1
|
Wu H, Xu Y, Zafar J, Mandal SD, Lin L, Lu Y, Jin F, Pang R, Xu X. Transcriptomic Analysis Reveals the Impact of the Biopesticide Metarhizium anisopliae on the Immune System of Major Workers in Solenopsis invicta. INSECTS 2023; 14:701. [PMID: 37623411 PMCID: PMC10455567 DOI: 10.3390/insects14080701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023]
Abstract
The red imported fire ant (Solenopsis invicta Buren, 1972) is a globally significant invasive species, causing extensive agricultural, human health, and biodiversity damage amounting to billions of dollars worldwide. The pathogenic fungus Metarhizium anisopliae (Metchnikoff) Sorokin (1883), widely distributed in natural environments, has been used to control S. invicta populations. However, the interaction between M. anisopliae and the immune system of the social insect S. invicta remains poorly understood. In this study, we employed RNA-seq to investigate the effects of M. anisopliae on the immune systems of S. invicta at different time points (0, 6, 24, and 48 h). A total of 1313 differentially expressed genes (DEGs) were identified and classified into 12 expression profiles using short time-series expression miner (STEM) for analysis. Weighted gene co-expression network analysis (WGCNA) was employed to partition all genes into 21 gene modules. Upon analyzing the statistically significant WGCNA model and conducting Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis on the modules, we identified key immune pathways, including the Toll and Imd signaling pathways, lysosomes, autophagy, and phagosomes, which may collectively contribute to S. invicta defense against M. anisopliae infection. Subsequently, we conducted a comprehensive scan of all differentially expressed genes and identified 33 immune-related genes, encompassing various aspects such as recognition, signal transduction, and effector gene expression. Furthermore, by integrating the significant gene modules derived from the WGCNA analysis, we constructed illustrative pathway diagrams depicting the Toll and Imd signaling pathways. Overall, our research findings demonstrated that M. anisopliae suppressed the immune response of S. invicta during the early stages while stimulating its immune response at later stages, making it a potential biopesticide for controlling S. invicta populations. These discoveries lay the foundation for further understanding the immune mechanisms of S. invicta and the molecular mechanisms underlying its response to M. anisopliae.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rui Pang
- National Key Laboratory of Green Pesticide, “Belt and Road” Technology Industry and Innovation Institute for Green and Biological Control of Agricultural Pests, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (H.W.); (Y.X.); (J.Z.); (S.D.M.); (L.L.); (Y.L.); (F.J.)
| | - Xiaoxia Xu
- National Key Laboratory of Green Pesticide, “Belt and Road” Technology Industry and Innovation Institute for Green and Biological Control of Agricultural Pests, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China; (H.W.); (Y.X.); (J.Z.); (S.D.M.); (L.L.); (Y.L.); (F.J.)
| |
Collapse
|
2
|
Mantzoukas S, Lagogiannis I, Kitsiou F, Eliopoulos PA. Entomopathogenic Action of Wild Fungal Strains against Stored Product Beetle Pests. INSECTS 2023; 14:insects14010091. [PMID: 36662019 PMCID: PMC9862338 DOI: 10.3390/insects14010091] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 05/31/2023]
Abstract
There is ample evidence that entomopathogenic fungi can be used as alternative biological control agents for the management of insect pests in storage facilities. As the market demands more environmentally friendly methods and chemical insecticides become increasingly obsolete, more studies are being conducted to evaluate new strains of entomopathogenic fungi for their efficacy in storage facilities. In this context, we tested ten species of fungi isolated from soil, belonging to the genera Cladosporium, Condenascus, Lecanicillium, and Penicillium, for their long-term effects on economically important beetle species. Whole wheat was directly sprayed with a conidial suspension of 108 spores/Ml of each of the tested fungi and then adults of Sitophilus granarius, S. oryzae, S. zeamais, Rhyzopertha dominica, and Trogoderma granarium were placed on the sprayed medium to study the mortality effects. Significantly higher mortality than the control was observed in all treatments. The lowest LT50 (9.164 days) was observed in T. granarium infected with Penicillium goetzii. The isolate with the strongest results was L. dimorphum, which recorded remarkably low LT50 values in S. oryzae (~11 days), R. dominica (~12 days), T. granarium (~10 days), and S. granarius (~13 days). However, for S. zeamais, it was more than 16 days. Our results confirm the existing literature on the efficacy of EPF on storage beetles, suggest the possible virulence of wild untested strains, and also highlight the importance of EPF specificity.
