1
|
Hager K, Luo ZH, Montserrat-Diez M, Ponce-Toledo RI, Baur P, Dahlke S, Andrei AS, Bulzu PA, Ghai R, Urich T, Glatzel S, Schleper C, Rodrigues-Oliveira T. Diversity and environmental distribution of Asgard archaea in shallow saline sediments. Front Microbiol 2025; 16:1549128. [PMID: 40170918 PMCID: PMC11958966 DOI: 10.3389/fmicb.2025.1549128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/26/2025] [Indexed: 04/03/2025] Open
Abstract
In recent years, our understanding of archaeal diversity has greatly expanded, especially with the discovery of new groups like the Asgard archaea. These archaea show diverse phylogenetic and genomic traits, enabling them to thrive in various environments. Due to their close relationship to eukaryotes, a large number of metagenomic studies have been performed on Asgard archaea. Research on the fine scale distribution, diversity and quantification in saline aquatic sediments where they mostly occur, has, however, remained scarce. In this study, we investigated depths of shallow saline sediment cores from three distinct European environments: the Baltic Sea near Hiddensee, the coastal Lake Techirghiol in Romania, and an estuarine canal in Piran, Slovenia. Based on 16S rDNA amplicon sequencing, we observe variation in the relative abundance and occurrence of at least seven different Asgard groups that are distinct between the three environments and in their depth distribution. Lokiarchaeia and Thorarchaeia emerge as dominant Asgard groups across all sites, reaching maximal relative abundances of 2.28 and 2.68% of the total microbial communities respectively, with a maximal abundance of all Asgard reaching approx. 5.21% in Hiddensee. Quantitative PCR assays provide insights into the absolute abundance of Lokiarchaeia, supporting distinct patterns of distribution across depths in different sediments. Co-occurrence network analysis indicates distinct potential microbial partners across different Asgard groups. Overall, our study shows that Asgard archaea are found as a stable component in shallow sediment layers and have considerably diversified on macro- and microscales.
Collapse
Affiliation(s)
- Karin Hager
- Department of Functional and Evolutionary Ecology, Archaea Biology and Ecogenomics Unit, University of Vienna, Vienna, Austria
| | - Zhen-Hao Luo
- Department of Functional and Evolutionary Ecology, Archaea Biology and Ecogenomics Unit, University of Vienna, Vienna, Austria
| | - Marina Montserrat-Diez
- Department of Functional and Evolutionary Ecology, Archaea Biology and Ecogenomics Unit, University of Vienna, Vienna, Austria
| | - Rafael I. Ponce-Toledo
- Department of Functional and Evolutionary Ecology, Archaea Biology and Ecogenomics Unit, University of Vienna, Vienna, Austria
| | - Pamela Baur
- Department of Geography and Regional Research, Faculty of Earth Sciences, Geography and Astronomy, University of Vienna, Vienna, Austria
| | - Sven Dahlke
- Hiddensee Biological Station, University Greifswald, Greifswald, Germany
| | - Adrian-Stefan Andrei
- Microbial Evogenomics Lab, Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Zürich, Switzerland
| | - Paul-Adrian Bulzu
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Rohit Ghai
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czechia
| | - Tim Urich
- Institute of Microbiology, University Greifswald, Greifswald, Germany
| | - Stephan Glatzel
- Department of Geography and Regional Research, Faculty of Earth Sciences, Geography and Astronomy, University of Vienna, Vienna, Austria
| | - Christa Schleper
- Department of Functional and Evolutionary Ecology, Archaea Biology and Ecogenomics Unit, University of Vienna, Vienna, Austria
| | - Thiago Rodrigues-Oliveira
- Department of Functional and Evolutionary Ecology, Archaea Biology and Ecogenomics Unit, University of Vienna, Vienna, Austria
| |
Collapse
|
2
|
Iqbal S, Begum F, Ullah I, Jalal N, Shaw P. Peeling off the layers from microbial dark matter (MDM): recent advances, future challenges, and opportunities. Crit Rev Microbiol 2025; 51:1-21. [PMID: 38385313 DOI: 10.1080/1040841x.2024.2319669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/13/2023] [Accepted: 02/10/2024] [Indexed: 02/23/2024]
Abstract
Microbes represent the most common organisms on Earth; however, less than 2% of microbial species in the environment can undergo cultivation for study under laboratory conditions, and the rest of the enigmatic, microbial world remains mysterious, constituting a kind of "microbial dark matter" (MDM). In the last two decades, remarkable progress has been made in culture-dependent and culture-independent techniques. More recently, studies of MDM have relied on culture-independent techniques to recover genetic material through either unicellular genomics or shotgun metagenomics to construct single-amplified genomes (SAGs) and metagenome-assembled genomes (MAGs), respectively, which provide information about evolution and metabolism. Despite the remarkable progress made in the past decades, the functional diversity of MDM still remains uncharacterized. This review comprehensively summarizes the recently developed culture-dependent and culture-independent techniques for characterizing MDM, discussing major challenges, opportunities, and potential applications. These activities contribute to expanding our knowledge of the microbial world and have implications for various fields including Biotechnology, Bioprospecting, Functional genomics, Medicine, Evolutionary and Planetary biology. Overall, this review aims to peel off the layers from MDM, shed light on recent advancements, identify future challenges, and illuminate the exciting opportunities that lie ahead in unraveling the secrets of this intriguing microbial realm.
Collapse
Affiliation(s)
- Sajid Iqbal
- Oujiang Lab (Zhejiang Laboratory for Regenerative Medicine, Vision, and Brain Health), Wenzhou, China
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Farida Begum
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Ihsan Ullah
- College of Chemical Engineering, Fuzhou University, Fuzhou, China
| | - Nasir Jalal
- Oujiang Lab (Zhejiang Laboratory for Regenerative Medicine, Vision, and Brain Health), Wenzhou, China
| | - Peter Shaw
- Oujiang Lab (Zhejiang Laboratory for Regenerative Medicine, Vision, and Brain Health), Wenzhou, China
| |
Collapse
|
3
|
Vargová R, Chevreau R, Alves M, Courbin C, Terry K, Legrand P, Eliáš M, Ménétrey J, Dacks JB, Jackson CL. The Asgard archaeal origins of Arf family GTPases involved in eukaryotic organelle dynamics. Nat Microbiol 2025; 10:495-508. [PMID: 39849086 DOI: 10.1038/s41564-024-01904-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 12/04/2024] [Indexed: 01/25/2025]
Abstract
The evolution of eukaryotes is a fundamental event in the history of life. The closest prokaryotic lineage to eukaryotes, the Asgardarchaeota, encode proteins previously found only in eukaryotes, providing insight into their archaeal ancestor. Eukaryotic cells are characterized by endomembrane organelles, and the Arf family GTPases regulate organelle dynamics by recruiting effector proteins to membranes upon activation. The Arf family is ubiquitous among eukaryotes, but its origins remain elusive. Here we report a group of prokaryotic GTPases, the ArfRs, which are widely present in Asgardarchaeota. Phylogenetic analyses reveal that eukaryotic Arf family proteins arose from the ArfR group. Expression of representative Asgardarchaeota ArfR proteins in yeast and X-ray crystallographic studies show that ArfR GTPases possess the mechanism of membrane binding and structural features unique to Arf family proteins. Our results indicate that Arf family GTPases originated in the archaeal ancestor of eukaryotes, consistent with aspects of the endomembrane system evolving early in eukaryogenesis.
Collapse
Affiliation(s)
- Romana Vargová
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Roxanne Chevreau
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Marine Alves
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Camille Courbin
- Université Paris Cité, CNRS, Institut Jacques Monod, Paris, France
| | - Kara Terry
- Division of Infectious Diseases, Department of Medicine, and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Pierre Legrand
- Synchrotron SOLEIL, l'Orme des Merisiers, Saint Aubin, France
| | - Marek Eliáš
- Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.
| | - Julie Ménétrey
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France.
| | - Joel B Dacks
- Division of Infectious Diseases, Department of Medicine, and Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic.
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution, & Environment, University College, London, UK.
| | | |
Collapse
|
4
|
Cai M, Zhang H, Zheng L, Tang X. A global microbiome analysis reveals the ecological feature of Tistrella and its production of the bioactive didemnins in the marine ecosystem. MARINE POLLUTION BULLETIN 2024; 207:116939. [PMID: 39243471 DOI: 10.1016/j.marpolbul.2024.116939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/01/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Marine microorganisms like Tistrella are essential for producing bioactive compounds, including didemnins with antitumor and antiviral properties. However, our understanding of Tistrella's ecological features and didemnin production in natural environments is limited. In this study, we used genomics and metagenomics to show that Tistrella is widely distributed across natural habitats, especially in marine environments from the surface to 5000 m deep, with distinct non-random distribution patterns revealed by co-occurrence analysis. Importantly, transcriptional profiling of didemnin biosynthetic gene clusters indicates active in situ production of this compound within marine ecosystems. These findings enhance our understanding of Tistrella's ecology and secondary metabolite production in natural environments. Further research is needed to explore the ecological dynamics and functional impacts of Tistrella in these ecosystems.
