1
|
Yousafzai NA, El Khalki L, Wang W, Szpendyk J, Sossey-Alaoui K. Kindlin-2 regulates the oncogenic activities of integrins and TGF-β in triple-negative breast cancer progression and metastasis. Oncogene 2024; 43:3291-3305. [PMID: 39300257 PMCID: PMC11534691 DOI: 10.1038/s41388-024-03166-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
Kindlin-2, an adapter protein, is dysregulated in various human cancers, including triple-negative breast cancer (TNBC), where it drives tumor progression and metastasis by influencing several cancer hallmarks. One well-established role of Kindlin-2 involves the regulation of integrin signaling, achieved by directly binding to the cytoplasmic tail of the integrin β subunit. In this study, we present novel insights into Kindlin-2's involvement in stabilizing the β1-Integrin:TGF-β type 1 receptor (TβRI) complexes, acting as a physical bridge that links β1-Integrin to TβRI. Loss of Kindlin-2 results in the degradation of this protein complex, leading to the inhibition of downstream oncogenic pathways. We used a diverse range of in vitro assays, including CRISPR/Cas9 gene editing, cell migration, 3D-tumorsphere formation and invasion, solid binding, co-immunoprecipitation, cell adhesion and spreading assays, as well as western blot and flow cytometry analyses, utilizing MDA-MB-231 and 4T1 TNBC cell lines. Additionally, preclinical in vivo mouse models of TNBC tumor progression and metastasis were employed to substantiate our findings. Our studies established the direct interaction between Kindlin-2 and β1-Integrin and between Kindlin-2 and TβRI. Disruption of these interactions, via CRISPR/Cas9-mediated knockout of Kindlin-2, led to the degradation of β1-Integrin and TβRI, resulting in the inhibition of oncogenic pathways downstream of both proteins, subsequently hindering tumor growth and metastasis. Treatment of Kindlin-2-deficient cells with the proteasome inhibitor MG-132 restored the expression of both β1-Integrin and TβRI. Furthermore, the rescue of Kindlin-2 expression reinstated their oncogenic activities in vitro and in vivo, while Kindlin-2 lacking domains involved in the interaction of Kindlin-2 with β1-Integrin or TβRI did not. This study identifies a novel function of Kindlin-2 in stabilizing the β1-Integrin:TβRI complexes and regulating their downstream oncogenic signaling. The translational implications of these findings are substantial, potentially unveiling new therapeutically targeted pathways crucial for the treatment of TNBC tumors.
Collapse
Affiliation(s)
- Neelum Aziz Yousafzai
- MetroHealth System, Cleveland, OH, USA
- Case Western Reserve University, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Cleveland, OH, 44109, USA
| | - Lamyae El Khalki
- MetroHealth System, Cleveland, OH, USA
- Case Western Reserve University, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Cleveland, OH, 44109, USA
| | - Wei Wang
- MetroHealth System, Cleveland, OH, USA
- Case Comprehensive Cancer Center, Cleveland, OH, 44109, USA
| | | | - Khalid Sossey-Alaoui
- MetroHealth System, Cleveland, OH, USA.
- Case Western Reserve University, Cleveland, OH, USA.
- Case Comprehensive Cancer Center, Cleveland, OH, 44109, USA.
