1
|
Chen J, Lin Y, Gen D, Chen W, Han R, Li H, Tang S, Zheng S, Zhong X. Integrated mRNA- and miRNA-sequencing analyses unveil the underlying mechanism of tobacco pollutant-induced developmental toxicity in zebrafish embryos. J Transl Med 2024; 22:253. [PMID: 38459561 PMCID: PMC10924323 DOI: 10.1186/s12967-024-05050-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/29/2024] [Indexed: 03/10/2024] Open
Abstract
Tobacco pollutants are prevalent in the environment, leading to inadvertent exposure of pregnant females. Studies of these pollutants' toxic effects on embryonic development have not fully elucidated the potential underlying mechanisms. Therefore, in this study, we aimed to investigate the developmental toxicity induced by cigarette smoke extract (CSE) at concentrations of 0.25, 1, and 2.5% using a zebrafish embryo toxicity test and integrated transcriptomic analysis of microRNA (miRNA) and messenger RNA (mRNA). The findings revealed that CSE caused developmental toxicity, including increased mortality and decreased incubation rate, in a dose-dependent manner. Moreover, CSE induced malformations and apoptosis, specifically in the head and heart of zebrafish larvae. We used mRNA and miRNA sequencing analyses to compare changes in the expression of genes and miRNAs in zebrafish larvae. The bioinformatics analysis indicates that the mechanism underlying CSE-induced developmental toxicity was associated with compromised genetic material damage repair, deregulated apoptosis, and disturbed lipid metabolism. The enrichment analysis and RT-qPCR show that the ctsba gene plays a crucial function in embryo developmental apoptosis, and the fads2 gene mainly regulates lipid metabolic toxicity. The results of this study improve the understanding of CSE-induced developmental toxicity in zebrafish embryos and contribute insights into the formulation of novel preventive strategies against tobacco pollutants during early embryonic development.
Collapse
Affiliation(s)
- Jiasheng Chen
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Yuxin Lin
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Deyi Gen
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Wanxian Chen
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Rui Han
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Hao Li
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Shijie Tang
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China
| | - Shukai Zheng
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China.
| | - Xiaoping Zhong
- Department of Burns and Plastic Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, People's Republic of China.
| |
Collapse
|
2
|
Gao K, Zhang X, Zhang Z, Wu X, Guo Y, Fu P, Sun A, Peng J, Zheng J, Yu P, Wang T, Ye Q, Jiang J, Wang H, Lin CP, Gao G. Transcription-coupled donor DNA expression increases homologous recombination for efficient genome editing. Nucleic Acids Res 2022; 50:e109. [PMID: 35929067 DOI: 10.1093/nar/gkac676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 11/14/2022] Open
Abstract
Genomes can be edited by homologous recombination stimulated by CRISPR/Cas9 [clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated peptide 9]-induced DNA double-strand breaks. However, this approach is inefficient for inserting or deleting long fragments in mammalian cells. Here, we describe a simple genome-editing method, termed transcription-coupled Cas9-mediated editing (TEd), that can achieve higher efficiencies than canonical Cas9-mediated editing (CEd) in deleting genomic fragments, inserting/replacing large DNA fragments and introducing point mutations into mammalian cell lines. We also found that the transcription on DNA templates is crucial for the promotion of homology-directed repair, and that tethering transcripts from TEd donors to targeted sites further improves editing efficiency. The superior efficiency of TEd for the insertion and deletion of long DNA fragments expands the applications of CRISPR for editing mammalian genomes.
