1
|
Prokopov D, Tunbak H, Leddy E, Drylie B, Camera F, Deniz Ö. Transposable elements as genome regulators in normal and malignant haematopoiesis. Blood Cancer J 2025; 15:87. [PMID: 40328728 PMCID: PMC12056191 DOI: 10.1038/s41408-025-01295-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/16/2025] [Accepted: 04/23/2025] [Indexed: 05/08/2025] Open
Abstract
Transposable elements (TEs) constitute over half of the human genome and have played a profound role in genome evolution. While most TEs have lost the ability to transpose, many retain functional elements that serve as drivers of genome innovation, including the emergence of novel genes and regulatory elements. Recent advances in experimental and bioinformatic methods have provided new insights into their roles in human biology, both in health and disease. In this review, we discuss the multifaceted roles of TEs in haematopoiesis, highlighting their contributions to both normal and pathological contexts. TEs influence gene regulation by reshaping gene-regulatory networks, modulating transcriptional activity, and creating novel regulatory elements. These activities play key roles in maintaining normal haematopoietic processes and supporting cellular regeneration. However, in haematological malignancies, TE reactivation can disrupt genomic integrity, induce structural variations, and dysregulate transcriptional programmes, thereby driving oncogenesis. By examining the impact of TE activity on genome regulation and variation, we highlight their pivotal roles in both normal haematopoietic processes and haematological cancers.
Collapse
Affiliation(s)
- Dmitry Prokopov
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
- QMUL Centre for Epigenetics, Queen Mary University of London, London, UK
| | - Hale Tunbak
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
- QMUL Centre for Epigenetics, Queen Mary University of London, London, UK
| | - Eve Leddy
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
- QMUL Centre for Epigenetics, Queen Mary University of London, London, UK
| | - Bryce Drylie
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
- QMUL Centre for Epigenetics, Queen Mary University of London, London, UK
| | - Francesco Camera
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK
- QMUL Centre for Epigenetics, Queen Mary University of London, London, UK
| | - Özgen Deniz
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, London, UK.
- QMUL Centre for Epigenetics, Queen Mary University of London, London, UK.
| |
Collapse
|
2
|
Cipta NO, Zeng Y, Wong KW, Zheng ZH, Yi Y, Warrier T, Teo JZ, Teo JHJ, Kok YJ, Bi X, Taneja R, Ong DST, Xu J, Ginhoux F, Li H, Liou YC, Loh YH. Rewiring of SINE-MIR enhancer topology and Esrrb modulation in expanded and naive pluripotency. Genome Biol 2025; 26:107. [PMID: 40296153 PMCID: PMC12036290 DOI: 10.1186/s13059-025-03577-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 04/12/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND The interplay between 3D genomic structure and transposable elements (TE) in regulating cell state-specific gene expression program is largely unknown. Here, we explore the utilization of TE-derived enhancers in naïve and expanded pluripotent states by integrative analysis of genome-wide Hi-C-defined enhancer interactions, H3K27ac HiChIP profiling and CRISPR-guided TE proteomics landscape. RESULTS We find that short interspersed nuclear elements (SINEs) are the more involved TEs in the active chromatin and 3D genome architecture. In particular, mammalian-wide interspersed repeat (MIR), a SINE family member, is highly associated with naïve-specific genomic interactions compared to the expanded state. Primarily, in the naïve pluripotent state, MIR enhancer is co-opted by ESRRB for naïve-specific gene expression program. This ESRRB and MIR enhancer interaction is crucial for the formation of loops that build a network of enhancers and super-enhancers regulating pluripotency genes. We demonstrate that loss of a ESRRB-bound MIR enhancer impairs self-renewal. We also find that MIR is co-bound by structural protein complex, ESRRB-YY1, in the naïve pluripotent state. CONCLUSIONS Altogether, our study highlights the topological regulation of ESRRB on MIR in the naïve potency state.