| |
Collapse
|
2
|
Yousafzai NA, El Khalki L, Wang W, Szpendyk J, Sossey-Alaoui K. Kindlin-2 Regulates the Oncogenic Activities of Integrins and TGF-β In Triple Negative Breast Cancer Progression and Metastasis. RESEARCH SQUARE 2024:rs.3.rs-3914650. [PMID: 38405979 PMCID: PMC10889066 DOI: 10.21203/rs.3.rs-3914650/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Background Kindlin-2, an adaptor protein, is dysregulated in various human cancers, including triple negative breast cancer (TNBC), where it drives tumor progression and metastasis by influencing several cancer hallmarks. One well-established role of Kindlin-2 involves the regulation of integrin signaling, achieved by directly binding to the cytoplasmic tail of the integrin β subunit. In this study, we present novel insights into Kindlin-2's involvement in stabilizing the β1-Integrin:TGF-β type 1 receptor (TβRI) complexes, acting as a physical bridge that links β1-Integrin to TβRI. The loss of Kindlin-2 results in the degradation of this protein complex, leading to the inhibition of downstream oncogenic pathways. Methods Our methodology encompassed a diverse range of in vitro assays, including CRISPR/Cas9 gene editing, cell migration, 3D tumorsphere formation and invasion, solid binding, co-immunoprecipitation, cell adhesion and spreading assays, as well as western blot and flow cytometry analyses, utilizing MDA-MB-231 and 4T1 TNBC cell lines. Additionally, preclinical in vivo mouse models of TNBC tumor progression and metastasis were employed to substantiate our findings. Results The investigation revealed that the direct interaction between Kindlin-2 and β1-Integrin is mediated through the C-terminal F3 domain of Kindlin-2, while the interaction between Kindlin-2 and TβRI is facilitated through the F2 domain of Kindlin-2. Disruption of this bridge, achieved via CRISPR/Cas9-mediated knockout of Kindlin-2, led to the degradation of β1-Integrin and TβRI, resulting in the inhibition of oncogenic pathways downstream of both proteins, subsequently hindering tumor growth and metastasis. Treatment of Kindlin-2-deficient cells with the proteasome inhibitor MG-132 restored the expression of both β1-Integrin and TβRI. Furthermore, the rescue of Kindlin-2 expression reinstated their oncogenic activities both in vitro and in vivo. Conclusions This study identifies a novel function of Kindlin-2 in stabilizing the β1-Integrin:TβR1 complexes and regulating their downstream oncogenic signaling. The translational implications of these findings are substantial, potentially unveiling new therapeutically targeted pathways crucial for the treatment of TNBC tumors.
Collapse
|
3
|
Yadav RP, Baranwal S. Kindlin-2 regulates colonic cancer stem-like cells survival and self-renewal via Wnt/β-catenin mediated pathway. Cell Signal 2024; 113:110953. [PMID: 38084837 DOI: 10.1016/j.cellsig.2023.110953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 12/18/2023]
Abstract
BACKGROUND Cancer Stem Cells (CSCs) have emerged as a critical mediator in recurrence and resistance in cancers. Kindlin-isoform (1 and 2) binds with cytoplasmic β-tail of integrin and are essential co-activators of integrin function. Given their important function in regulating cancer hallmarks such as cell proliferation, invasion, migration, and metastasis, we hypothesize that it might play a critical role in CSC growth, survival, and self-renewal of colon cancer. MATERIALS AND METHODS Using knockdown approaches, we inhibited Kindlin-2 expression in HCT116 and HT29 colon cancer cells. Extreme limiting dilution and self-renewal assay were performed to measure the role of Kindlin in colonic CSC. Standard methods such as qRT-PCR and western blotting were carried out to understand the signaling cascade by which Kindlin regulates CSC marker expression and downstream targets. RESULTS Our data show isoform-specific upregulation of Kindlin-2 in colonic CSCs. The silencing of Kindlin-2 reduces colonosphere formation, decreases CSC size, and self-renewal marker genes such as CD-133, CXCR-4, LGR-5, and C-MYC. Kindlin-2 silencing reduces colonosphere proliferation, invasion, and migration of colonic CSCs. Mechanistically, Kindlin-2 silencing reduces the expression, and nuclear localization of β-catenin, and decreases β-catenin target genes such as C-MYC, cyclin D1, DKK-1, and Snail-1. CONCLUSION Our study delineates the isoform-specific activity of Kindlin-2 in regulating Colonic CSC. Isoform-specific targeting of Kindlin-2 may be a novel strategy to tackle this devastating disease.
Collapse
Affiliation(s)
- Ravi Prakash Yadav
- Department of Microbiology, Gastrointestinal Disease Lab, Room 522 Academic Building, Central University of Punjab, School of Basic Science, VPO Ghudda, Bathinda, Punjab 151401, India
| | - Somesh Baranwal
- Department of Microbiology, Gastrointestinal Disease Lab, Room 522 Academic Building, Central University of Punjab, School of Basic Science, VPO Ghudda, Bathinda, Punjab 151401, India.