Collapse
Affiliation(s)
- Mingwei Cai
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China.
| | - Haili Zhang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | | | - Xiaoyu Tang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| |
Collapse
|
5
|
Pallen MJ. The dynamic history of prokaryotic phyla: discovery, diversity and division. Int J Syst Evol Microbiol 2024; 74:006508. [PMID: 39250184 PMCID: PMC11382960 DOI: 10.1099/ijsem.0.006508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024] Open
Abstract
Here, I review the dynamic history of prokaryotic phyla. Following leads set by Darwin, Haeckel and Woese, the concept of phylum has evolved from a group sharing common phenotypes to a set of organisms sharing a common ancestry, with modern taxonomy based on phylogenetic classifications drawn from macromolecular sequences. Phyla came as surprising latecomers to the formalities of prokaryotic nomenclature in 2021. Since then names have been validly published for 46 prokaryotic phyla, replacing some established names with neologisms, prompting criticism and debate within the scientific community. Molecular barcoding enabled phylogenetic analysis of microbial ecosystems without cultivation, leading to the identification of candidate divisions (or phyla) from diverse environments. The introduction of metagenome-assembled genomes marked a significant advance in identifying and classifying uncultured microbial phyla. The lumper-splitter dichotomy has led to disagreements, with experts cautioning against the pressure to create a profusion of new phyla and prominent databases adopting a conservative stance. The Candidatus designation has been widely used to provide provisional status to uncultured prokaryotic taxa, with phyla named under this convention now clearly surpassing those with validly published names. The Genome Taxonomy Database (GTDB) has offered a stable, standardized prokaryotic taxonomy with normalized taxonomic ranks, which has led to both lumping and splitting of pre-existing phyla. The GTDB framework introduced unwieldy alphanumeric placeholder labels, prompting recent publication of over 100 user-friendly Latinate names for unnamed prokaryotic phyla. Most candidate phyla remain 'known unknowns', with limited knowledge of their genomic diversity, ecological roles, or environments. Whether phyla still reflect significant evolutionary and ecological partitions across prokaryotic life remains an area of active debate. However, phyla remain of practical importance for microbiome analyses, particularly in clinical research. Despite potential diminishing returns in discovery of biodiversity, prokaryotic phyla offer extensive research opportunities for microbiologists for the foreseeable future.
Collapse
Affiliation(s)
- Mark J. Pallen
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, Norfolk, UK
- Quadram Institute Bioscience, Norwich Research Park, Norwich, Norfolk, UK
| |
Collapse
|
6
|
Valentin-Alvarado LE, Appler KE, De Anda V, Schoelmerich MC, West-Roberts J, Kivenson V, Crits-Christoph A, Ly L, Sachdeva R, Greening C, Savage DF, Baker BJ, Banfield JF. Asgard archaea modulate potential methanogenesis substrates in wetland soil. Nat Commun 2024; 15:6384. [PMID: 39085194 PMCID: PMC11291895 DOI: 10.1038/s41467-024-49872-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/20/2024] [Indexed: 08/02/2024] Open
Abstract
The roles of Asgard archaea in eukaryogenesis and marine biogeochemical cycles are well studied, yet their contributions in soil ecosystems remain unknown. Of particular interest are Asgard archaeal contributions to methane cycling in wetland soils. To investigate this, we reconstructed two complete genomes for soil-associated Atabeyarchaeia, a new Asgard lineage, and a complete genome of Freyarchaeia, and predicted their metabolism in situ. Metatranscriptomics reveals expression of genes for [NiFe]-hydrogenases, pyruvate oxidation and carbon fixation via the Wood-Ljungdahl pathway. Also expressed are genes encoding enzymes for amino acid metabolism, anaerobic aldehyde oxidation, hydrogen peroxide detoxification and carbohydrate breakdown to acetate and formate. Overall, soil-associated Asgard archaea are predicted to include non-methanogenic acetogens, highlighting their potential role in carbon cycling in terrestrial environments.
Collapse
Affiliation(s)
- Luis E Valentin-Alvarado
- Innovative Genomics Institute, University of California, Berkeley, California, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Kathryn E Appler
- Department of Marine Science, University of Texas at Austin; Marine Science Institute, Port Aransas, TX, USA
| | - Valerie De Anda
- Department of Marine Science, University of Texas at Austin; Marine Science Institute, Port Aransas, TX, USA
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Marie C Schoelmerich
- Innovative Genomics Institute, University of California, Berkeley, California, USA
- Department of Environmental Systems Sciences; ETH Zürich, Zürich, Switzerland
| | - Jacob West-Roberts
- Environmental Science, Policy and Management, University of California, Berkeley, CA, USA
| | - Veronika Kivenson
- Innovative Genomics Institute, University of California, Berkeley, California, USA
| | - Alexander Crits-Christoph
- Innovative Genomics Institute, University of California, Berkeley, California, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
- Cultivarium, Watertown, MA, USA
| | - Lynn Ly
- Oxford Nanopore Technologies Inc, New York, NY, USA
| | - Rohan Sachdeva
- Innovative Genomics Institute, University of California, Berkeley, California, USA
| | - Chris Greening
- Department of Microbiology, Biomedicine Discovery Institute; Monash University, Clayton, VIC, Australia
- Securing Antarctica's Environmental Future, Monash University, Clayton, VIC, Australia
| | - David F Savage
- Innovative Genomics Institute, University of California, Berkeley, California, USA
- Howard Hughes Medical Institute, University of California, Berkeley, California, USA
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, USA
| | - Brett J Baker
- Department of Marine Science, University of Texas at Austin; Marine Science Institute, Port Aransas, TX, USA.
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA.
| | - Jillian F Banfield
- Innovative Genomics Institute, University of California, Berkeley, California, USA.
- Environmental Science, Policy and Management, University of California, Berkeley, CA, USA.
- Department of Microbiology, Biomedicine Discovery Institute; Monash University, Clayton, VIC, Australia.
- Earth and Planetary Science, University of California, Berkeley, CA, USA.
| |
Collapse
|
7
|
Yu Y, Liu NH, Teng ZJ, Chen Y, Wang P, Zhang YZ, Fu HH, Chen XL, Zhang YQ. Evidence for archaeal metabolism of D-amino acids in the deep marine sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174723. [PMID: 39002603 DOI: 10.1016/j.scitotenv.2024.174723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
The deep marine sediments represent a major repository of organic matter whilst hosting a great number of uncultivated microbes. Microbial metabolism plays a key role in the recycling of organic matter in the deep marine sediments. D-amino acids (DAAs) and DAA-containing muropeptides, an important group of organic matter in the deep marine sediments, are primarily derived from bacterial peptidoglycan decomposition. Archaea are abundant in the deep ocean microbiome, yet their role in DAA metabolism remains poorly studied. Here, we report bioinformatic investigation and enzymatic characterization of deep marine sedimentary archaea involved in DAA metabolism. Our analyses suggest that a variety of archaea, particularly the Candidatus Bathyarchaeota and the Candidatus Lokiarchaeaota, can metabolize DAAs. DAAs are converted into L-amino acids via amino acid racemases (Ala racemase, Asp racemase and broad substrate specificity amino acid racemase), and converted into α-keto acid via d-serine ammonia-lyase, whereas DAA-containing di-/tri-muropeptides can be hydrolyzed by peptidases (dipeptidase and D-aminopeptidase). Overall, this study reveals the identity and activity of deep marine sedimentary archaea involved in DAA metabolism, shedding light on the mineralization and biogeochemical cycling of DAAs in the deep marine sediments.
Collapse
Affiliation(s)
- Yang Yu
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China; Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, China
| | - Ning-Hua Liu
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China; Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, China
| | - Zhao-Jie Teng
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China; Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, China
| | - Yin Chen
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China; School of Life Sciences, University of Warwick, Coventry, UK; Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, China
| | - Peng Wang
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China; Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, China
| | - Yu-Zhong Zhang
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China; MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China; Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, China
| | - Hui-Hui Fu
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China; Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, China
| | - Xiu-Lan Chen
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China; Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China; Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, China
| | - Yu-Qiang Zhang
- Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China; Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, China.
| |
Collapse
|
8
|
Liu R, Cai R, Wang M, Zhang J, Zhang H, Li C, Sun C. Metagenomic insights into Heimdallarchaeia clades from the deep-sea cold seep and hydrothermal vent. ENVIRONMENTAL MICROBIOME 2024; 19:43. [PMID: 38909236 PMCID: PMC11193907 DOI: 10.1186/s40793-024-00585-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/18/2024] [Indexed: 06/24/2024]
Abstract
Heimdallarchaeia is a class of the Asgardarchaeota, are the most probable candidates for the archaeal protoeukaryote ancestor that have been identified to date. However, little is known about their life habits regardless of their ubiquitous distribution in diverse habitats, which is especially true for Heimdallarchaeia from deep-sea environments. In this study, we obtained 13 metagenome-assembled genomes (MAGs) of Heimdallarchaeia from the deep-sea cold seep and hydrothermal vent. These MAGs belonged to orders o_Heimdallarchaeales and o_JABLTI01, and most of them (9 MAGs) come from the family f_Heimdallarchaeaceae according to genome taxonomy database (GTDB). These are enriched for common eukaryote-specific signatures. Our results show that these Heimdallarchaeia have the metabolic potential to reduce sulfate (assimilatory) and nitrate (dissimilatory) to sulfide and ammonia, respectively, suggesting a previously unappreciated role in biogeochemical cycling. Furthermore, we find that they could perform both TCA and rTCA pathways coupled with pyruvate metabolism for energy conservation, fix CO2 and generate organic compounds through an atypical Wood-Ljungdahl pathway. In addition, many genes closely associated with bacteriochlorophyll and carotenoid biosynthesis, and oxygen-dependent metabolic pathways are identified in these Heimdallarchaeia MAGs, suggesting a potential light-utilization by pigments and microoxic lifestyle. Taken together, our results indicate that Heimdallarchaeia possess a mixotrophic lifestyle, which may give them more flexibility to adapt to the harsh deep-sea conditions.
Collapse
Affiliation(s)
- Rui Liu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Ruining Cai
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Minxiao Wang
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Jing Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Huan Zhang
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Chaolun Li
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.
| | - Chaomin Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China.
- Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
- Center of Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
9
|
Qu Y, Zhao Y, Yao X, Wang J, Liu Z, Hong Y, Zheng P, Wang L, Hu B. Salinity causes differences in stratigraphic methane sources and sinks. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 19:100334. [PMID: 38046178 PMCID: PMC10692758 DOI: 10.1016/j.ese.2023.100334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 10/09/2023] [Accepted: 10/12/2023] [Indexed: 12/05/2023]
Abstract
Methane metabolism, driven by methanogenic and methanotrophic microorganisms, plays a pivotal role in the carbon cycle. As seawater intrusion and soil salinization rise due to global environmental shifts, understanding how salinity affects methane emissions, especially in deep strata, becomes imperative. Yet, insights into stratigraphic methane release under varying salinity conditions remain sparse. Here we investigate the effects of salinity on methane metabolism across terrestrial and coastal strata (15-40 m depth) through in situ and microcosm simulation studies. Coastal strata, exhibiting a salinity level five times greater than terrestrial strata, manifested a 12.05% decrease in total methane production, but a staggering 687.34% surge in methane oxidation, culminating in 146.31% diminished methane emissions. Salinity emerged as a significant factor shaping the methane-metabolizing microbial community's dynamics, impacting the methanogenic archaeal, methanotrophic archaeal, and methanotrophic bacterial communities by 16.53%, 27.25%, and 22.94%, respectively. Furthermore, microbial interactions influenced strata system methane metabolism. Metabolic pathway analyses suggested Atribacteria JS1's potential role in organic matter decomposition, facilitating methane production via Methanofastidiosales. This study thus offers a comprehensive lens to comprehend stratigraphic methane emission dynamics and the overarching factors modulating them.
Collapse
Affiliation(s)
- Ying Qu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Yuxiang Zhao
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Xiangwu Yao
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Jiaqi Wang
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Zishu Liu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Yi Hong
- Ocean College, Zhejiang University, Zhoushan, China
| | - Ping Zheng
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
| | - Lizhong Wang
- Ocean College, Zhejiang University, Zhoushan, China
| | - Baolan Hu
- Department of Environmental Engineering, Zhejiang University, Hangzhou, China
- Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China
| |
Collapse
|
10
|
Zhu P, Hou J, Xiong Y, Xie R, Wang Y, Wang F. Expanded Archaeal Genomes Shed New Light on the Evolution of Isoprenoid Biosynthesis. Microorganisms 2024; 12:707. [PMID: 38674651 PMCID: PMC11052028 DOI: 10.3390/microorganisms12040707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/21/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Isoprenoids and their derivatives, essential for all cellular life on Earth, are particularly crucial in archaeal membrane lipids, suggesting that their biosynthesis pathways have ancient origins and play pivotal roles in the evolution of early life. Despite all eukaryotes, archaea, and a few bacterial lineages being known to exclusively use the mevalonate (MVA) pathway to synthesize isoprenoids, the origin and evolutionary trajectory of the MVA pathway remain controversial. Here, we conducted a thorough comparison and phylogenetic analysis of key enzymes across the four types of MVA pathway, with the particular inclusion of metagenome assembled genomes (MAGs) from uncultivated archaea. Our findings support an archaeal origin of the MVA pathway, likely postdating the divergence of Bacteria and Archaea from the Last Universal Common Ancestor (LUCA), thus implying the LUCA's enzymatic inability for isoprenoid biosynthesis. Notably, the Asgard archaea are implicated in playing central roles in the evolution of the MVA pathway, serving not only as putative ancestors of the eukaryote- and Thermoplasma-type routes, but also as crucial mediators in the gene transfer to eukaryotes, possibly during eukaryogenesis. Overall, this study advances our understanding of the origin and evolutionary history of the MVA pathway, providing unique insights into the lipid divide and the evolution of early life.
Collapse
Affiliation(s)
- Pengfei Zhu
- Key Laboratory of Polar Ecosystem and Climate Change, Ministry of Education, School of Oceanography, Shanghai Jiao Tong University, Shanghai 200240, China; (P.Z.); (J.H.); (Y.X.); (R.X.)
| | - Jialin Hou
- Key Laboratory of Polar Ecosystem and Climate Change, Ministry of Education, School of Oceanography, Shanghai Jiao Tong University, Shanghai 200240, China; (P.Z.); (J.H.); (Y.X.); (R.X.)
| | - Yixuan Xiong
- Key Laboratory of Polar Ecosystem and Climate Change, Ministry of Education, School of Oceanography, Shanghai Jiao Tong University, Shanghai 200240, China; (P.Z.); (J.H.); (Y.X.); (R.X.)
| | - Ruize Xie
- Key Laboratory of Polar Ecosystem and Climate Change, Ministry of Education, School of Oceanography, Shanghai Jiao Tong University, Shanghai 200240, China; (P.Z.); (J.H.); (Y.X.); (R.X.)
| | - Yinzhao Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Fengping Wang
- Key Laboratory of Polar Ecosystem and Climate Change, Ministry of Education, School of Oceanography, Shanghai Jiao Tong University, Shanghai 200240, China; (P.Z.); (J.H.); (Y.X.); (R.X.)
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China;
- Southern Marine Science and Engineering, Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| |
Collapse
|
11
|
Lu Z, Zhang S, Liu Y, Xia R, Li M. Origin of eukaryotic-like Vps23 shapes an ancient functional interplay between ESCRT and ubiquitin system in Asgard archaea. Cell Rep 2024; 43:113781. [PMID: 38358888 DOI: 10.1016/j.celrep.2024.113781] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/08/2024] [Accepted: 01/25/2024] [Indexed: 02/17/2024] Open
Abstract
Functional interplay between the endosomal sorting complexes required for transport (ESCRT) and the ubiquitin system underlies the ubiquitin-dependent cargo-sorting pathway of the eukaryotic endomembrane system, yet its evolutionary origin remains unclear. Here, we show that a UEV-Vps23 protein family, which contains UEV and Vps23 domains, mediates an ancient ESCRT and ubiquitin system interplay in Asgard archaea. The UEV binds ubiquitin with high affinity, making the UEV-Vps23 a sensor for sorting ubiquitinated cargo. A steadiness box in the Vps23 domain undergoes ubiquitination through an Asgard E1, E2, and RING E3 cascade. The UEV-Vps23 switches between autoinhibited and active forms, regulating the ESCRT and ubiquitin system interplay. Furthermore, the shared sequence and structural homology among the UEV-Vps23, eukaryotic Vps23, and archaeal CdvA suggest a common evolutionary origin. Together, this work expands our understanding of the ancient ESCRT and ubiquitin system interplay that likely arose antedating divergent evolution between Asgard archaea and eukaryotes.
Collapse
Affiliation(s)
- Zhongyi Lu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Siyu Zhang
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Yang Liu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Runyue Xia
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
12
|
Zheng J, Mallon J, Lammers A, Rados T, Litschel T, Moody ERR, Ramirez-Diaz DA, Schmid A, Williams TA, Bisson-Filho AW, Garner E. Salactin, a dynamically unstable actin homolog in Haloarchaea. mBio 2023; 14:e0227223. [PMID: 37966230 PMCID: PMC10746226 DOI: 10.1128/mbio.02272-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/05/2023] [Indexed: 11/16/2023] Open
Abstract
IMPORTANCE Protein filaments play important roles in many biological processes. We discovered an actin homolog in halophilic archaea, which we call Salactin. Just like the filaments that segregate DNA in eukaryotes, Salactin grows out of the cell poles towards the middle, and then quickly depolymerizes, a behavior known as dynamic instability. Furthermore, we see that Salactin affects the distribution of DNA in daughter cells when cells are grown in low-phosphate media, suggesting Salactin filaments might be involved in segregating DNA when the cell has only a few copies of the chromosome.
Collapse
Affiliation(s)
- Jenny Zheng
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | - John Mallon
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, USA
| | - Alex Lammers
- Physiology Course, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
- Department of Biomedical Engineering, The Biological Design Center, Boston University, Boston, Massachusetts, USA
- The Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| | - Theopi Rados
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, USA
| | - Thomas Litschel
- Physiology Course, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Edmund R. R. Moody
- School of Earth Sciences, University of Bristol, Bristol, United Kingdom
| | - Diego A. Ramirez-Diaz
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Amy Schmid
- Department of Biology, Duke University, Durham, North Carolina, USA
- Center for Genomics and Computational Biology, Duke University, Durham, North Carolina, USA
| | - Tom A. Williams
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Alexandre W. Bisson-Filho
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, USA
| | - Ethan Garner
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
13
|
Lu H, Xue M, Nie X, Luo H, Tan Z, Yang X, Shi H, Li X, Wang T. Glycoside hydrolases in the biodegradation of lignocellulosic biomass. 3 Biotech 2023; 13:402. [PMID: 37982085 PMCID: PMC10654287 DOI: 10.1007/s13205-023-03819-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/15/2023] [Indexed: 11/21/2023] Open
Abstract
Lignocellulose is a plentiful and intricate biomass substance made up of cellulose, hemicellulose, and lignin. Cellulose and hemicellulose are polysaccharides characterized by different compositions and degrees of polymerization. As renewable resources, their applications are eco-friendly and can help reduce reliance on petrochemical resources. This review aims to illustrate cellulose, hemicellulose, and their structures and hydrolytic enzymes. To obtain desirable enzyme sources for the high hydrolysis of lignocellulose, highly stable, efficient and thermophilic enzyme sources, and new technologies, such as rational design and machine learning, have been introduced in detail. Generally, the efficient biodegradation of abundant natural biomass into fermentable sugars or other intermediates has great potential in practical applications. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03819-1.