Collapse
Affiliation(s)
- Nadia Omega Cipta
- Epigenetics and Cell Fates Laboratory, Cell Fate Engineering and Therapeutics Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore
| | - Yingying Zeng
- Epigenetics and Cell Fates Laboratory, Cell Fate Engineering and Therapeutics Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Ka Wai Wong
- Epigenetics and Cell Fates Laboratory, Cell Fate Engineering and Therapeutics Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Zi Hao Zheng
- Epigenetics and Cell Fates Laboratory, Cell Fate Engineering and Therapeutics Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
- Department of Physiology, NUS Yong Loo Lin School of Medicine, 2 Medical Drive, MD9, Singapore, Singapore
| | - Yao Yi
- Epigenetics and Cell Fates Laboratory, Cell Fate Engineering and Therapeutics Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Tushar Warrier
- Epigenetics and Cell Fates Laboratory, Cell Fate Engineering and Therapeutics Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Jian Zhou Teo
- Epigenetics and Cell Fates Laboratory, Cell Fate Engineering and Therapeutics Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| | - Jia Hao Jackie Teo
- Epigenetics and Cell Fates Laboratory, Cell Fate Engineering and Therapeutics Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
- Department of Physiology, NUS Yong Loo Lin School of Medicine, 2 Medical Drive, MD9, Singapore, Singapore
| | - Yee Jiun Kok
- Proteomics Group, Agency for Science, Technology and Research (A*STAR), Bioprocessing Technology Institute (BTI), Singapore, 138668, Singapore
| | - Xuezhi Bi
- Proteomics Group, Agency for Science, Technology and Research (A*STAR), Bioprocessing Technology Institute (BTI), Singapore, 138668, Singapore
| | - Reshma Taneja
- Department of Physiology, NUS Yong Loo Lin School of Medicine, 2 Medical Drive, MD9, Singapore, Singapore
| | - Derrick Sek Tong Ong
- Department of Physiology, NUS Yong Loo Lin School of Medicine, 2 Medical Drive, MD9, Singapore, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
| | - Jian Xu
- Department of Pathology, Center of Excellence for Leukemia Studies, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- INSERM U1015, Paris Saclay University, Gustave Roussy Cancer Campus, Villejuif, France
- Translational Immunology Institute, SingHealth Duke-NUS Academic Medical Centre, Singapore, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hu Li
- Department of Molecular Pharmacology & Experimental Therapeutics, Center for Individualized Medicine, Mayo Clinic, Rochester, MN, 55905, USA
| | - Yih-Cherng Liou
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore.
- NUS Graduate School's Integrative Sciences and Engineering Programme, National University of Singapore, 28 Medical Drive, Singapore, Singapore.
| | - Yuin-Han Loh
- Epigenetics and Cell Fates Laboratory, Cell Fate Engineering and Therapeutics Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive Proteos, Singapore, 138673, Singapore.
- Department of Biological Sciences, Faculty of Science, National University of Singapore, 14 Science Drive 4, Singapore, 117543, Singapore.
- Department of Physiology, NUS Yong Loo Lin School of Medicine, 2 Medical Drive, MD9, Singapore, Singapore.
- NUS Graduate School's Integrative Sciences and Engineering Programme, National University of Singapore, 28 Medical Drive, Singapore, Singapore.
| |
Collapse
|
3
|
Snowbarger J, Koganti P, Spruck C. Evolution of Repetitive Elements, Their Roles in Homeostasis and Human Disease, and Potential Therapeutic Applications. Biomolecules 2024; 14:1250. [PMID: 39456183 PMCID: PMC11506328 DOI: 10.3390/biom14101250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/28/2024] Open
Abstract
Repeating sequences of DNA, or repetitive elements (REs), are common features across both prokaryotic and eukaryotic genomes. Unlike many of their protein-coding counterparts, the functions of REs in host cells remained largely unknown and have often been overlooked. While there is still more to learn about their functions, REs are now recognized to play significant roles in both beneficial and pathological processes in their hosts at the cellular and organismal levels. Therefore, in this review, we discuss the various types of REs and review what is known about their evolution. In addition, we aim to classify general mechanisms by which REs promote processes that are variously beneficial and harmful to host cells/organisms. Finally, we address the emerging role of REs in cancer, aging, and neurological disorders and provide insights into how RE modulation could provide new therapeutic benefits for these specific conditions.