Collapse
Affiliation(s)
- Kaixuan Gao
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xuedi Zhang
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhenwu Zhang
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiangyu Wu
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yan Guo
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Pengchong Fu
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Angyang Sun
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ju Peng
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jie Zheng
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Pengfei Yu
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Tengfei Wang
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qinying Ye
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jingwei Jiang
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Haopeng Wang
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chao-Po Lin
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Guanjun Gao
- Gene Editing Center, School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
3
|
Yang H, Wang Y, Xiang Y, Yadav T, Ouyang J, Phoon L, Zhu X, Shi Y, Zou L, Lan L. FMRP promotes transcription-coupled homologous recombination via facilitating TET1-mediated m5C RNA modification demethylation. Proc Natl Acad Sci U S A 2022; 119:e2116251119. [PMID: 35290126 PMCID: PMC8944906 DOI: 10.1073/pnas.2116251119] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/14/2022] [Indexed: 12/11/2022] Open
Abstract
RNA modifications regulate a variety of cellular processes including DNA repair.The RNA methyltransferase TRDMT1 generates methyl-5-cytosine (m5C) on messen-ger RNA (mRNA) at DNA double-strand breaks (DSBs) in transcribed regions, pro-moting transcription-coupled homologous recombination (HR). Here, we identifiedthat Fragile X mental retardation protein (FMRP) promotes transcription-coupled HRvia its interaction with both the m5C writer TRDMT1 and the m5C eraser ten-eleventranslocation protein 1 (TET1). TRDMT1, FMRP, and TET1 function in a temporalorder at the transcriptionally active sites of DSBs. FMRP displays a higher affinity forDNA:RNA hybrids containing m5C-modified RNA than for hybrids without modifica-tion and facilitates demethylation of m5C by TET1 in vitro. Loss of either the chroma-tin- or RNA-binding domain of FMRP compromises demethylation of damage-inducedm5C in cells. Importantly, FMRP is required for R-loop resolving in cells. Due to unre-solved R-loop and m5C preventing completion of DSB repair, FMRP depletion or lowexpression leads to delayed repair of DSBs at transcriptionally active sites and sensitizescancer cells to radiation in a BRCA-independent manner. Together, ourfindings presentan m5C reader, FMRP, which acts as a coordinator between the m5C writer and eraserto promote mRNA-dependent repair and cell survival in cancer.
Collapse
Affiliation(s)
- Haibo Yang
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02129
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129
| | - Yumin Wang
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02129
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129
| | - Yufei Xiang
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Tribhuwan Yadav
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02129
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Jian Ouyang
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02129
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Laiyee Phoon
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02129
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129
| | - Xueping Zhu
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Yi Shi
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02129
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
| | - Li Lan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA 02129
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129
| |
Collapse
|
4
|
Li Y, Kardell MB, Wang F, Wang L, Zhu S, Bessho T, Peng A. The Sm core components of small nuclear ribonucleoproteins promote homologous recombination repair. DNA Repair (Amst) 2021; 108:103244. [PMID: 34768043 DOI: 10.1016/j.dnarep.2021.103244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 10/01/2021] [Accepted: 10/29/2021] [Indexed: 11/17/2022]
Abstract
DNA Double strand breaks (DSBs) are highly hazardous to the cell, and are repaired predominantly via non-homologous end joining (NHEJ) and homologous recombination (HR). Using DSB-mimicking DNA templates, our proteomic studies identified a group of Sm core proteins of small nuclear ribonucleoproteins (snRNPs) as potential DSB-associated proteins. We further confirmed that these Sm proteins were recruited to laser-induced DNA damage sites, and co-localized with established DNA damage repair factors. Depletion of Sm-D3 or Sm-B induced accumulation of γ-H2AX, and impaired the repair efficiency of HR, but not NHEJ. Furthermore, disruption of Sm-D3 reduced the protein level of HR factors, especially RAD51 and CHK1, but caused no change in the expression of repair factors involved in NHEJ. Mechanistically, Sm-D3 proteins bound RAD51, suppressed the ubiquitination of RAD51, and mediated the stabilization of RAD51; Sm-D3 depletion particularly impacted the level of RAD51 and CHK1 on damaged chromatin. As such, our studies characterized a role of Sm proteins in HR repair, via a new mechanism that is distinct from their conventional functions in RNA processing and gene regulation, but consistent with their direct recruitment to DNA damage sites and association with repair factors.