Collapse
Affiliation(s)
- Honglin Lu
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003 China
| | - Maoyuan Xue
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003 China
| | - Xinling Nie
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003 China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 China
| | - Hongzheng Luo
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003 China
| | - Zhongbiao Tan
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003 China
| | - Xiao Yang
- Department of Poultry Science, The University of Georgia, Athens, GA 30602 USA
| | - Hao Shi
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003 China
| | - Xun Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 China
| | - Tao Wang
- Department of Microbiology, The University of Georgia, Athens, GA 30602 USA
| |
Collapse
|
14
|
Zhang ZF, Liu LR, Pan YP, Pan J, Li M. Long-read assembled metagenomic approaches improve our understanding on metabolic potentials of microbial community in mangrove sediments. MICROBIOME 2023; 11:188. [PMID: 37612768 PMCID: PMC10464287 DOI: 10.1186/s40168-023-01630-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/21/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Mangrove wetlands are coastal ecosystems with important ecological features and provide habitats for diverse microorganisms with key roles in nutrient and biogeochemical cycling. However, the overall metabolic potentials and ecological roles of microbial community in mangrove sediment are remained unanswered. In current study, the microbial and metabolic profiles of prokaryotic and fungal communities in mangrove sediments were investigated using metagenomic analysis based on PacBio single-molecule real time (SMRT) and Illumina sequencing techniques. RESULTS Comparing to Illumina short reads, the incorporation of PacBio long reads significantly contributed to more contiguous assemblies, yielded more than doubled high-quality metagenome-assembled genomes (MAGs), and improved the novelty of the MAGs. Further metabolic reconstruction for recovered MAGs showed that prokaryotes potentially played an essential role in carbon cycling in mangrove sediment, displaying versatile metabolic potential for degrading organic carbons, fermentation, autotrophy, and carbon fixation. Mangrove fungi also functioned as a player in carbon cycling, potentially involved in the degradation of various carbohydrate and peptide substrates. Notably, a new candidate bacterial phylum named as Candidatus Cosmopoliota with a ubiquitous distribution is proposed. Genomic analysis revealed that this new phylum is capable of utilizing various types of organic substrates, anaerobic fermentation, and carbon fixation with the Wood-Ljungdahl (WL) pathway and the reverse tricarboxylic acid (rTCA) cycle. CONCLUSIONS The study not only highlights the advantages of HiSeq-PacBio Hybrid assembly for a more complete profiling of environmental microbiomes but also expands our understanding of the microbial diversity and potential roles of distinct microbial groups in biogeochemical cycling in mangrove sediment. Video Abstract.
Collapse
Affiliation(s)
- Zhi-Feng Zhang
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Present Address: Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Li-Rui Liu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Yue-Ping Pan
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Jie Pan
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China.
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| |
Collapse
|
15
|
López-García P, Moreira D. The symbiotic origin of the eukaryotic cell. C R Biol 2023; 346:55-73. [PMID: 37254790 DOI: 10.5802/crbiol.118] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 06/01/2023]
Abstract
Eukaryogenesis represented a major evolutionary transition that led to the emergence of complex cells from simpler ancestors. For several decades, the most accepted scenario involved the evolution of an independent lineage of proto-eukaryotes endowed with an endomembrane system, including a nuclear compartment, a developed cytoskeleton and phagocytosis, which engulfed the alphaproteobacterial ancestor of mitochondria. However, the recent discovery by metagenomic and cultural approaches of Asgard archaea, which harbour many genes in common with eukaryotes and are their closest relatives in phylogenomic trees, rather supports scenarios based on the symbiosis of one Asgard-like archaeon and one or more bacteria at the origin of the eukaryotic cell. Here, we review the recent discoveries that led to this conceptual shift, briefly evoking current models of eukaryogenesis and the challenges ahead to discriminate between them and to establish a detailed, plausible scenario that accounts for the evolution of eukaryotic traits from those of their prokaryotic ancestors.
Collapse
|
16
|
Oren A, Göker M. Candidatus List. Lists of names of prokaryotic Candidatus phyla. Int J Syst Evol Microbiol 2023; 73. [PMID: 37159402 DOI: 10.1099/ijsem.0.005821] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Affiliation(s)
- Aharon Oren
- The Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond J. Safra Campus, 9190401 Jerusalem, Israel
| | - Markus Göker
- Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures, Inhoffenstrasse 7B, 38124 Braunschweig, Germany
| |
Collapse
|
17
|
Zhang CJ, Liu YR, Cha G, Liu Y, Zhou XQ, Lu Z, Pan J, Cai M, Li M. Potential for mercury methylation by Asgard archaea in mangrove sediments. THE ISME JOURNAL 2023; 17:478-485. [PMID: 36639538 PMCID: PMC9938162 DOI: 10.1038/s41396-023-01360-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/22/2022] [Accepted: 01/06/2023] [Indexed: 01/15/2023]
Abstract
Methylmercury (MeHg) is a potent neurotoxin that bioaccumulates along food chains. The conversion of MeHg from mercury (Hg) is mediated by a variety of anaerobic microorganisms carrying hgcAB genes. Mangrove sediments are potential hotspots of microbial Hg methylation; however, the microorganisms responsible for Hg methylation are poorly understood. Here, we conducted metagenomic and metatranscriptomic analyses to investigate the diversity and distribution of putative microbial Hg-methylators in mangrove ecosystems. The highest hgcA abundance and expression occurred in surface sediments in Shenzhen, where the highest MeHg concentration was also observed. We reconstructed 157 metagenome-assembled genomes (MAGs) carrying hgcA and identified several putative novel Hg-methylators, including one Asgard archaea (Lokiarchaeota). Further analysis of MAGs revealed that Deltaproteobacteria, Euryarchaeota, Bacteroidetes, Chloroflexi, and Lokiarchaeota were the most abundant and active Hg-methylating groups, implying their crucial role in MeHg production. By screening publicly available MAGs, 104 additional Asgard MAGs carrying hgcA genes were identified from a wide range of coast, marine, permafrost, and lake sediments. Protein homology modelling predicts that Lokiarchaeota HgcAB proteins contained the highly conserved amino acid sequences and folding structures required for Hg methylation. Phylogenetic tree revealed that hgcA genes from Asgard clustered with fused hgcAB genes, indicating a transitional stage of Asgard hgcA genes. Our findings thus suggest that Asgard archaea are potential novel Hg-methylating microorganisms and play an important role in hgcA evolution.
Collapse
Affiliation(s)
- Cui-Jing Zhang
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, 518060, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, 518060, Shenzhen, China
| | - Yu-Rong Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Guihong Cha
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Yang Liu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, 518060, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, 518060, Shenzhen, China
| | - Xin-Quan Zhou
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070, Wuhan, China
| | - Zhongyi Lu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, 518060, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, 518060, Shenzhen, China
| | - Jie Pan
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, 518060, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, 518060, Shenzhen, China
| | - Mingwei Cai
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, 518060, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, 518060, Shenzhen, China
- Chemical Biology Institute, Shenzhen Bay Laboratory, Shenzhen, China
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, 518060, Shenzhen, China.
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, 518060, Shenzhen, China.
| |
Collapse
|
18
|
Ponlachantra K, Suginta W, Robinson RC, Kitaoku Y. AlphaFold2: A versatile tool to predict the appearance of functional adaptations in evolution: Profilin interactions in uncultured Asgard archaea: Profilin interactions in uncultured Asgard archaea. Bioessays 2023; 45:e2200119. [PMID: 36461738 DOI: 10.1002/bies.202200119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 12/05/2022]
Abstract
The release of AlphaFold2 (AF2), a deep-learning-aided, open-source protein structure prediction program, from DeepMind, opened a new era of molecular biology. The astonishing improvement in the accuracy of the structure predictions provides the opportunity to characterize protein systems from uncultured Asgard archaea, key organisms in evolutionary biology. Despite the accumulation in metagenomics-derived Asgard archaea eukaryotic-like protein sequences, limited structural and biochemical information have restricted the insight in their potential functions. In this review, we focus on profilin, an actin-dynamics regulating protein, which in eukaryotes, modulates actin polymerization through (1) direct actin interaction, (2) polyproline binding, and (3) phospholipid binding. We assess AF2-predicted profilin structures in their potential abilities to participate in these activities. We demonstrate that AF2 is a powerful new tool for understanding the emergence of biological functional traits in evolution.
Collapse
Affiliation(s)
- Khongpon Ponlachantra
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Wipa Suginta
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Robert C Robinson
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand.,Research Institute for Interdisciplinary Science (RIIS), Okayama University, Okayama, Japan
| | - Yoshihito Kitaoku
- Research Institute for Interdisciplinary Science (RIIS), Okayama University, Okayama, Japan
| |
Collapse
|
19
|
Rodrigues-Oliveira T, Wollweber F, Ponce-Toledo RI, Xu J, Rittmann SKMR, Klingl A, Pilhofer M, Schleper C. Actin cytoskeleton and complex cell architecture in an Asgard archaeon. Nature 2023; 613:332-339. [PMID: 36544020 PMCID: PMC9834061 DOI: 10.1038/s41586-022-05550-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/10/2022] [Indexed: 12/24/2022]
Abstract
Asgard archaea are considered to be the closest known relatives of eukaryotes. Their genomes contain hundreds of eukaryotic signature proteins (ESPs), which inspired hypotheses on the evolution of the eukaryotic cell1-3. A role of ESPs in the formation of an elaborate cytoskeleton and complex cellular structures has been postulated4-6, but never visualized. Here we describe a highly enriched culture of 'Candidatus Lokiarchaeum ossiferum', a member of the Asgard phylum, which thrives anaerobically at 20 °C on organic carbon sources. It divides every 7-14 days, reaches cell densities of up to 5 × 107 cells per ml and has a significantly larger genome compared with the single previously cultivated Asgard strain7. ESPs represent 5% of its protein-coding genes, including four actin homologues. We imaged the enrichment culture using cryo-electron tomography, identifying 'Ca. L. ossiferum' cells on the basis of characteristic expansion segments of their ribosomes. Cells exhibited coccoid cell bodies and a network of branched protrusions with frequent constrictions. The cell envelope consists of a single membrane and complex surface structures. A long-range cytoskeleton extends throughout the cell bodies, protrusions and constrictions. The twisted double-stranded architecture of the filaments is consistent with F-actin. Immunostaining indicates that the filaments comprise Lokiactin-one of the most highly conserved ESPs in Asgard archaea. We propose that a complex actin-based cytoskeleton predated the emergence of the first eukaryotes and was a crucial feature in the evolution of the Asgard phylum by scaffolding elaborate cellular structures.