| |
Collapse
|
4
|
Wang Z, Zhang L, Li B, Song J, Yu M, Zhang J, Chen C, Zhan J, Zhang H. Kindlin-2 in myoepithelium controls luminal progenitor commitment to alveoli in mouse mammary gland. Cell Death Dis 2023; 14:675. [PMID: 37833248 PMCID: PMC10576046 DOI: 10.1038/s41419-023-06184-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/11/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023]
Abstract
Myoepithelium plays an important role in mammary gland development, but less is known about the molecular mechanism underlying how myoepithelium controls acinus differentiation during gestation. Herein, we found that loss of Kindlin-2 in myoepithelial cells impaired mammary morphogenesis, alveologenesis, and lactation. Using five genetically modified mouse lines combined with single-cell RNA sequencing, we found a Kindlin-2-Stat3-Dll1 signaling cascade in myoepithelial cells that inactivates Notch signaling in luminal cells and consequently drives luminal progenitor commitment to alveolar cells identity. Single-cell profiling revealed that Kindlin-2 loss significantly reduces the proportion of matured alveolar cells. Mechanistically, Kindlin-2 depletion in myoepithelial cells promotes Stat3 activation and upregulates Dll1, which activates the Notch pathway in luminal cells and inhibits luminal progenitor differentiation and maturation during gestation. Inhibition of Notch1 with tangeretin allowed luminal progenitors to regain commitment ability in the pregnant mice with Kindlin-2 depletion in myoepithelium. Taken together, we demonstrated that Kindlin-2 is essential to myoepithelium-controlled luminal progenitors to alveoli transition during gestation.
Collapse
Affiliation(s)
- Zhenbin Wang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, 100191, Beijing, China
| | - Lei Zhang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, 100191, Beijing, China
| | - Bing Li
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, 100191, Beijing, China
- Department of Histology and Embryology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, 050200, China
| | - Jiagui Song
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, 100191, Beijing, China
| | - Miao Yu
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, 100191, Beijing, China
| | - Jing Zhang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, 100191, Beijing, China
| | - Ceshi Chen
- Academy of Biomedical Engineering, Kunming Medical University, Kunming, 650500, China.
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
| | - Jun Zhan
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, 100191, Beijing, China.
| | - Hongquan Zhang
- Program for Cancer and Cell Biology, Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences; Peking University International Cancer Institute; MOE Key Laboratory of Carcinogenesis and Translational Research and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, 100191, Beijing, China.
| |
Collapse
|
5
|
Githaka JM, Pirayeshfard L, Goping IS. Cancer invasion and metastasis: Insights from murine pubertal mammary gland morphogenesis. Biochim Biophys Acta Gen Subj 2023; 1867:130375. [PMID: 37150225 DOI: 10.1016/j.bbagen.2023.130375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/20/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Cancer invasion and metastasis accounts for the majority of cancer related mortality. A better understanding of the players that drive the aberrant invasion and migration of tumors cells will provide critical targets to inhibit metastasis. Postnatal pubertal mammary gland morphogenesis is characterized by highly proliferative, invasive, and migratory normal epithelial cells. Identifying the molecular regulators of pubertal gland development is a promising strategy since tumorigenesis and metastasis is postulated to be a consequence of aberrant reactivation of developmental stages. In this review, we summarize the pubertal morphogenesis regulators that are involved in cancer metastasis and revisit pubertal mammary gland transcriptome profiling to uncover both known and unknown metastasis genes. Our updated list of pubertal morphogenesis regulators shows that most are implicated in invasion and metastasis. This review highlights molecular linkages between development and metastasis and provides a guide for exploring novel metastatic drivers.
Collapse
Affiliation(s)
- John Maringa Githaka
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Leila Pirayeshfard
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | - Ing Swie Goping
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada; Department of Oncology, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| |
Collapse
|
6
|
Ihog proteins contribute to integrin-mediated focal adhesions. SCIENCE CHINA. LIFE SCIENCES 2023; 66:366-375. [PMID: 36103028 DOI: 10.1007/s11427-022-2154-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/27/2022] [Indexed: 10/14/2022]
Abstract
Integrin expression forms focal adhesions, but how this process is physiologically regulated is unclear. Ihog proteins are evolutionarily conserved, playing roles in Hedgehog signaling and serving as trans-homophilic adhesion molecules to mediate cell-cell interactions. Whether these proteins are also engaged in other cell adhesion processes remains unknown. Here, we report that Drosophila Ihog proteins function in the integrin-mediated adhesions. Removal of Ihog proteins causes blister and spheroidal muscle in wings and embryos, respectively. We demonstrate that Ihog proteins interact with integrin via the extracellular portion and that their removal perturbs integrin distribution. Finally, we show that Boc, a mammalian Ihog protein, rescues the embryonic defects caused by removing its Drosophila homologs. We thus propose that Ihog proteins contribute to integrin-mediated focal adhesions.