Collapse
Affiliation(s)
- Yanqiu Li
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, NE, USA
| | - Mary Bridget Kardell
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, NE, USA
| | - Feifei Wang
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, NE, USA
| | - Ling Wang
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, NE, USA
| | - Songli Zhu
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, NE, USA
| | - Tadayoshi Bessho
- The Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - Aimin Peng
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, NE, USA.
| |
Collapse
|
5
|
Sanchez A, Lee D, Kim DI, Miller KM. Making Connections: Integrative Signaling Mechanisms Coordinate DNA Break Repair in Chromatin. Front Genet 2021; 12:747734. [PMID: 34659365 PMCID: PMC8514019 DOI: 10.3389/fgene.2021.747734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/31/2021] [Indexed: 01/25/2023] Open
Abstract
DNA double-strand breaks (DSBs) are hazardous to genome integrity and can promote mutations and disease if not handled correctly. Cells respond to these dangers by engaging DNA damage response (DDR) pathways that are able to identify DNA breaks within chromatin leading ultimately to their repair. The recognition and repair of DSBs by the DDR is largely dependent on the ability of DNA damage sensing factors to bind to and interact with nucleic acids, nucleosomes and their modified forms to target these activities to the break site. These contacts orientate and localize factors to lesions within chromatin, allowing signaling and faithful repair of the break to occur. Coordinating these events requires the integration of several signaling and binding events. Studies are revealing an enormously complex array of interactions that contribute to DNA lesion recognition and repair including binding events on DNA, as well as RNA, RNA:DNA hybrids, nucleosomes, histone and non-histone protein post-translational modifications and protein-protein interactions. Here we examine several DDR pathways that highlight and provide prime examples of these emerging concepts. A combination of approaches including genetic, cellular, and structural biology have begun to reveal new insights into the molecular interactions that govern the DDR within chromatin. While many questions remain, a clearer picture has started to emerge for how DNA-templated processes including transcription, replication and DSB repair are coordinated. Multivalent interactions with several biomolecules serve as key signals to recruit and orientate proteins at DNA lesions, which is essential to integrate signaling events and coordinate the DDR within the milieu of the nucleus where competing genome functions take place. Genome architecture, chromatin structure and phase separation have emerged as additional vital regulatory mechanisms that also influence genome integrity pathways including DSB repair. Collectively, recent advancements in the field have not only provided a deeper understanding of these fundamental processes that maintain genome integrity and cellular homeostasis but have also started to identify new strategies to target deficiencies in these pathways that are prevalent in human diseases including cancer.
Collapse
Affiliation(s)
- Anthony Sanchez
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
| | - Doohyung Lee
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
| | - Dae In Kim
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
| | - Kyle M Miller
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, United States.,Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, United States.,Livestrong Cancer Institutes, Dell Medical School, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
6
|
Ouyang J, Yadav T, Zhang JM, Yang H, Rheinbay E, Guo H, Haber DA, Lan L, Zou L. RNA transcripts stimulate homologous recombination by forming DR-loops. Nature 2021; 594:283-288. [PMID: 33981036 PMCID: PMC8855348 DOI: 10.1038/s41586-021-03538-8] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
Homologous recombination (HR) repairs DNA double-strand breaks (DSBs) in the S and G2 phases of the cell cycle1-3. Several HR proteins are preferentially recruited to DSBs at transcriptionally active loci4-10, but how transcription promotes HR is poorly understood. Here we develop an assay to assess the effect of local transcription on HR. Using this assay, we find that transcription stimulates HR to a substantial extent. Tethering RNA transcripts to the vicinity of DSBs recapitulates the effects of local transcription, which suggests that transcription enhances HR through RNA transcripts. Tethered RNA transcripts stimulate HR in a sequence- and orientation-dependent manner, indicating that they function by forming DNA-RNA hybrids. In contrast to most HR proteins, RAD51-associated protein 1 (RAD51AP1) only promotes HR when local transcription is active. RAD51AP1 drives the formation of R-loops in vitro and is required for tethered RNAs to stimulate HR in cells. Notably, RAD51AP1 is necessary for the DSB-induced formation of DNA-RNA hybrids in donor DNA, linking R-loops to D-loops. In vitro, RAD51AP1-generated R-loops enhance the RAD51-mediated formation of D-loops locally and give rise to intermediates that we term 'DR-loops', which contain both DNA-DNA and DNA-RNA hybrids and favour RAD51 function. Thus, at DSBs in transcribed regions, RAD51AP1 promotes the invasion of RNA transcripts into donor DNA, and stimulates HR through the formation of DR-loops.