Collapse
Affiliation(s)
- Spiridon Mantzoukas
- Department of Agriculture, University of Ioannina, Arta Campus, 45100 Ioannina, Greece
| | | | - Foteini Kitsiou
- Laboratory of Plant Physiology, Department of Biology, University of Patras, 26504 Patras, Greece
| | - Panagiotis A. Eliopoulos
- Laboratory of Plant Health Management, Department of Agrotechnology, University of Thessaly, Geopolis, 41500 Larissa, Greece
| |
Collapse
|
3
|
Deng J, Xu W, Lv G, Yuan H, Zhang QH, Wickham JD, Xu L, Zhang L. Associated bacteria of a pine sawyer beetle confer resistance to entomopathogenic fungi via fungal growth inhibition. ENVIRONMENTAL MICROBIOME 2022; 17:47. [PMID: 36085246 PMCID: PMC9463743 DOI: 10.1186/s40793-022-00443-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/24/2022] [Indexed: 05/24/2023]
Abstract
BACKGROUND The entomopathogenic Beauveria bassiana is a popular fungus used to control the Japanese pine sawyer, Monochamus alternatus Hope, the key vector of pine wood nematode (Bursaphelenchus xylophilus) that is the causal agent of pine wilt disease, resulting in devastating losses of pines in China and Portugal. However, recent studies have demonstrated that some insect-associated bacteria might decrease fungal toxicity and further undermine its biological control efficacy against M. alternatus. Thus, it is of great significance to uncover whether and how associated bacteria of M. alternatus become involved in the infection process of B. bassiana. RESULTS Here, we show that axenic M. alternatus larvae died significantly faster than non-axenic larvae infected by four increasing concentrations of B. bassiana spores (Log-rank test, P < 0.001). The infection of B. bassiana significantly changed the richness and structure of the beetle-associated bacterial community both on the cuticle and in the guts of M. alternatus; meanwhile, the abundance of Pseudomonas and Serratia bacteria were significantly enriched as shown by qPCR. Furthermore, these two bacteria genera showed a strong inhibitory activity against B. bassiana (One-way ANOVA, P < 0.001) by reducing the fungal conidial germination and growth rather than regulating host immunity. CONCLUSIONS This study highlights the role of insect-associated bacteria in the interaction between pest insects and entomopathogenic fungi, which should be taken into consideration when developing microbial-based pest control strategies.
Collapse
Affiliation(s)
- Jundan Deng
- Anhui Provincial Key Laboratory of Microbial Control, Anhui Agricultural University, Hefei, 230036, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Weikang Xu
- Anhui Provincial Key Laboratory of Microbial Control, Anhui Agricultural University, Hefei, 230036, China
| | - Guochang Lv
- Anhui Provincial Key Laboratory of Microbial Control, Anhui Agricultural University, Hefei, 230036, China
| | - Hang Yuan
- Anhui Provincial Key Laboratory of Microbial Control, Anhui Agricultural University, Hefei, 230036, China
| | - Qing-He Zhang
- Sterling International, Inc., Spokane, WA, 99216, USA
| | - Jacob D Wickham
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, 33 Leninsky Prospect, Moscow, Russia, 119071
| | - Letian Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Longwa Zhang
- Anhui Provincial Key Laboratory of Microbial Control, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
4
|
Zhou F, Gao Y, Liu M, Xu L, Wu X, Zhao X, Zhang X. Bacterial Inhibition on Beauveria bassiana Contributes to Microbiota Stability in Delia antiqua. Front Microbiol 2021; 12:710800. [PMID: 34690955 PMCID: PMC8527029 DOI: 10.3389/fmicb.2021.710800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 09/01/2021] [Indexed: 02/01/2023] Open
Abstract
Given the multiple roles of associated microbiota in improving animal host fitness in a microbial environment, increasing numbers of researchers have focused on how the associated microbiota keeps stable under complex environmental factors, especially some biological ones. Recent studies show that associated microbiota interacts with pathogenic microbes. However, whether and how the interaction would influence microbiota stability is limitedly investigated. Based on the interaction among Delia antiqua, its associated microbiota, and one pathogen Beauveria bassiana, the associated microbiota's response to the pathogen was determined in this study. Besides, the underlying mechanism for the response was also preliminarily investigated. Results showed that B. bassiana neither infect D. antiqua larvae nor did it colonize inside the associated microbiota, and both the bacterial and fungal microbiota kept stable during the interaction. Further experiments showed that bacterial microbiota almost completely inhibited conidial germination and mycelial growth of B. bassiana during its invasion, while fungal microbiota did not inhibit conidial germination and mycelial growth of B. bassiana. According to the above results, individual dominant bacterial species were isolated, and their inhibition on conidial germination and mycelial growth of B. bassiana was reconfirmed. Thus, these results indicated that bacterial instead of fungal microbiota blocked B. bassiana conidia and stabilized the associated microbiota of D. antiqua larvae during B. bassiana invasion. The findings deepened the understanding of the role of associated microbiota–pathogen microbe interaction in maintaining microbiota stability. They may also contribute to the development of novel biological control agents and pest management strategies.