Collapse
Affiliation(s)
- Thiago Rodrigues-Oliveira
- Department of Functional and Evolutionary Ecology, Archaea Biology and Ecogenomics Unit, University of Vienna, Vienna, Austria
| | - Florian Wollweber
- Institute of Molecular Biology & Biophysics, ETH Zürich, Zürich, Switzerland
| | - Rafael I Ponce-Toledo
- Department of Functional and Evolutionary Ecology, Archaea Biology and Ecogenomics Unit, University of Vienna, Vienna, Austria
| | - Jingwei Xu
- Institute of Molecular Biology & Biophysics, ETH Zürich, Zürich, Switzerland
| | - Simon K-M R Rittmann
- Department of Functional and Evolutionary Ecology, Archaea Biology and Ecogenomics Unit, University of Vienna, Vienna, Austria
| | - Andreas Klingl
- Plant Development & Electron Microscopy, Biocenter, Ludwig-Maximilans-Universität München, Planegg-Martinsried, Germany
| | - Martin Pilhofer
- Institute of Molecular Biology & Biophysics, ETH Zürich, Zürich, Switzerland.
| | - Christa Schleper
- Department of Functional and Evolutionary Ecology, Archaea Biology and Ecogenomics Unit, University of Vienna, Vienna, Austria.
| |
Collapse
|
20
|
Spang A. Is an archaeon the ancestor of eukaryotes? Environ Microbiol 2022; 25:775-779. [PMID: 36562617 DOI: 10.1111/1462-2920.16323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
The origin of complex cellular life is a key puzzle in evolutionary research, which has broad implications for various neighbouring scientific disciplines. Naturally, views on this topic vary widely depending on the world view and context from which this topic is approached. In the following, I will share my perspective about our current scientific knowledge on the origin of eukaryotic cells, that is, eukaryogenesis, from a biological point of view focusing on the question as to whether an archaeon was the ancestor of eukaryotes.
Collapse
Affiliation(s)
- Anja Spang
- NIOZ, Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, Utrecht University, AB Den Burg, The Netherlands.,Department of Evolutionary & Population Biology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
21
|
Zhang X, Zhang C, Liu Y, Zhang R, Li M. Non-negligible roles of archaea in coastal carbon biogeochemical cycling. Trends Microbiol 2022; 31:586-600. [PMID: 36567186 DOI: 10.1016/j.tim.2022.11.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 12/25/2022]
Abstract
Coastal zones are among the world's most productive ecosystems. They store vast amounts of organic carbon, as 'blue carbon' reservoirs, and impact global climate change. Archaeal communities are integral components of coastal microbiomes but their ecological roles are often overlooked. However, archaeal diversity, metabolism, evolution, and interactions, revealed by recent studies using rapidly developing cutting-edge technologies, place archaea as important players in coastal carbon biogeochemical cycling. We here summarize the latest advances in the understanding of archaeal carbon cycling processes in coastal ecosystems, specifically, archaeal involvement in CO2 fixation, organic biopolymer transformation, and methane metabolism. We also showcase the potential to use of archaeal communities to increase carbon sequestration and reduce methane production, with implications for mitigating climate change.
Collapse
Affiliation(s)
- Xinxu Zhang
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Cuijing Zhang
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Yang Liu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Rui Zhang
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong, China.
| |
Collapse
|
22
|
Zhou Z, Liu Y, Anantharaman K, Li M. The expanding Asgard archaea invoke novel insights into Tree of Life and eukaryogenesis. MLIFE 2022; 1:374-381. [PMID: 38818484 PMCID: PMC10989744 DOI: 10.1002/mlf2.12048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/13/2022] [Accepted: 11/13/2022] [Indexed: 06/01/2024]
Abstract
The division of organisms on the Tree of Life into either a three-domain (3D) tree or a two-domain (2D) tree has been disputed for a long time. Ever since the discovery of Archaea by Carl Woese in 1977 using 16S ribosomal RNA sequence as the evolutionary marker, there has been a great advance in our knowledge of not only the growing diversity of Archaea but also the evolutionary relationships between different lineages of living organisms. Here, we present this perspective to summarize the progress of archaeal diversity and changing notion of the Tree of Life. Meanwhile, we provide the latest progress in genomics/physiology-based discovery of Asgard archaeal lineages as the closest relative of Eukaryotes. Furthermore, we propose three major directions for future research on exploring the "next one" closest Eukaryote relative, deciphering the function of archaeal eukaryotic signature proteins and eukaryogenesis from both genomic and physiological aspects, and understanding the roles of horizontal gene transfer, viruses, and mobile elements in eukaryogenesis.
Collapse
Affiliation(s)
- Zhichao Zhou
- Department of BacteriologyUniversity of Wisconsin–MadisonMadisonWisconsinUSA
| | - Yang Liu
- Archaeal Biology Center, Institute for Advanced StudyShenzhen UniversityShenzhenChina
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced StudyShenzhen UniversityShenzhenChina
| | | | - Meng Li
- Archaeal Biology Center, Institute for Advanced StudyShenzhen UniversityShenzhenChina
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced StudyShenzhen UniversityShenzhenChina
| |
Collapse
|
23
|
Zuo YW, He P, Zhang JH, Li WQ, Ning DH, Zeng YL, Yang Y, Xia CY, Zhang H, Deng HP. Contrasting Responses of Multispatial Soil Fungal Communities of Thuja sutchuenensis Franch., an Extremely Endangered Conifer in Southwestern China. Microbiol Spectr 2022; 10:e0026022. [PMID: 35735985 PMCID: PMC9431436 DOI: 10.1128/spectrum.00260-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/20/2022] [Indexed: 11/28/2022] Open
Abstract
Thuja sutchuenensis Franch. is an endangered species in southwest China, distributed sporadically in mountainous areas. Soil property and soil fungal community play a crucial role in plant growth and survival. Nevertheless, understanding soil properties and the soil fungal community in the areas where T. sutchuenensis is distributed is extremely limited. Hence, this study collected a total of 180 soil samples from five altitudinal distribution areas (altitudinal gradients) and three vertical depths throughout four horizontal distances from the base of each tree. The results found that altitudinal gradients and vertical depths altered soil properties, including pH, organic matter content, water content, total nitrogen, phosphorus, and potassium, and available nitrogen, phosphorus, and potassium. The fungal alpha diversity indexes (Chao1 and Shannon) and beta diversity were dramatically decreased with elevation. In addition, high altitudes (2,119 m) harbored the highest relative abundance of ectomycorrhizal fungi (27.57%) and the lowest relative abundance of plant-pathogenic fungi (1.81%). Meanwhile, we identified a series of fungal communities, such as Tomentella, Piloderma, Cortinarius, Sebacina, and Boletaceae, that play an essential role in the survival of T. sutchuenensis. The correlation analysis and random forest model identified that water content and total phosphorus showed strong relationships with fungal characteristics and were the primary variables for Zygomycota and Rozellomycota. Collectively, the findings of this integrated analysis provide profound insights into understanding the contrasting responses of T. sutchuenensis soil fungal communities and provide a theoretical basis for T. sutchuenensis habitat restoration and species conservation from multispatial perspectives. IMPORTANCE The present study highlights the importance of fungal communities in an endangered plant, T. sutchuenensis. Comparative analysis of soil samples in nearly all extant T. sutchuenensis populations identified that soil properties, especially soil nutrients, might play critical roles in the survival of T. sutchuenensis. Our findings prove that a series of fungal communities (e.g., Tomentella, Piloderma, and Cortinarius) could be key indicators for T. sutchuenensis survival. In addition, this is the first time that large-scale soil property and fungal community investigations have been carried out in southwest China, offering important values for exploring the distribution pattern of regional soil microorganisms. Collectively, our findings display a holistic picture of soil microbiome and environmental factors associated with T. sutchuenensis.
Collapse
Affiliation(s)
- You-wei Zuo
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Beibei, Chongqing, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Institute of Resources Botany, School of Life Sciences, Southwest University, Beibei, Chongqing, China
| | - Ping He
- Chongqing Academy of Science and Technology, Low Carbon and Ecological Environment Protection Research Center, Liangjiang New Area, Chongqing, China
| | - Jia-hui Zhang
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Beibei, Chongqing, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Institute of Resources Botany, School of Life Sciences, Southwest University, Beibei, Chongqing, China
| | - Wen-qiao Li
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Beibei, Chongqing, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Institute of Resources Botany, School of Life Sciences, Southwest University, Beibei, Chongqing, China
| | - Deng-hao Ning
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Beibei, Chongqing, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Institute of Resources Botany, School of Life Sciences, Southwest University, Beibei, Chongqing, China
| | - Yu-lian Zeng
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Beibei, Chongqing, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Institute of Resources Botany, School of Life Sciences, Southwest University, Beibei, Chongqing, China
| | - Ying Yang
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Beibei, Chongqing, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Institute of Resources Botany, School of Life Sciences, Southwest University, Beibei, Chongqing, China
| | - Chang-ying Xia
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Beibei, Chongqing, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Institute of Resources Botany, School of Life Sciences, Southwest University, Beibei, Chongqing, China
| | - Huan Zhang
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Beibei, Chongqing, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Institute of Resources Botany, School of Life Sciences, Southwest University, Beibei, Chongqing, China
| | - Hong-ping Deng
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Beibei, Chongqing, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, Institute of Resources Botany, School of Life Sciences, Southwest University, Beibei, Chongqing, China
| |
Collapse
|
24
|
Zhang X, Liu Z, Xu W, Pan J, Huang Y, Cai M, Luo Z, Li M. Genomic insights into versatile lifestyle of three new bacterial candidate phyla. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1547-1562. [PMID: 35060074 DOI: 10.1007/s11427-021-2037-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/01/2021] [Indexed: 05/28/2023]
Abstract
Metagenomic explorations of the Earth's biosphere enable the discovery of previously unknown bacterial lineages of phylogenetic and ecological significance. Here, we retrieved 11 metagenomic-assembled genomes (MAGs) affiliated to three new monophyletic bacterial lineages from the seawater of the Yap Trench. Phylogenomic analysis revealed that each lineage is a new bacterial candidate phylum, subsequently named Candidatus Qinglongiota, Candidatus Heilongiota, and Candidatus Canglongiota. Metabolic reconstruction of genomes from the three phyla suggested that they adopt a versatile lifestyle, with the potential to utilize various types of sugars, proteins, and/or short-chain fatty acids through anaerobic pathways. This was further confirmed by a global distribution map of the three phyla, indicating a preference for oxygen-limited or particle-attached niches, such as anoxic sedimentary environments. Of note, Candidatus Canglongiota genomes harbor genes for the complete Wood- Ljungdahl pathway and sulfate reduction that are similar to those identified in some sulfate-reducing bacteria. Evolutionary analysis indicated that gene gain and loss events, and horizontal gene transfer (HGT) play important roles in shaping the genomic and metabolic features of the three new phyla. This study presents the genomic insight into the ecology, metabolism, and evolution of three new phyla, which broadens the phylum-level diversity within the domain Bacteria.