Collapse
Affiliation(s)
| | | | - Charles Spruck
- Cancer Genome and Epigenetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA; (J.S.); (P.K.)
| |
Collapse
|
4
|
Kawase M, Ichiyanagi K. Mouse retrotransposons: sequence structure, evolutionary age, genomic distribution and function. Genes Genet Syst 2024; 98:337-351. [PMID: 37989301 DOI: 10.1266/ggs.23-00221] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023] Open
Abstract
Retrotransposons are transposable elements that are transposed via transcription and reverse transcription. Their copies have accumulated in the genome of mammals, occupying approximately 40% of mammalian genomic mass. These copies are often involved in numerous phenomena, such as chromatin spatial organization, gene expression, development and disease, and have been recognized as a driving force in evolution. Different organisms have gained specific retrotransposon subfamilies and retrotransposed copies, such as hundreds of Mus-specific subfamilies with diverse sequences and genomic locations. Despite this complexity, basic information is still necessary for present-day genomic and epigenomic studies. Herein, we describe the characteristics of each subfamily of Mus-specific retrotransposons in terms of sequence structure, phylogenetic relationships, evolutionary age, and preference for A or B compartments of chromatin.
Collapse
Affiliation(s)
- Masaki Kawase
- Laboratory of Genome and Epigenome Dynamics, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University
| | - Kenji Ichiyanagi
- Laboratory of Genome and Epigenome Dynamics, Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University
| |
Collapse
|
5
|
Klever MK, Sträng E, Hetzel S, Jungnitsch J, Dolnik A, Schöpflin R, Schrezenmeier JF, Schick F, Blau O, Westermann J, Rücker FG, Xia Z, Döhner K, Schrezenmeier H, Spielmann M, Meissner A, Melo US, Mundlos S, Bullinger L. AML with complex karyotype: extreme genomic complexity revealed by combined long-read sequencing and Hi-C technology. Blood Adv 2023; 7:6520-6531. [PMID: 37582288 PMCID: PMC10632680 DOI: 10.1182/bloodadvances.2023010887] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/17/2023] [Accepted: 07/30/2023] [Indexed: 08/17/2023] Open
Abstract
Acute myeloid leukemia with complex karyotype (CK-AML) is associated with poor prognosis, which is only in part explained by underlying TP53 mutations. Especially in the presence of complex chromosomal rearrangements, such as chromothripsis, the outcome of CK-AML is dismal. However, this degree of complexity of genomic rearrangements contributes to the leukemogenic phenotype and treatment resistance of CK-AML remains largely unknown. Applying an integrative workflow for the detection of structural variants (SVs) based on Oxford Nanopore (ONT) genomic DNA long-read sequencing (gDNA-LRS) and high-throughput chromosome confirmation capture (Hi-C) in a well-defined cohort of CK-AML identified regions with an extreme density of SVs. These rearrangements consisted to a large degree of focal amplifications enriched in the proximity of mammalian-wide interspersed repeat elements, which often result in oncogenic fusion transcripts, such as USP7::MVD, or the deregulation of oncogenic driver genes as confirmed by RNA-seq and ONT direct complementary DNA sequencing. We termed this novel phenomenon chromocataclysm. Thus, our integrative SV detection workflow combing gDNA-LRS and Hi-C enables to unravel complex genomic rearrangements at a very high resolution in regions hard to analyze by conventional sequencing technology, thereby providing an important tool to identify novel important drivers underlying cancer with complex karyotypic changes.