Collapse
|
7
|
张 京, 宋 佳, 王 振, 龚 玉, 王 天, 周 津, 战 军, 张 宏. [Kindlin-2 regulates endometrium development via mTOR and Hippo signaling pathways in mice]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2022; 54:846-852. [PMID: 36241227 PMCID: PMC9568384 DOI: 10.19723/j.issn.1671-167x.2022.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Indexed: 06/16/2023]
Abstract
OBJECTIVE To investigate the effects and mechanisms of Kindlin-2 on uterus development and reproductive capacity in female mice. METHODS Cdh16-Cre tool mice and Kindlin-2flox/flox mice were used to construct the mouse model of uterus specific knockout of Kindlin-2, and the effects of Kindlin-2 deletion on uterine development and reproduction capacity of female mice were observed. High expression and knockdown of Kindlin-2 in endometrial cancer cell lines HEC-1 and Ish were used to detect the regulation of mammalian target of rapamycin (mTOR) signaling pathway. In addition, uterine proteins of the female mice with specific knockout of Kindlin-2 and female mice in the control group were extracted to detect the protein levels of key molecules of mTOR signaling pathway and Hippo signaling pathway. RESULTS The mouse model of uterine specific knockout of Kindlin-2 was successfully constructed. The knockout efficiency of Kindlin-2 in mouse uterus was identified and verified by mouse tail polymerase chain reaction (PCR), Western blot protein identification, immunohistochemical staining (IHC) and other methods. Compared with the control group, the female mice with uterus specific deletion of Kindlin-2 lost weight, seriously impaired reproductive ability, and the number of newborn mice decreased, but the proportion of the female mice and male mice in the newborn mice did not change. Hematoxylin eosin staining (HE) experiment showed that the endometrium of Kindlin-2 knockout group was incomplete and the thickness of uterine wall became thinner. In terms of mechanism, the deletion of Kindlin-2 in endo-metrial cancer cell lines HEC-1 and Ish could downregulate the protein levels of mTOR, phosphorylated mTOR, adenosine monophosphate-activated protein kinase (AMPK), phosphorylated AMPK and phosphorylated ribosomal protein S6 (S6), and the mTOR signal pathway was inhibited. It was found that the specific deletion of Kindlin-2 could upregulate the protein levels of Mps one binding 1 (MOB1) and phosphorylated Yes-associated protein (YAP) in the uterus of the female mice, and the Hippo signal pathway was activated. CONCLUSION Kindlin-2 inhibits the development of uterus by inhibiting mTOR signal pathway and activating Hippo signal pathway, thereby inhibiting the fertility of female mice.
Collapse
Affiliation(s)
- 京 张
- 北京大学基础医学院人体解剖与组织胚胎学系,北京 100191Department of Human Anatomy, Histology and Embryology, Peking University School of Basic Medical Sciences, Beijing 100191, China
| | - 佳桂 宋
- 北京大学基础医学院人体解剖与组织胚胎学系,北京 100191Department of Human Anatomy, Histology and Embryology, Peking University School of Basic Medical Sciences, Beijing 100191, China
- 北京大学第三医院医学创新研究院基础医学研究中心,北京 100191Center of Basic Medical Research, Institute of Medical Innovation and Research, Cancer Center, Peking University Third Hospital, Beijing 100191, China
| | - 振斌 王
- 北京大学基础医学院人体解剖与组织胚胎学系,北京 100191Department of Human Anatomy, Histology and Embryology, Peking University School of Basic Medical Sciences, Beijing 100191, China
| | - 玉清 龚
- 北京大学基础医学院人体解剖与组织胚胎学系,北京 100191Department of Human Anatomy, Histology and Embryology, Peking University School of Basic Medical Sciences, Beijing 100191, China
| | - 天卓 王
- 北京大学基础医学院人体解剖与组织胚胎学系,北京 100191Department of Human Anatomy, Histology and Embryology, Peking University School of Basic Medical Sciences, Beijing 100191, China
| | - 津羽 周
- 北京大学基础医学院人体解剖与组织胚胎学系,北京 100191Department of Human Anatomy, Histology and Embryology, Peking University School of Basic Medical Sciences, Beijing 100191, China
| | - 军 战
- 北京大学基础医学院人体解剖与组织胚胎学系,北京 100191Department of Human Anatomy, Histology and Embryology, Peking University School of Basic Medical Sciences, Beijing 100191, China
| | - 宏权 张
- 北京大学基础医学院人体解剖与组织胚胎学系,北京 100191Department of Human Anatomy, Histology and Embryology, Peking University School of Basic Medical Sciences, Beijing 100191, China
| |
Collapse
|
8
|