Collapse
Affiliation(s)
- Xinxu Zhang
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Zongbao Liu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Wei Xu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Jie Pan
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Yuhan Huang
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Mingwei Cai
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Zhuhua Luo
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
- School of Marine Sciences, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
25
|
Medvedeva S, Sun J, Yutin N, Koonin EV, Nunoura T, Rinke C, Krupovic M. Three families of Asgard archaeal viruses identified in metagenome-assembled genomes. Nat Microbiol 2022; 7:962-973. [PMID: 35760839 PMCID: PMC11165672 DOI: 10.1038/s41564-022-01144-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 05/04/2022] [Indexed: 02/07/2023]
Abstract
Asgardarchaeota harbour many eukaryotic signature proteins and are widely considered to represent the closest archaeal relatives of eukaryotes. Whether similarities between Asgard archaea and eukaryotes extend to their viromes remains unknown. Here we present 20 metagenome-assembled genomes of Asgardarchaeota from deep-sea sediments of the basin off the Shimokita Peninsula, Japan. By combining a CRISPR spacer search of metagenomic sequences with phylogenomic analysis, we identify three family-level groups of viruses associated with Asgard archaea. The first group, verdandiviruses, includes tailed viruses of the class Caudoviricetes (realm Duplodnaviria); the second, skuldviruses, consists of viruses with predicted icosahedral capsids of the realm Varidnaviria; and the third group, wyrdviruses, is related to spindle-shaped viruses previously identified in other archaea. More than 90% of the proteins encoded by these viruses of Asgard archaea show no sequence similarity to proteins encoded by other known viruses. Nevertheless, all three proposed families consist of viruses typical of prokaryotes, providing no indication of specific evolutionary relationships between viruses infecting Asgard archaea and eukaryotes. Verdandiviruses and skuldviruses are likely to be lytic, whereas wyrdviruses potentially establish chronic infection and are released without host cell lysis. All three groups of viruses are predicted to play important roles in controlling Asgard archaea populations in deep-sea ecosystems.
Collapse
Affiliation(s)
- Sofia Medvedeva
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France
- Center of Life Science, Skolkovo Institute of Science and Technology, Moscow, Russia
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Evolutionary Biology of the Microbial Cell Unit, Paris, France
| | - Jiarui Sun
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Natalya Yutin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Takuro Nunoura
- Research Center for Bioscience and Nanoscience, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan.
| | - Christian Rinke
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia.
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France.
| |
Collapse
|
26
|
Abstract
Members of candidate Asgardarchaeota superphylum appear to share numerous eukaryotic-like attributes thus being broadly explored for their relevance to eukaryogenesis. On the contrast, the ecological roles of Asgard archaea remains understudied. Asgard archaea have been frequently associated to low-oxygen aquatic sedimentary environments worldwide spanning a broad but not extreme salinity range. To date, the available information on diversity and potential biogeochemical roles of Asgardarchaeota mostly sourced from marine habitats and to a much lesser extend from true saline environments (i.e., > 3% w/v total salinity). Here, we provide an overview on diversity and ecological implications of Asgard archaea distributed across saline environments and briefly explore their metagenome-resolved potential for osmoadaptation. Loki-, Thor- and Heimdallarchaeota are the dominant Asgard clades in saline habitats where they might employ anaerobic/microaerophilic organic matter degradation and autotrophic carbon fixation. Homologs of primary solute uptake ABC transporters seemingly prevail in Thorarchaeota, whereas those putatively involved in trehalose and ectoine biosynthesis were mostly inferred in Lokiarchaeota. We speculate that Asgardarchaeota might adopt compatible solute-accumulating ('salt-out') strategy as response to salt stress. Our current understanding on the distribution, ecology and salt-adaptive strategies of Asgardarchaeota in saline environments are, however, limited by insufficient sampling and incompleteness of the available metagenome-assembled genomes. Extensive sampling combined with 'omics'- and cultivation-based approaches seem, therefore, crucial to gain deeper knowledge on this particularly intriguing archaeal lineage.
Collapse
|
27
|
Cai M, Duan C, Zhang X, Pan J, Liu Y, Zhang C, Li M. Genomic and transcriptomic dissection of Theionarchaea in marine ecosystem. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1222-1234. [PMID: 34668130 DOI: 10.1007/s11427-021-1996-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/17/2021] [Indexed: 11/24/2022]
Abstract
Theionarchaea is a recently described archaeal class within the Euryarchaeota. While it is widely distributed in sediment ecosystems, little is known about its metabolic potential and ecological features. Here, we used metagenomics and metatranscriptomics to characterize 12 theionarchaeal metagenome-assembled genomes, which were further divided into two subgroups, from coastal mangrove sediments of China and seawater columns of the Yap Trench. Genomic analysis revealed that apart from the canonical sulfhydrogenase, Theionarchaea harbor genes encoding heliorhodopsin, group 4 [NiFe]-hydrogenase, and flagellin, in which genes for heliorhodopsin and group 4 [NiFe]-hydrogenase were transcribed in mangrove sediment. Further, the theionarchaeal substrate spectrum may be broader than previously reported as revealed by metagenomics and metatranscriptomics, and the potential carbon substrates include detrital proteins, hemicellulose, ethanol, and CO2. The genes for organic substrate metabolism (mainly detrital protein and amino acid metabolism genes) have relatively higher transcripts in the top sediment layers in mangrove wetlands. In addition, co-occurrence analysis suggested that the degradation of these organic compounds by Theionarchaea might be processed in syntrophy with fermenters (e.g., Chloroflexi) and methanogens. Collectively, these observations expand the current knowledge of the metabolic potential of Theionarchaea, and shed light on the metabolic strategies and roles of these archaea in the marine ecosystems.
Collapse
Affiliation(s)
- Mingwei Cai
- Archaeal Biology Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Changhai Duan
- Archaeal Biology Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
- SZU-HKUST Joint PhD Program in Marine Environmental Science, Shenzhen University, Shenzhen, 518060, China
| | - Xinxu Zhang
- Archaeal Biology Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Jie Pan
- Archaeal Biology Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Yang Liu
- Archaeal Biology Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Cuijing Zhang
- Archaeal Biology Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Meng Li
- Archaeal Biology Center, Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.
- SZU-HKUST Joint PhD Program in Marine Environmental Science, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
28
|
Yin X, Zhou G, Cai M, Zhu QZ, Richter-Heitmann T, Aromokeye DA, Liu Y, Nimzyk R, Zheng Q, Tang X, Elvert M, Li M, Friedrich MW. Catabolic protein degradation in marine sediments confined to distinct archaea. THE ISME JOURNAL 2022; 16:1617-1626. [PMID: 35220398 PMCID: PMC9123169 DOI: 10.1038/s41396-022-01210-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 01/03/2022] [Accepted: 02/04/2022] [Indexed: 12/13/2022]
Abstract
Metagenomic analysis has facilitated prediction of a variety of carbon utilization potentials by uncultivated archaea including degradation of protein, which is a wide-spread carbon polymer in marine sediments. However, the activity of detrital catabolic protein degradation is mostly unknown for the vast majority of archaea. Here, we show actively executed protein catabolism in three archaeal phyla (uncultivated Thermoplasmata, SG8-5; Bathyarchaeota subgroup 15; Lokiarchaeota subgroup 2c) by RNA- and lipid-stable isotope probing in incubations with different marine sediments. However, highly abundant potential protein degraders Thermoprofundales (MBG-D) and Lokiarchaeota subgroup 3 were not incorporating 13C-label from protein during incubations. Nonetheless, we found that the pathway for protein utilization was present in metagenome associated genomes (MAGs) of active and inactive archaea. This finding was supported by screening extracellular peptidases in 180 archaeal MAGs, which appeared to be widespread but not correlated to organisms actively executing this process in our incubations. Thus, our results have important implications: (i) multiple low-abundant archaeal groups are actually catabolic protein degraders; (ii) the functional role of widespread extracellular peptidases is not an optimal tool to identify protein catabolism, and (iii) catabolic degradation of sedimentary protein is not a common feature of the abundant archaeal community in temperate and permanently cold marine sediments.