Collapse
Affiliation(s)
- Marius-Konstantin Klever
- Division of Hematology, Oncology, and Cancer Immunology, Medical Department, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- RG Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute for Medical Genetics and Human Genetics, Charité University Medicine Berlin, Berlin, Germany
| | - Eric Sträng
- Division of Hematology, Oncology, and Cancer Immunology, Medical Department, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sara Hetzel
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Julius Jungnitsch
- Institute for Medical Genetics and Human Genetics, Charité University Medicine Berlin, Berlin, Germany
- Human Molecular Genomics Group, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Anna Dolnik
- Division of Hematology, Oncology, and Cancer Immunology, Medical Department, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Robert Schöpflin
- RG Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute for Medical Genetics and Human Genetics, Charité University Medicine Berlin, Berlin, Germany
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Jens-Florian Schrezenmeier
- Division of Hematology, Oncology, and Cancer Immunology, Medical Department, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Felix Schick
- Division of Hematology, Oncology, and Cancer Immunology, Medical Department, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Olga Blau
- Division of Hematology, Oncology, and Cancer Immunology, Medical Department, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Labor Berlin – Charité Vivantes GmbH, Berlin, Germany
| | - Jörg Westermann
- Division of Hematology, Oncology, and Cancer Immunology, Medical Department, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Labor Berlin – Charité Vivantes GmbH, Berlin, Germany
| | - Frank G. Rücker
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Zuyao Xia
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Konstanze Döhner
- Department of Internal Medicine III, University Hospital of Ulm, Ulm, Germany
| | - Hubert Schrezenmeier
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics, German Red Cross Blood Transfusion Service Baden-Württemberg-Hessen and University Hospital Ulm, Ulm, Germany
| | - Malte Spielmann
- Human Molecular Genomics Group, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institut für Humangenetik Lübeck, Universität zu Lübeck, Lübeck, Germany
| | - Alexander Meissner
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Uirá Souto Melo
- RG Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute for Medical Genetics and Human Genetics, Charité University Medicine Berlin, Berlin, Germany
| | - Stefan Mundlos
- RG Development and Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
- Institute for Medical Genetics and Human Genetics, Charité University Medicine Berlin, Berlin, Germany
- Labor Berlin – Charité Vivantes GmbH, Berlin, Germany
| | - Lars Bullinger
- Division of Hematology, Oncology, and Cancer Immunology, Medical Department, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Labor Berlin – Charité Vivantes GmbH, Berlin, Germany
- German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
6
|
Han JDJ. LncRNAs: the missing link to senescence nuclear architecture. Trends Biochem Sci 2023; 48:618-628. [PMID: 37069045 DOI: 10.1016/j.tibs.2023.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/24/2023] [Accepted: 03/24/2023] [Indexed: 04/19/2023]
Abstract
During cellular senescence and organismal aging, cells display various molecular and morphological changes. Although many aging-related long noncoding RNAs (lncRNAs) are highly associated with senescence-associated secretory phenotype, the roles of lncRNAs in senescence-associated nuclear architecture and morphological changes are just starting to emerge. Here I review lncRNAs associated with nuclear structure establishment and maintenance, their aging-related changes, and then focus on the pervasive, yet underappreciated, role of RNA double-strand DNA triplexes for lncRNAs to recognize targeted genomic regions, making lncRNAs the nexus between DNA and proteins to regulate nuclear structural changes. Finally, I discuss the future of deciphering direct links of lncRNA changes to various nuclear morphology changes assisted by artificial intelligence and genetic perturbations.
Collapse
Affiliation(s)
- Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, China; International Center for Aging and Cancer (ICAC), The First Affiliated Hospital, Hainan Medical University, Haikou, China.
| |
Collapse
|
7
|
Merkerova MD, Klema J, Kundrat D, Szikszai K, Krejcik Z, Hrustincova A, Trsova I, LE AV, Cermak J, Jonasova A, Belickova M. Noncoding RNAs and Their Response Predictive Value in Azacitidine-treated Patients With Myelodysplastic Syndrome and Acute Myeloid Leukemia With Myelodysplasia-related Changes. Cancer Genomics Proteomics 2022; 19:205-228. [PMID: 35181589 DOI: 10.21873/cgp.20315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/07/2022] [Accepted: 01/14/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND/AIM Prediction of response to azacitidine (AZA) treatment is an important challenge in hematooncology. In addition to protein coding genes (PCGs), AZA efficiency is influenced by various noncoding RNAs (ncRNAs), including long ncRNAs (lncRNAs), circular RNAs (circRNAs), and transposable elements (TEs). MATERIALS AND METHODS RNA sequencing was performed in patients with myelodysplastic syndromes or acute myeloid leukemia before AZA treatment to assess contribution of ncRNAs to AZA mechanisms and propose novel disease prediction biomarkers. RESULTS Our analyses showed that lncRNAs had the strongest predictive potential. The combined set of the best predictors included 14 lncRNAs, and only four PCGs, one circRNA, and no TEs. Epigenetic regulation and recombinational repair were suggested as crucial for AZA response, and network modeling defined three deregulated lncRNAs (CTC-482H14.5, RP11-419K12.2, and RP11-736I24.4) associated with these processes. CONCLUSION The expression of various ncRNAs can influence the effect of AZA and new ncRNA-based predictive biomarkers can be defined.