Collapse
Affiliation(s)
- Jian Ouyang
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA.
| | - Tribhuwan Yadav
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Jia-Min Zhang
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Haibo Yang
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Esther Rheinbay
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
| | - Hongshan Guo
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Howard Hughes Medical Institute, Massachusetts General Hospital, Charlestown, MA, USA
| | - Daniel A Haber
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Howard Hughes Medical Institute, Massachusetts General Hospital, Charlestown, MA, USA
| | - Li Lan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA, USA.
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Feng Y, Liu S, Chen R, Xie A. Target binding and residence: a new determinant of DNA double-strand break repair pathway choice in CRISPR/Cas9 genome editing. J Zhejiang Univ Sci B 2021; 22:73-86. [PMID: 33448189 PMCID: PMC7818014 DOI: 10.1631/jzus.b2000282] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/24/2020] [Indexed: 12/26/2022]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) is widely used for targeted genomic and epigenomic modifications and imaging in cells and organisms, and holds tremendous promise in clinical applications. The efficiency and accuracy of the technology are partly determined by the target binding affinity and residence time of Cas9-single-guide RNA (sgRNA) at a given site. However, little attention has been paid to the effect of target binding affinity and residence duration on the repair of Cas9-induced DNA double-strand breaks (DSBs). We propose that the choice of DSB repair pathway may be altered by variation in the binding affinity and residence duration of Cas9-sgRNA at the cleaved target, contributing to significantly heterogeneous mutations in CRISPR/Cas9 genome editing. Here, we discuss the effect of Cas9-sgRNA target binding and residence on the choice of DSB repair pathway in CRISPR/Cas9 genome editing, and the opportunity this presents to optimize Cas9-based technology.
Collapse
Affiliation(s)
- Yili Feng
- Innovation Center for Minimally Invasive Technique and Device, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310019, China.
- Department of Biochemistry and Molecular Biology, Zhejiang University School of Medicine, Hangzhou 310058, China.
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China.
| | - Sicheng Liu
- Innovation Center for Minimally Invasive Technique and Device, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310019, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
| | - Ruodan Chen
- Innovation Center for Minimally Invasive Technique and Device, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310019, China
- Department of Biochemistry and Molecular Biology, Zhejiang University School of Medicine, Hangzhou 310058, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China
| | - Anyong Xie
- Innovation Center for Minimally Invasive Technique and Device, Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310019, China.
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, China.
| |
Collapse
|
8
|
XRN2 Links RNA:DNA Hybrid Resolution to Double Strand Break Repair Pathway Choice. Cancers (Basel) 2020; 12:cancers12071821. [PMID: 32645903 PMCID: PMC7408924 DOI: 10.3390/cancers12071821] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/02/2020] [Accepted: 07/02/2020] [Indexed: 12/17/2022] Open
Abstract
It was recently shown that the 5’ to 3’ exoribonuclease XRN2 is involved in the DNA damage response. Importantly, loss of XRN2 abrogates DNA double stranded break repair via the non-homologous end-joining pathway. However, the mechanistic details of how XRN2 functions in the non-homologous end-joining repair process are unknown. In this study, we elucidated that XRN2-mediated RNA:DNA hybrid resolution is required to allow Ku70 binding to DNA ends. These data suggest that XRN2 is required for the initiation of non-homologous end-joining repair. Interestingly, we uncovered a role for XRN2 in the homologous recombination repair pathway. Loss of XRN2 lead to a decrease in the repair of double strand breaks by homologous recombination. Strikingly, when we removed RNA:DNA hybrids by RNaseH1 over-expression, homologous recombination was not restored. We found RNA:DNA hybrid formation at and downstream of the DSB site, suggesting that unregulated transcription inhibits homologous recombination repair. In summary, our results indicate a relation between RNA:DNA hybrid resolution and double strand break repair pathway choice.
