences, Key Laboratory for Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi’an, Shaanxi, PR China
| | - Chang Xu
- College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, PR China
| | - Yuan Huang
- College of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, PR China
| | - Michael Gribskov
- Department of Biological Sciences, Purdue University
- Department of Computer Science, Purdue University
| |
Collapse
|
10
|
Saha S, Singh KM, Gupta BBP. Circadian rhythm of expression of core clock genes in the photosensitive pineal organ of catfish, Clarias gariepinus under different photoperiodic regimes. BIOL RHYTHM RES 2020. [DOI: 10.1080/09291016.2020.1728922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Saurav Saha
- Environmental Endocrinology Laboratory, Department of Zoology, North-Eastern Hill University, Shillong, India
| | - Kshetrimayum Manisana Singh
- Environmental Endocrinology Laboratory, Department of Zoology, North-Eastern Hill University, Shillong, India
| | - Braj Bansh Prasad Gupta
- Environmental Endocrinology Laboratory, Department of Zoology, North-Eastern Hill University, Shillong, India
| |
Collapse
|
11
|
Analysis of zebrafish cryptochrome 2 and 4 expression in UV cone photoreceptors. Gene Expr Patterns 2020; 35:119100. [DOI: 10.1016/j.gep.2020.119100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 12/30/2019] [Accepted: 02/12/2020] [Indexed: 01/11/2023]
|
12
|
Saha S, Singh KM, Gupta BBP. Melatonin synthesis and clock gene regulation in the pineal organ of teleost fish compared to mammals: Similarities and differences. Gen Comp Endocrinol 2019; 279:27-34. [PMID: 30026020 DOI: 10.1016/j.ygcen.2018.07.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 07/12/2018] [Accepted: 07/15/2018] [Indexed: 02/07/2023]
Abstract
The pineal organ of all vertebrates synthesizes and secretes melatonin in a rhythmic manner due to the circadian rhythm in the activity of arylalkylamine N-acetyltransferase (AANAT) - the rate-limiting enzyme in melatonin synthesis pathway. Nighttime increase in AANAT activity and melatonin synthesis depends on increased expression of aanat gene (a clock-controlled gene) and/or post-translation modification of AANAT protein. In mammalian and avian species, only one aanat gene is expressed. However, three aanat genes (aanat1a, aanat1b, and aanat2) are reported in fish species. While aanat1a and aanat1b genes are expressed in the fish retina, the nervous system and other peripheral tissues, aanat2 gene is expressed exclusively in the fish pineal organ. Clock genes form molecular components of the clockwork, which regulates clock-controlled genes like aanat gene. All core clock genes (i.e., clock, bmal1, per1, per2, per3, cry1 and cry2) and aanat2 gene (a clock-controlled gene) are expressed in the pineal organ of several fish species. There is a large body of information on regulation of clock genes, aanat gene and melatonin synthesis in the mammalian pineal gland. However, the information available on clock genes, aanat genes and melatonin synthesis in photoreceptive pineal organ of teleosts is fragmentary and not well documented. Therefore, we have reviewed published information on rhythmic expression of clock genes, aanat genes as well as synthesis of melatonin, and their regulation by photoperiod and temperature in teleostean pineal organ as compared to mammalian pineal gland. A critical analysis of the literature suggests that in contrast to the mammalian pineal gland, the pineal organ of teleosts (except salmonids) possesses a well developed indigenous clock composed of clock genes for regulation of rhythmic expression of aanat2 gene and melatonin synthesis. Further, the fish pineal organ also possesses essential molecular components for responding to light and temperature directly. The fish pineal organ seems to act as a potential master biological clock in most of the teleosts.
Collapse
Affiliation(s)
- Saurav Saha
- Environmental Endocrinology Laboratory, Department of Zoology, North-Eastern Hill University, Shillong 793022, India
| | - Kshetrimayum Manisana Singh
- Environmental Endocrinology Laboratory, Department of Zoology, North-Eastern Hill University, Shillong 793022, India
| | - Braj Bansh Prasad Gupta
- Environmental Endocrinology Laboratory, Department of Zoology, North-Eastern Hill University, Shillong 793022, India.
| |
Collapse
|
13
|
Krylov VV, Kantserova NP, Lysenko LA, Osipova EA. A simulated geomagnetic storm unsynchronizes with diurnal geomagnetic variation affecting calpain activity in roach and great pond snail. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2019; 63:241-246. [PMID: 30680619 DOI: 10.1007/s00484-018-01657-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 10/02/2018] [Accepted: 10/30/2018] [Indexed: 06/09/2023]
Abstract
It has been suggested that geomagnetic storms could be perceived by organisms via disruption of naturally occurring diurnal geomagnetic variation. This variation, in turn, is viewed by way of a zeitgeber for biological circadian rhythms. The biological effects of a geomagnetic storm, therefore, could depend on the local time of day when its main phase occurs. We have assessed calpain activity in tissues of roach (Rutilus rutilus) and great pond snail (Limnaea stagnalis) after exposure to a simulated geomagnetic storm, reproduced at different times of day, in order to evaluate this hypothesis. Significant decrease in calpain activity was observed in organisms exposed to the simulated geomagnetic storm whose main phase, and initial period of a recovery phase, did not coincide with the expected peak of diurnal geomagnetic variation. The results obtained are considered an experimental confirmation of the aforementioned hypothesis. Improvement of a correlative approach for the assessment of biological effects of geomagnetic activity can be achieved by considering information on the synchronization of geomagnetic storm's main phase with diurnal geomagnetic variation.