Collapse
Affiliation(s)
- Fangyuan Zhou
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, China
| | - Yunxiao Gao
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, China
| | - Mei Liu
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, China
| | - Letian Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Xiaoqing Wu
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, China
| | - Xiaoyan Zhao
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, China
| | - Xinjian Zhang
- Shandong Provincial Key Laboratory of Applied Microbiology, Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Ji'nan, China
| |
Collapse
|
5
|
Kim JC, Lee MR, Kim S, Park SE, Lee SJ, Shin TY, Kim WJ, Kim J. Transcriptome Analysis of the Japanese Pine Sawyer Beetle, Monochamus alternatus, Infected with the Entomopathogenic Fungus Metarhizium anisopliae JEF-197. J Fungi (Basel) 2021; 7:jof7050373. [PMID: 34068801 PMCID: PMC8151162 DOI: 10.3390/jof7050373] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/16/2021] [Accepted: 05/08/2021] [Indexed: 12/13/2022] Open
Abstract
The Japanese pine sawyer (JPS) beetle, Monochamus alternatus Hope (Coleoptera: Cerambycidae), damages pine trees and transmits the pine wilt nematode, Bursaphelenchus xylophilus Nickle. Chemical agents have been used to control JPS beetle, but due to various issues, efforts are being made to replace these chemical agents with entomopathogenic fungi. We investigated the expression of immune-related genes in JPS beetle in response to infection with JEF-197, a Metarhizium anisopliae isolate, using RNA-seq. RNA samples were obtained from JEF-197, JPS adults treated with JEF-197, and non-treated JPS adults on the 8th day after fungal treatment, and RNA-seq was performed using Illumina sequencing. JPS beetle transcriptome was assembled de novo and differentially expressed gene (DEG) analysis was performed. There were 719 and 1953 up- and downregulated unigenes upon JEF-197 infection, respectively. Upregulated contigs included genes involved in RNA transport, ribosome biogenesis in eukaryotes, spliceosome-related genes, and genes involved in immune-related signaling pathways such as the Toll and Imd pathways. Forty-two fungal DEGs related to energy and protein metabolism were upregulated, and genes involved in the stress response were also upregulated in the infected JPS beetles. Together, our results indicate that infection of JPS beetles by JEF-197 induces the expression of immune-related genes.
Collapse
Affiliation(s)
- Jong-Cheol Kim
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju 54896, Korea; (J.-C.K.); (M.-R.L.); (S.K.); (S.-E.P.); (T.-Y.S.)
| | - Mi-Rong Lee
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju 54896, Korea; (J.-C.K.); (M.-R.L.); (S.K.); (S.-E.P.); (T.-Y.S.)
| | - Sihyeon Kim
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju 54896, Korea; (J.-C.K.); (M.-R.L.); (S.K.); (S.-E.P.); (T.-Y.S.)
| | - So-Eun Park
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju 54896, Korea; (J.-C.K.); (M.-R.L.); (S.K.); (S.-E.P.); (T.-Y.S.)
| | - Se-Jin Lee
- Department of Agricultural Life Science, Sunchon National University, Suncheon 57922, Korea;
| | - Tae-Young Shin
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju 54896, Korea; (J.-C.K.); (M.-R.L.); (S.K.); (S.-E.P.); (T.-Y.S.)
| | - Woo-Jin Kim
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju 54896, Korea; (J.-C.K.); (M.-R.L.); (S.K.); (S.-E.P.); (T.-Y.S.)
- Correspondence: (W.-J.K.); (J.K.); Tel.: +82-63-270-2525 (J.K.)
| | - Jaesu Kim
- Department of Agricultural Biology, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju 54896, Korea; (J.-C.K.); (M.-R.L.); (S.K.); (S.-E.P.); (T.-Y.S.)