Collapse
Affiliation(s)
| | - Jiri Klema
- Department of Computer Sciences, Czech Technical University, Prague, Czech Republic
| | - David Kundrat
- Department of Genomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Katarina Szikszai
- Department of Genomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Zdenek Krejcik
- Department of Genomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Andrea Hrustincova
- Department of Genomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Iva Trsova
- Department of Genomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Anh Vu LE
- Department of Computer Sciences, Czech Technical University, Prague, Czech Republic
| | - Jaroslav Cermak
- Laboratory of Anemias, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Anna Jonasova
- First Department of Medicine, General University Hospital, Prague, Czech Republic
| | - Monika Belickova
- Department of Genomics, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| |
Collapse
|
8
|
Grundy EE, Diab N, Chiappinelli KB. Transposable element regulation and expression in cancer. FEBS J 2022; 289:1160-1179. [PMID: 33471418 PMCID: PMC11577309 DOI: 10.1111/febs.15722] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 01/08/2021] [Accepted: 01/14/2021] [Indexed: 12/11/2022]
Abstract
Approximately 45% of the human genome is composed of transposable elements (TEs). Expression of these elements is tightly regulated during normal development. TEs may be expressed at high levels in embryonic stem cells but are epigenetically silenced in terminally differentiated cells. As part of the global 'epigenetic dysregulation' that cells undergo during transformation from normal to cancer, TEs can lose epigenetic silencing and become transcribed, and, in some cases, active. Here, we summarize recent advances detailing the consequences of TE activation in cancer and describe how these understudied residents of our genome can both aid tumorigenesis and potentially be harnessed for anticancer therapies.
Collapse
Affiliation(s)
- Erin E Grundy
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
- The GW Cancer Center, The George Washington University, Washington, DC, USA
- The Institute for Biomedical Sciences at The George Washington University, Washington, DC, USA
| | - Noor Diab
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
- The GW Cancer Center, The George Washington University, Washington, DC, USA
| | - Katherine B Chiappinelli
- Department of Microbiology, Immunology, & Tropical Medicine, The George Washington University, Washington, DC, USA
- The GW Cancer Center, The George Washington University, Washington, DC, USA
| |
Collapse
|
9
|
Merkerova MD, Krejcik Z. Transposable elements and Piwi‑interacting RNAs in hemato‑oncology with a focus on myelodysplastic syndrome (Review). Int J Oncol 2021; 59:105. [PMID: 34779490 DOI: 10.3892/ijo.2021.5285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/12/2021] [Indexed: 11/06/2022] Open
Abstract
Our current understanding of hematopoietic stem cell differentiation and the abnormalities that lead to leukemogenesis originates from the accumulation of knowledge regarding protein‑coding genes. However, the possible impact of transposable element (TE) mobilization and the expression of P‑element‑induced WImpy testis‑interacting RNAs (piRNAs) on leukemogenesis has been beyond the scope of scientific interest to date. The expression profiles of these molecules and their importance for human health have only been characterized recently due to the rapid progress of high‑throughput sequencing technology development. In the present review, current knowledge on the expression profile and function of TEs and piRNAs was summarized, with specific focus on their reported involvement in leukemogenesis and pathogenesis of myelodysplastic syndrome.
Collapse
Affiliation(s)
| | - Zdenek Krejcik
- Institute of Hematology and Blood Transfusion, 128 20 Prague, Czech Republic
| |
Collapse
|