Chi X, Luo W, Song J, Li B, Su T, Yu M, Wang T, Wang Z, Liu C, Li Z, He H, Zhan J, Zhang H. Kindlin-2 in Sertoli cells is essential for testis development and male fertility in mice. Cell Death Dis 2021; 12:604. [PMID: 34117213 PMCID: PMC8196014 DOI: 10.1038/s41419-021-03885-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/16/2022]
Abstract
Kindlin-2 is known to play important roles in the development of mesoderm-derived tissues including myocardium, smooth muscle, cartilage and blood vessels. However, nothing is known for the role of Kindlin-2 in mesoderm-derived reproductive organs. Here, we report that loss of Kindlin-2 in Sertoli cells caused severe testis hypoplasia, abnormal germ cell development and complete infertility in male mice. Functionally, loss of Kindlin-2 inhibits proliferation, increases apoptosis, impairs phagocytosis in Sertoli cells and destroyed the integration of blood-testis barrier structure in testes. Mechanistically, Kindlin-2 interacts with LATS1 and YAP, the key components of Hippo pathway. Kindlin-2 impedes LATS1 interaction with YAP, and depletion of Kindlin-2 enhances LATS1 interaction with YAP, increases YAP phosphorylation and decreases its nuclear translocation. For clinical relevance, lower Kindlin-2 expression and decreased nucleus localization of YAP was found in SCOS patients. Collectively, we demonstrated that Kindlin-2 in Sertoli cells is essential for sperm development and male reproduction.
Collapse
Affiliation(s)
- Xiaochun Chi
- Department of Human Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Weiwei Luo
- Department of Human Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Jiagui Song
- Department of Human Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Bing Li
- Department of Human Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Tiantian Su
- Department of Human Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Miao Yu
- Department of Human Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Tianzhuo Wang
- Department of Human Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Zhenbin Wang
- Department of Human Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Cheng Liu
- Department of Human Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China
| | - Zhen Li
- Department of Histology and Embryology, the Fourth Military Medical University, Xi'an, 710032, China
| | - Huiying He
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | - Jun Zhan
- Department of Human Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China.
| | - Hongquan Zhang
- Department of Human Anatomy, Histology and Embryology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) and State Key Laboratory of Natural and Biomimetic Drugs, Peking University Health Science Center, Beijing, 100191, China.
| |
Collapse
|
9
|
Integrin-mediated adhesion and mechanosensing in the mammary gland. Semin Cell Dev Biol 2020; 114:113-125. [PMID: 33187835 DOI: 10.1016/j.semcdb.2020.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 10/17/2020] [Accepted: 10/23/2020] [Indexed: 12/22/2022]
Abstract
The mammary gland is dynamically remodelled during its postnatal development and the reproductive cycles. This inherent plasticity has been suggested to increase the susceptibility of the organ to carcinogenesis. Morphological changes in the mammary epithelium involve cell proliferation, differentiation, apoptosis, and migration which, in turn, are affected by cell adhesion to the extracellular matrix (ECM). Integrin adhesion receptors function in the sensing of the biochemical composition, patterning and mechanical properties of the ECM surrounding the cells, and strongly influence cell fate. This review aims to summarize the existing literature on how different aspects of integrin-mediated adhesion and mechanosensing, including ECM composition; stiffness and topography; integrin expression patterns; focal adhesion assembly; dynamic regulation of the actin cytoskeleton; and nuclear mechanotransduction affect mammary gland development, function and homeostasis. As the mechanical properties of a complex tissue environment are challenging to replicate in vitro, emphasis has been placed on studies conducted in vivo or using organoid models. Outright, these studies indicate that mechanosensing also contributes to the regulation of mammary gland morphogenesis in multiple ways.