Collapse
Affiliation(s)
- Xiuran Yin
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany. .,MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany. .,Max Planck Institute for Marine Microbiology, Bremen, Germany.
| | - Guowei Zhou
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany. .,School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui, China.
| | - Mingwei Cai
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China.,Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Qing-Zeng Zhu
- MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Tim Richter-Heitmann
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany
| | - David A Aromokeye
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany.,MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Yang Liu
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China.,Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Rolf Nimzyk
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany
| | - Qingfei Zheng
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China.,School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Xiaoyu Tang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Marcus Elvert
- MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany.,Faculty of Geosciences, University of Bremen, Bremen, Germany
| | - Meng Li
- Archaeal Biology Center, Institute for Advanced Study, Shenzhen University, Shenzhen, China.,Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Michael W Friedrich
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany.,MARUM - Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| |
Collapse
|
29
|
Spang A, Mahendrarajah TA, Offre P, Stairs CW. Evolving Perspective on the Origin and Diversification of Cellular Life and the Virosphere. Genome Biol Evol 2022; 14:evac034. [PMID: 35218347 PMCID: PMC9169541 DOI: 10.1093/gbe/evac034] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2022] [Indexed: 11/14/2022] Open
Abstract
The tree of life (TOL) is a powerful framework to depict the evolutionary history of cellular organisms through time, from our microbial origins to the diversification of multicellular eukaryotes that shape the visible biosphere today. During the past decades, our perception of the TOL has fundamentally changed, in part, due to profound methodological advances, which allowed a more objective approach to studying organismal and viral diversity and led to the discovery of major new branches in the TOL as well as viral lineages. Phylogenetic and comparative genomics analyses of these data have, among others, revolutionized our understanding of the deep roots and diversity of microbial life, the origin of the eukaryotic cell, eukaryotic diversity, as well as the origin, and diversification of viruses. In this review, we provide an overview of some of the recent discoveries on the evolutionary history of cellular organisms and their viruses and discuss a variety of complementary techniques that we consider crucial for making further progress in our understanding of the TOL and its interconnection with the virosphere.
Collapse
Affiliation(s)
- Anja Spang
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Utrecht University, Den Burg, The Netherlands
- Department of Cell and Molecular Biology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Tara A Mahendrarajah
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Utrecht University, Den Burg, The Netherlands
| | - Pierre Offre
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Utrecht University, Den Burg, The Netherlands
| | - Courtney W Stairs
- Department of Biology, Microbiology research group, Lund University, Lund, Sweden
| |
Collapse
|
30
|
Pastor MM, Sakrikar S, Rodriguez DN, Schmid AK. Comparative Analysis of rRNA Removal Methods for RNA-Seq Differential Expression in Halophilic Archaea. Biomolecules 2022; 12:biom12050682. [PMID: 35625610 PMCID: PMC9138242 DOI: 10.3390/biom12050682] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 11/16/2022] Open
Abstract
Despite intense recent research interest in archaea, the scientific community has experienced a bottleneck in the study of genome-scale gene expression experiments by RNA-seq due to the lack of commercial and specifically designed rRNA depletion kits. The high rRNA:mRNA ratio (80–90%: ~10%) in prokaryotes hampers global transcriptomic analysis. Insufficient ribodepletion results in low sequence coverage of mRNA, and therefore, requires a substantially higher number of replicate samples and/or sequencing reads to achieve statistically reliable conclusions regarding the significance of differential gene expression between case and control samples. Here, we show that after the discontinuation of the previous version of RiboZero (Illumina, San Diego, CA, USA) that was useful in partially or completely depleting rRNA from archaea, archaeal transcriptomics studies have experienced a slowdown. To overcome this limitation, here, we analyze the efficiency for four different hybridization-based kits from three different commercial suppliers, each with two sets of sequence-specific probes to remove rRNA from four different species of halophilic archaea. We conclude that the key for transcriptomic success with the currently available tools is the probe-specificity for the rRNA sequence hybridization. With this paper, we provide insights into the archaeal community for selecting certain reagents and strategies over others depending on the archaeal species of interest. These methods yield improved RNA-seq sensitivity and enhanced detection of low abundance transcripts.
Collapse
Affiliation(s)
- Mar Martinez Pastor
- Biology Department, Duke University, Durham, NC 27708, USA; (M.M.P.); (S.S.)
| | - Saaz Sakrikar
- Biology Department, Duke University, Durham, NC 27708, USA; (M.M.P.); (S.S.)
- University Program in Genetics and Genomics, Duke University, Durham, NC 27708, USA
| | | | - Amy K. Schmid
- Biology Department, Duke University, Durham, NC 27708, USA; (M.M.P.); (S.S.)
- University Program in Genetics and Genomics, Duke University, Durham, NC 27708, USA
- Correspondence: ; Tel.: +919-613-4464
| |
Collapse
|
31
|
Zuo YW, Zhang JH, Ning DH, Zeng YL, Li WQ, Xia CY, Zhang H, Deng HP. Comparative Analyses of Rhizosphere Bacteria Along an Elevational Gradient of Thuja sutchuenensis. Front Microbiol 2022; 13:881921. [PMID: 35591985 PMCID: PMC9111514 DOI: 10.3389/fmicb.2022.881921] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Thuja sutchuenensis Franch. is an endangered species in southwestern China, primarily distributed in 800-2,100 m of inaccessible mountainous areas. Rhizosphere soil physicochemical properties and bacterial communities play an essential role in managing plant growth and survival. Nonetheless, the study investigating rhizosphere soil properties and bacterial communities of T. sutchuenensis is limited. The present study investigated soil properties, including soil pH, organic matter, water content, nitrogen, phosphorus, and potassium contents, and bacterial communities in nearly all extant T. sutchuenensis populations at five elevational gradients. Our results demonstrated that the increase in elevation decreased rhizosphere and bulk soil phosphorus content but increased potassium content. In addition, the elevational gradient was the dominant driver for the community composition differentiation of soil bacterial community. Proteobacteria and Acidobacteria were the dominant bacterial phyla distributed in the rhizosphere and bulk soils. Co-occurrence network analysis identified key genera, including Bradyrhizobium, Acidicapsa, Catenulispora, and Singulisphaera, that displayed densely connected interactions with many genera in the rhizosphere soil. The dominant KEGG functional pathways of the rhizosphere bacteria included ABC transporters, butanoate metabolism, and methane metabolism. Further correlation analysis found that soil phosphorus and potassium were the dominant drivers for the diversity of soil bacteria, which were distinctively contributed to the phylum of Planctomycetes and the genera of Blastopirellula, Planctomycetes, and Singulisphaera. Collectively, this comprehensive study generated multi-dimensional perspectives for understanding the soil bacterial community structures of T. sutchuenensis, and provided valuable findings for species conservation at large-scale views.
Collapse
Affiliation(s)
- You-wei Zuo
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Institute of Resources Botany, Southwest University, Chongqing, China
| | - Jia-hui Zhang
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Institute of Resources Botany, Southwest University, Chongqing, China
| | - Deng-hao Ning
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Institute of Resources Botany, Southwest University, Chongqing, China
| | - Yu-lian Zeng
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Institute of Resources Botany, Southwest University, Chongqing, China
| | - Wen-qiao Li
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Institute of Resources Botany, Southwest University, Chongqing, China
| | - Chang-ying Xia
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Institute of Resources Botany, Southwest University, Chongqing, China
| | - Huan Zhang
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Institute of Resources Botany, Southwest University, Chongqing, China
| | - Hong-ping Deng
- Center for Biodiversity Conservation and Utilization, School of Life Sciences, Southwest University, Chongqing, China
- Chongqing Key Laboratory of Plant Resource Conservation and Germplasm Innovation, School of Life Sciences, Institute of Resources Botany, Southwest University, Chongqing, China
- Chongqing Academy of Science and Technology, Low Carbon and Ecological Environment Protection Research Center, Chongqing, China
| |
Collapse
|
32
|
Xie R, Wang Y, Huang D, Hou J, Li L, Hu H, Zhao X, Wang F. Expanding Asgard members in the domain of Archaea sheds new light on the origin of eukaryotes. SCIENCE CHINA. LIFE SCIENCES 2022; 65:818-829. [PMID: 34378142 DOI: 10.1007/s11427-021-1969-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
The hypothesis that eukaryotes originated from within the domain Archaea has been strongly supported by recent phylogenomic analyses placing Heimdallarchaeota-Wukongarchaeota branch from the Asgard superphylum as the closest known archaeal sister-group to eukaryotes. However, our understanding is still limited in terms of the relationship between eukaryotes and archaea, as well as the evolution and ecological functions of the Asgard archaea. Here, we describe three previously unknown phylum-level Asgard archaeal lineages, tentatively named Sigyn-, Freyr- and Njordarchaeota. Additional members in Wukongarchaeota and Baldrarchaeota from distinct environments are also reported here, further expanding their ecological roles and metabolic capacities. Comprehensive phylogenomic analyses further supported the origin of eukaryotes within Asgard archaea and a new lineage Njordarchaeota was supposed as the known closest branch with the eukaryotic nuclear host lineage. Metabolic reconstruction suggests that Njordarchaeota may have a heterotrophic lifestyle with capability of peptides and amino acids utilization, while Sigynarchaeota and Freyrarchaeota also have the potentials to fix inorganic carbon via the Wood-Ljungdahl pathway and degrade organic matters. Additionally, the Ack/Pta pathway for homoacetogenesis and de novo anaerobic cobalamin biosynthesis pathway were found in Freyrarchaeota and Wukongrarchaeota, respectively. Some previously unidentified eukaryotic signature proteins for intracellular membrane trafficking system, and the homologue of mu/sigma subunit of adaptor protein complex, were identified in Freyrarchaeota. This study expands the Asgard superphylum, sheds new light on the evolution of eukaryotes and improves our understanding of ecological functions of the Asgard archaea.
Collapse
Affiliation(s)
- Ruize Xie
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yinzhao Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Danyue Huang
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jialin Hou
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Liuyang Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Haining Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoxiao Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fengping Wang
- School of Oceanography, Shanghai Jiao Tong University, Shanghai, 200030, China.