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54596, Korea
- Correspondence: (W.-J.K.); (J.K.); Tel.: +82-63-270-2525 (J.K.)
| |
Collapse
|
6
|
Ma M, Guo L, Tu C, Wang A, Xu L, Luo J. Comparative Analysis of Adelphocoris suturalis Jakovlev (Hemiptera: Miridae) Immune Responses to Fungal and Bacterial Pathogens. Front Physiol 2021; 12:646721. [PMID: 33815150 PMCID: PMC8012897 DOI: 10.3389/fphys.2021.646721] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/18/2021] [Indexed: 01/30/2023] Open
Abstract
The wide-spread culture of transgenic Bt cotton resisting the infamous cotton bollworms has reduced the adoption of broad-spectrum insecticides to a large extent. Consequently, the non-targeted insect Adelphocoris suturalis Jakovlev has become a major cotton pest in China. Entomopathogenic microbes show promising results for controlling this pest in the future, but A. suturalis innate immune responses to these pathogens are poorly understood. Here, we used the entomopathogenic fungus Beauveria bassiana and the Gram-negative pathogenic bacteria Enterobactor cloacae to infect A. suturalis nymphs, followed by high throughput RNA-seq to analyze the immune transcriptomes of A. suturalis in response to the two pathogens. A total of 150 immunity-related genes were identified, including pattern recognition receptors, extracellular signal modulators, signal pathways (Toll, IMD, JNK, and JAK/STAT), and response effectors. Further quantitative real-time PCR analysis demonstrated that B. bassiana and E. cloacae were recognized by different receptors (GNBP and PGRP, respectively); activated Toll pathway and IMD pathway respectively; and both induced expression of the effector gene Defensin. However, melanization is suppressed in B. bassiana-infected nymphs. Collectively, this study provides a transcriptomic snapshot of the A. suturalis immune system, and at the genetic level, gains multifaceted insights of the immune response to fungal and Gram-negative bacterial pathogens. Ultimately this work pioneers the study of molecular mechanisms underlying immune interactions between A. suturalis and its pathogens and assists in the development of novel mitigation strategies to control this pest.
Collapse
Affiliation(s)
- Meiqi Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Libin Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Chengjie Tu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Aoli Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Letian Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Jing Luo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
7
|
Xu L, Zhang Y, Zhang S, Deng J, Lu M, Zhang L, Zhang J. Comparative analysis of the immune system of an invasive bark beetle, Dendroctonus valens, infected by an entomopathogenic fungus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 88:65-69. [PMID: 30017857 DOI: 10.1016/j.dci.2018.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/01/2018] [Accepted: 07/02/2018] [Indexed: 06/08/2023]
Abstract
Dendroctonus valens LeConte is one of the most economically important forest pest in China. Leptographium procerum, a mutualistic fungus can assist the host beetle in overcoming the pine's chemical defenses, and Beauveria bassiana, an entomopathogenic fungus has shown high beetle killing efficiency. Considering that the D. valens immune system remains unknown at the genomic level, a mutualistic and antagonistic fungus associated with the beetle provides an ideal model for studying immune interactions between the insect and associated fungi. Here, B. bassiana killed most tested larvae more effectively than L. procerum and Tween. The entomopathogenic fungus provoked stronger responses than the symbiotic fungus at the transcriptome level. We identified 185 immunity-related genes, including pattern recognition receptors, signal modulators, members of immune pathways (Toll, IMD, and JAK/STAT), and immune effectors. Quantitative real-time PCR analysis confirmed that several recognition receptors and effector genes were activated at 1 or 2 days post infection, while the effector genes were suppressed at 4 days post infection by B. bassiana, respectively. In contrast, effector genes were upregulated in response to L. procerum. Together, this study provides a comprehensive sequence resource and insight into the D. valens immune system and lays a basis for understanding the molecular aspects of the interaction between the host and associated fungi.
Collapse
Affiliation(s)
- Letian Xu
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China.
| | - Yiqiu Zhang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China
| | - Shihan Zhang
- Cardiff Sixth Form College, Cardiff CF24 0AA, United Kingdom
| | - Jundan Deng
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Min Lu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing 100101, China
| | - Longwa Zhang
- Anhui Provincial Key Laboratory of Microbial Control, School of Forestry & Landscape Architecture, Anhui Agricultural University, Hefei 230036, China.
| | - Jiang Zhang
- Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, College of Life Sciences, Hubei University, Wuhan, China.
| |
Collapse
|
8
|
Manipulation of biotic signaling: a new theory for smarter pest control. SCIENCE CHINA-LIFE SCIENCES 2017; 60:781-784. [DOI: 10.1007/s11427-017-9148-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Indexed: 10/19/2022]
|