Collapse
Affiliation(s)
- Viacheslav V Krylov
- I.D. Papanin Institute for Biology of Inland Waters of Russian Academy of Sciences, Borok 109, Nekouz, Yaroslavl oblast, Russian Federation, 152742.
| | - N P Kantserova
- The Institute of Biology, Karelian Research Centre of Russian Academy of Sciences, Pushkinskaya, 11, Petrozavodsk, Russian Federation, 185910
| | - L A Lysenko
- The Institute of Biology, Karelian Research Centre of Russian Academy of Sciences, Pushkinskaya, 11, Petrozavodsk, Russian Federation, 185910
| | - E A Osipova
- I.D. Papanin Institute for Biology of Inland Waters of Russian Academy of Sciences, Borok 109, Nekouz, Yaroslavl oblast, Russian Federation, 152742
| |
Collapse
|
14
|
Chang H, Guo JL, Fu XW, Wang ML, Hou YM, Wu KM. Molecular Characterization and Expression Profiles of Cryptochrome Genes in a Long-Distance Migrant, Agrotis segetum (Lepidoptera: Noctuidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2019; 19:5299137. [PMID: 30690535 PMCID: PMC6342827 DOI: 10.1093/jisesa/iey127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Indexed: 06/09/2023]
Abstract
Cryptochromes act as photoreceptors or integral components of the circadian clock that involved in the regulation of circadian clock and regulation of migratory activity in many animals, and they may also act as magnetoreceptors that sensed the direction of the Earth's magnetic field for the purpose of navigation during animals' migration. Light is a major environmental signal for insect circadian rhythms, and it is also necessary for magnetic orientation. We identified the full-length cDNA encoding As-CRY1 and As-CRY2 in Agrotis segetum Denis and Schiffermaller (turnip moth (Lepidoptera: Noctuidae)). The DNA photolyase domain and flavin adenine dinucleotide-binding domain were found in both cry genes, and multiple alignments showed that those domains that are important for the circadian clock and magnetosensing were highly conserved among different animals. Quantitative polymerase chain reaction showed that cry genes were expressed in all examined body parts, with higher expression in adults during the developmental stages of the moths. Under a 14:10 (L:D) h cycle, the expression of cry genes showed a daily biological rhythm, and light can affect the expression levels of As-cry genes. The expression levels of cry genes were higher in the migratory population than in the reared population and higher in the emigration population than in the immigration population. These findings suggest that the two cryptochrome genes characterized in the turnip moth might be associated with the circadian clock and magnetosensing. Their functions deserve further study, especially for potential control of the turnip moth.
Collapse
Affiliation(s)
- Hong Chang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops and Fujian Province Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiang-Long Guo
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Xiao-Wei Fu
- Department of Plant Protection, Henan Institute of Science and Technology, Xinxiang, China
| | - Meng-Lun Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Entomology, China Agricultural University, Beijing, China
| | - You-Ming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops and Fujian Province Key Laboratory of Insect Ecology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Kong-Ming Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
15
|
Identification of medaka magnetoreceptor and cryptochromes. SCIENCE CHINA-LIFE SCIENCES 2016; 60:271-278. [PMID: 27858334 DOI: 10.1007/s11427-016-0266-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 10/16/2016] [Indexed: 11/27/2022]
Abstract
Magnetoreception is a hallmark ability of animals for orientation and migration via sensing and utilizing geomagnetic fields. Magnetoreceptor (MagR) and cryptochromes (Cry) have recently been identified as the basis for magnetoreception in Drosophila. However, it has remained unknown whether MagR and Cry have conserved roles in diverse animals. Here we report the identification and expression of magr and cry genes in the fish medaka (Oryzias latipes). Cloning and sequencing identified a single magr gene, four cry genes and one cry-like gene in medaka. By sequence alignment, chromosomal synteny and gene structure analysis, medaka cry2 and magr were found to be the orthologs of human Cry2 and Magr, with cry1aa and cry1ab being coorthologs of human Cry1. Therefore, magr and cry2 have remained as single copy genes, whereas cry1 has undergone two rounds of gene duplication in medaka. Interestingly, magr and cry genes were detected in various stages throughout embryogenesis and displayed ubiquitous expression in adult organs rather than specific or preferential expression in neural organs such as brain and eye. Importantly, magr knockdown by morpholino did not produce visible abnormality in developing embryos, pointing to the possibility of producing viable magr knockouts in medaka as a vertebrate model for magnet biology.
Collapse
|