Collapse
|
10
|
Wang W, Kansakar U, Markovic V, Sossey-Alaoui K. Role of Kindlin-2 in cancer progression and metastasis. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:901. [PMID: 32793745 DOI: 10.21037/atm.2020.03.64] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cancer metastasis is a complex and multistep process whereby cancer cells escape the confines of the primary site to establish a new residency at distant sites. This multistep process is also known as the invasion-metastasis cascade. The biological and molecular mechanisms that control the invasion-metastasis cascade, which ultimately leads to the spread of cancer cells into distant sites, remain poorly understood. Kindlin-2 (K2) belongs to the 4.1-ezrin-ridixin-moesin (FERM) domain family of proteins, which interact with the cytoplasmic tails of β-integrin subunits, leading to the activation of extensive biological functions. These biological functions include cell migration, differentiation, cancer initiation, development, and invasion. In this review, we will discuss the various molecular signaling pathways that are regulated by K2 during the invasion-metastasis cascade of cancer tumors. These signaling pathways include TGFβ, Wnt/β-Catenin, Hedgehog, p53 and senescence, and cancer stem cell (CSC) maintenance. We will also discuss the molecular signaling pathways that regulate K2 function both at the transcriptional and the posttranslational levels. Finally, we will consider molecular mechanisms to specifically target K2 as novel therapeutic options for cancer treatment.
Collapse
Affiliation(s)
- Wei Wang
- Case Western Reserve University, Cleveland, OH, USA.,Division of Cancer Biology, MetroHealth System, Cleveland, OH, USA
| | - Urna Kansakar
- Case Western Reserve University, Cleveland, OH, USA.,Division of Cancer Biology, MetroHealth System, Cleveland, OH, USA
| | - Vesna Markovic
- Division of Cancer Biology, MetroHealth System, Cleveland, OH, USA
| | - Khalid Sossey-Alaoui
- Case Western Reserve University, Cleveland, OH, USA.,Division of Cancer Biology, MetroHealth System, Cleveland, OH, USA
| |
Collapse
|
11
|
Lu X, Yang R, Zhang L, Xi Y, Zhao J, Wang F, Zhang H, Li Z. Macrophage Colony-stimulating Factor Mediates the Recruitment of Macrophages in Triple negative Breast Cancer. Int J Biol Sci 2019; 15:2859-2871. [PMID: 31853223 PMCID: PMC6909971 DOI: 10.7150/ijbs.39063] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/17/2019] [Indexed: 12/31/2022] Open
Abstract
Triple negative breast cancer (TNBC) is characterized by aggressive malignant tumor, poor prognosis and lack of targeted treatment. Several studies have established that macrophages are closely associated with the progression of TNBC. Through immunohistochemical analysis, we found that the infiltration of macrophage in TNBC tissue was more than that in non-triple negative breast cancer (nTNBC) tissue. Furthermore, the conditioned medium (CM) of MDA-MB-231 and HCC1937, the TNBC cell lines, had significant migration-promoted effect on macrophages. However, the macrophages migration-promoted ability of nTNBC cell line MCF-7 was weaker than that of MDA-MB-231 and HCC1937 cells. Mechanistically, MDA-MB-231 and HCC1937 cells secreted more macrophage colony-stimulating factor (M-CSF) than MCF-7, which is the main inducer of macrophage migration, and the secreted M-CSF promoted the increase in actin and the elongation of pseudopodia. When M-CSF was neutralized by antibody, the elongation of macrophage pseudopodia was disappeared and the migration was inhibited. In vivo, there were more macrophages in tumors induced by MDA-MB-231 than MCF-7 did. Therefore, M-CSF specially secreted by TNBC was the important cause of macrophages aggregation in TNBC, which further promoted the aggressiveness of TNBC.