Collapse
|
9
|
Sas K, Szabó E, Vécsei L. Mitochondria, Oxidative Stress and the Kynurenine System, with a Focus on Ageing and Neuroprotection. Molecules 2018; 23:molecules23010191. [PMID: 29342113 PMCID: PMC6017505 DOI: 10.3390/molecules23010191] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/14/2018] [Accepted: 01/15/2018] [Indexed: 12/14/2022] Open
Abstract
In this review, the potential causes of ageing are discussed. We seek to gain insight into the main physiological functions of mitochondria and discuss alterations in their function and the genome, which are supposed to be the central mechanisms in senescence. We conclude by presenting the potential modulating role of the kynurenine pathway in the ageing processes. Mitochondrial dynamics are supposed to have important physiological roles in maintaining cell homeostasis. During ageing, a decrease in mitochondrial dynamics was reported, potentially compromising the function of mitochondria. Mitochondrial biogenesis not only encompasses mitochondrial dynamics, but also the regulation of transcription and translation of genes, and mitochondria are supposed to play a prominent role in cell death during senescence. Defects in the mtDNA replication machinery and failure in the repair of mtDNA might result in the accumulation of mutations, leading to mitochondrial dysfunction and bioenergetic failure of the cell. The role of reactive oxygen species (ROS) in the ageing processes is widely acknowledged. Exaggerated oxidative damage to mDNA is supposed to take place during senescence, including single-nucleotide base alterations, nucleotide base pair alterations, chain breaks and cross linkage. A broad repertoire for the repair of DNA faults has evolved, but they do not function efficiently during senescence. Poly (ADP-ribose) polymerase (PARP) is an enzyme that assists in DNA repair, i.e., it participates in the repair of single-stranded DNA nicks, initiating base excision repair (BER). In the case of extensive DNA damage, PARP-1 becomes overactivated and rapidly depletes the intracellular NAD+ and ATP pools. This results in a profound energy loss of the cell and leads to cell dysfunction, or even cell death. Alterations in the kynurenine system have been linked with ageing processes and several age-related disorders. The kynurenine pathway degrades tryptophan (TRP) to several metabolites, among others kynurenine (KYN), kynurenic acid (KYNA) and quinolinic acid (QUIN). The end product of the route is NAD+. The first metabolic reaction is mediated by TRP-2,3-dioxygenase (TDO) or indolamine-2,3-dioxygenases (IDO), the latter being induced by inflammation, and it is thought to have a significant role in several disorders and in ageing. Research is currently focusing on the KYN pathway, since several intermediates possess neuro- and immunoactive properties, and hence are capable of modulating the activity of certain brain cells and inflammatory responses. During ageing, and in many age-associated disorders like obesity, dyslipidaemia, hypertension, insulin resistance and neurodegenerative diseases, low-grade, sustained inflammation and upregulation of IDO have been reported. However, TRP downstream catabolites create a negative feedback loop by weakening the activated immune system through several actions, including a decline in the Th1 response and an enhancement of Th2-type processes. The broad actions of the KYN-intermediates in brain excitation/inhibition and their role in regulating immune responses may provide the possibility of modifying the pathological processes in an array of age-associated diseases in the future.
Collapse
Affiliation(s)
- Katalin Sas
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, 6725 Szeged, Hungary.
| | - Elza Szabó
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, 6725 Szeged, Hungary.
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, 6725 Szeged, Hungary.
- MTA-SZTE Neuroscience Research Group, Semmelweis u. 6, 6725 Szeged, Hungary.
| |
Collapse
|