Collapse
Affiliation(s)
- Xiaoqing Lu
- Breast surgery, the second Hospital of Shanxi Medical University, Taiyuan 030001,
| | - Rui Yang
- The second Clinical Medical College, Shanxi Medical University, Taiyuan 030001,
| | - Lichao Zhang
- Institute of Biomedical Sciences, Shanxi University, Taiyuan 030006, China.
| | - Yanfeng Xi
- Department of Pathology, Shanxi Cancer Hospital, Taiyuan 030001, China.
| | - Jiping Zhao
- Breast surgery, the second Hospital of Shanxi Medical University, Taiyuan 030001,
| | - Fusheng Wang
- Breast surgery, the second Hospital of Shanxi Medical University, Taiyuan 030001, China. . 13099096632
| | - Huanhu Zhang
- Department of Digestive Sciences, Shanxi Cancer Hospital, Taiyuan 030001, China. . 18035119990
| | - Zhuoyu Li
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University, Taiyuan, 030006, China. . 13934565188.,School of Life Science, Shanxi University, Taiyuan, 030006, China. . 13934565188
| |
Collapse
|
12
|
C1orf106, an innate immunity activator, is amplified in breast cancer and is required for basal-like/luminal progenitor fate decision. SCIENCE CHINA-LIFE SCIENCES 2019; 62:1229-1242. [PMID: 31376015 DOI: 10.1007/s11427-019-9570-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/03/2019] [Indexed: 01/29/2023]
Abstract
Basal-like breast cancer with a luminal progenitor gene expression profile is an aggressive subtype of breast cancer with a poorer prognosis compared with other subtypes. However, genes that specifically promote basal-like breast cancer development remain largely unknown. Here, we report that a novel gene C1orf106 plays an important role in maintaining the feature of basal-like/luminal progenitors. C1orf106 is frequently amplified and overexpressed in basal-like breast cancer and is associated with a poor outcome in patients. In human TCGA database, C1orf106 expression was correlated with upregulation of ELF5 and downregulation of GATA3, two transcription factors that regulate mammary gland stem cell fate. Enhanced expression of C1orf106 promotes tumor progression and expression of basal-like/luminal progenitor marker ELF5; depletion of C1orf106 suppresses tumorigenesis and expression of basal-like/luminal progenitor marker GATA3. These findings suggest that C1orf106 maintains the basal-like/luminal progenitor character through balancing the expression of ELF5 and GATA3. Taken together, we demonstrated that C1orf106 is an important regulator for basal-like/luminal progenitors and targeting C1orf106 is of therapeutic value for breast cancer.
Collapse
|
13
|
Yuan D, Tao Y, Chen G, Shi T. Systematic expression analysis of ligand-receptor pairs reveals important cell-to-cell interactions inside glioma. Cell Commun Signal 2019; 17:48. [PMID: 31118022 PMCID: PMC6532229 DOI: 10.1186/s12964-019-0363-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/10/2019] [Indexed: 12/17/2022] Open
Abstract
Background Glioma is the most commonly diagnosed malignant and aggressive brain cancer in adults. Traditional researches mainly explored the expression profile of glioma at cell-population level, but ignored the heterogeneity and interactions of among glioma cells. Methods Here, we firstly analyzed the single-cell RNA-seq (scRNA-seq) data of 6341 glioma cells using manifold learning and identified neoplastic and healthy cells infiltrating in tumor microenvironment. We systematically revealed cell-to-cell interactions inside gliomas based on corresponding scRNA-seq and TCGA RNA-seq data. Results A total of 16 significantly correlated autocrine ligand-receptor signal pairs inside neoplastic cells were identified based on the scRNA-seq and TCGA data of glioma. Furthermore, we explored the intercellular communications between cancer stem-like cells (CSCs) and macrophages, and identified 66 ligand-receptor pairs, some of which could significantly affect prognostic outcomes. An efficient machine learning model was constructed to accurately predict the prognosis of glioma patients based on the ligand-receptor interactions. Conclusion Collectively, our study not only reveals functionally important cell-to-cell interactions inside glioma, but also detects potentially prognostic markers for predicting the survival of glioma patients. Electronic supplementary material The online version of this article (10.1186/s12964-019-0363-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dongsheng Yuan
- Center for Bioinformatics and Computational Biology, and Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yiran Tao
- Center for Bioinformatics and Computational Biology, and Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Geng Chen
- Center for Bioinformatics and Computational Biology, and Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Tieliu Shi
- Center for Bioinformatics and Computational Biology, and Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China. .,National Center for International Research of Biological Targeting Diagnosis and Therapy, Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, China.
| |
Collapse
|