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519082, China.
| |
Collapse
|
33
|
Wu F, Speth DR, Philosof A, Crémière A, Narayanan A, Barco RA, Connon SA, Amend JP, Antoshechkin IA, Orphan VJ. Unique mobile elements and scalable gene flow at the prokaryote-eukaryote boundary revealed by circularized Asgard archaea genomes. Nat Microbiol 2022; 7:200-212. [PMID: 35027677 PMCID: PMC8813620 DOI: 10.1038/s41564-021-01039-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/29/2021] [Indexed: 12/22/2022]
Abstract
Eukaryotic genomes are known to have garnered innovations from both archaeal and bacterial domains but the sequence of events that led to the complex gene repertoire of eukaryotes is largely unresolved. Here, through the enrichment of hydrothermal vent microorganisms, we recovered two circularized genomes of Heimdallarchaeum species that belong to an Asgard archaea clade phylogenetically closest to eukaryotes. These genomes reveal diverse mobile elements, including an integrative viral genome that bidirectionally replicates in a circular form and aloposons, transposons that encode the 5,000 amino acid-sized proteins Otus and Ephialtes. Heimdallaechaeal mobile elements have garnered various genes from bacteria and bacteriophages, likely playing a role in shuffling functions across domains. The number of archaea- and bacteria-related genes follow strikingly different scaling laws in Asgard archaea, exhibiting a genome size-dependent ratio and a functional division resembling the bacteria- and archaea-derived gene repertoire across eukaryotes. Bacterial gene import has thus likely been a continuous process unaltered by eukaryogenesis and scaled up through genome expansion. Our data further highlight the importance of viewing eukaryogenesis in a pan-Asgard context, which led to the proposal of a conceptual framework, that is, the Heimdall nucleation-decentralized innovation-hierarchical import model that accounts for the emergence of eukaryotic complexity.
Collapse
Affiliation(s)
- Fabai Wu
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA.
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| | - Daan R Speth
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Alon Philosof
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Antoine Crémière
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Aditi Narayanan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Roman A Barco
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, USA
| | - Stephanie A Connon
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Jan P Amend
- Department of Earth Sciences, University of Southern California, Los Angeles, CA, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Igor A Antoshechkin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Victoria J Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA.
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
34
|
Cai M, Yin X, Tang X, Zhang C, Zheng Q, Li M. Metatranscriptomics reveals different features of methanogenic archaea among global vegetated coastal ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149848. [PMID: 34464803 DOI: 10.1016/j.scitotenv.2021.149848] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Vegetated coastal ecosystems (VCEs; i.e., mangroves, saltmarshes, and seagrasses) represent important sources of natural methane emission. Despite recent advances in the understanding of novel taxa and pathways associated with methanogenesis in these ecosystems, the key methanogenic players and the contribution of different substrates to methane formation remain elusive. Here, we systematically investigate the community and activity of methanogens using publicly available metatranscriptomes at a global scale together with our in-house metatranscriptomic dataset. Taxonomic profiling reveals that 13 groups of methanogenic archaea were transcribed in the investigated VCEs, and they were predominated by Methanosarcinales. Among these VCEs, methanogens exhibited all the three known methanogenic pathways in some mangrove sediments, where methylotrophic methanogens Methanosarcinales/Methanomassiliicoccales grew on diverse methyl compounds and coexisted with hydrogenotrophic (mainly Methanomicrobiales) and acetoclastic (mainly Methanothrix) methanogens. Contrastingly, the predominant methanogenic pathway in saltmarshes and seagrasses was constrained to methylotrophic methanogenesis. These findings reveal different archaeal methanogens in VCEs and suggest the potentially distinct methanogenesis contributions in these VCEs to the global warming.
Collapse
Affiliation(s)
- Mingwei Cai
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China; Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - Xiuran Yin
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany; MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Xiaoyu Tang
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China; School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Cuijing Zhang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Qingfei Zheng
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, China; School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China.
| | - Meng Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| |
Collapse
|
35
|
Makarova KS, Wolf YI, Shmakov SA, Liu Y, Li M, Koonin EV. Unprecedented Diversity of Unique CRISPR-Cas-Related Systems and Cas1 Homologs in Asgard Archaea. CRISPR J 2021; 3:156-163. [PMID: 33555973 DOI: 10.1089/crispr.2020.0012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The principal function of archaeal and bacterial CRISPR-Cas systems is antivirus adaptive immunity. However, recent genome analyses identified a variety of derived CRISPR-Cas variants at least some of which appear to perform different functions. Here, we describe a unique repertoire of CRISPR-Cas-related systems that we discovered by searching archaeal metagenome-assemble genomes of the Asgard superphylum. Several of these variants contain extremely diverged homologs of Cas1, the integrase involved in CRISPR adaptation as well as casposon transposition. Strikingly, the diversity of Cas1 in Asgard archaea alone is greater than that detected so far among the rest of archaea and bacteria. The Asgard CRISPR-Cas derivatives also encode distinct forms of Cas4, Cas5, and Cas7 proteins, and/or additional nucleases. Some of these systems are predicted to perform defense functions, but possibly not programmable ones, whereas others are likely to represent previously unknown mobile genetic elements.
Collapse
Affiliation(s)
- Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Sergey A Shmakov
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Yang Liu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, P.R. China
| | - Meng Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, P.R. China
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
36
|
High-Level Diversity of Basal Fungal Lineages and the Control of Fungal Community Assembly by Stochastic Processes in Mangrove Sediments. Appl Environ Microbiol 2021; 87:e0092821. [PMID: 34190611 DOI: 10.1128/aem.00928-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fungi are key components of microbial communities in mangrove wetlands, with important roles in the transformation of nutrients and energy. However, existing studies typically focus on cultivable fungi and seldom on the structure and driving factors of entire fungal communities. The compositions, community assembly, and interaction patterns of mangrove fungal communities on a large scale remain elusive. Here, biogeography, assembly, and co-occurrence patterns of fungal communities in mangroves across eastern to southern China were systematically analyzed by targeting the entire internal transcribed spacer (ITS) region with high-throughput Pacific Biosciences single-molecule real-time sequencing. The analysis revealed a high level of fungal diversity, including a number of basal fungal lineages not previously reported in mangroves, such as Rozellomycota and Chytridiomycota. Beta nearest-taxon index analyses suggested a determinant role of dispersal limitation on fungal community in overall and most individual mangroves, with support from the strong distance-decay patterns of community similarity. Further, nonmetric multidimensional scaling analyses revealed similar biogeographies of dominant and rare fungal communities. A minor role of environmental selection on the fungal community was noted, with geographical location and sediment depth as crucial factors driving the distribution of both, the dominant and rare taxa. Finally, network analysis revealed high modularized co-occurrence patterns of fungal community in mangrove sediments, and the keystone taxa might play important roles in microbial interactions and ecological functions. The investigation expands our understanding of biogeography, assembly patterns, driving factors, and co-occurrence relationships of mangrove fungi and will spur the further functional exploration and protection of fungal resources in mangroves. IMPORTANCE As key components of microbial community in mangroves, fungi have important ecological functions. However, the fungal community in mangroves on a large scale is generally elusive, and mangroves are declining rapidly due to climate change and anthropogenic activities. This work provides an overview of fungal community structure and biogeography in mangrove wetlands along a >9,000-km coastline across eastern to southern China. Our study observed a high number of basal fungal lineages, such as Rozellomycota and Chytridiomycota, in mangrove sediments. In addition, our results highlight a crucial role of dispersal limitation and a minor role of environmental selections on fungal communities in mangrove sediments. These novel findings add important knowledge about the structure, assembly processes, and driving factors of fungal communities in mangrove sediments.
Collapse
|
37
|
Tahon G, Patricia Geesink, Ettema TJG. Expanding Archaeal Diversity and Phylogeny: Past, Present, and Future. Annu Rev Microbiol 2021; 75:359-381. [PMID: 34351791 DOI: 10.1146/annurev-micro-040921-050212] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The discovery of the Archaea is a major scientific hallmark of the twentieth century. Since then, important features of their cell biology, physiology, ecology, and diversity have been revealed. Over the course of some 40 years, the diversity of known archaea has expanded from 2 to about 30 phyla comprising over 20,000 species. Most of this archaeal diversity has been revealed by environmental 16S rRNA amplicon sequencing surveys using a broad range of universal and targeted primers. Of the few primers that target a large fraction of known archaeal diversity, all display a bias against recently discovered lineages, which limits studies aiming to survey overall archaeal diversity. Induced by genomic exploration of archaeal diversity, and improved phylogenomics approaches, archaeal taxonomic classification has been frequently revised. Due to computational limitations and continued discovery of new lineages, a stable archaeal phylogeny is not yet within reach. Obtaining phylogenetic and taxonomic consensus of archaea should be a high priority for the archaeal research community. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Guillaume Tahon
- Laboratory of Microbiology, Wageningen University and Research, 6700 EH Wageningen, The Netherlands; , ,
| | - Patricia Geesink
- Laboratory of Microbiology, Wageningen University and Research, 6700 EH Wageningen, The Netherlands; , ,
| | - Thijs J G Ettema
- Laboratory of Microbiology, Wageningen University and Research, 6700 EH Wageningen, The Netherlands; , ,
| |
Collapse
|
38
|
Zhang ZF, Pan J, Pan YP, Li M. Biogeography, Assembly Patterns, Driving Factors, and Interactions of Archaeal Community in Mangrove Sediments. mSystems 2021; 6:e0138120. [PMID: 34128692 PMCID: PMC8269266 DOI: 10.1128/msystems.01381-20] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 05/20/2021] [Indexed: 02/06/2023] Open
Abstract
Archaea are a major part of Earth's life. They are believed to play important roles in nutrient biogeochemical cycling in the mangrove. However, only a few studies on the archaeal community in mangroves have been reported. In particular, the assembly processes and interaction patterns that impact the archaeal communities in mangroves have not been investigated to date. Here, the biogeography, assembly patterns, and driving factors of archaeal communities in seven representative mangroves across southeastern China were systematically analyzed. The analysis revealed that the archaeal community is more diverse in surface sediments than in subsurface sediments, and more diverse in mangroves at low latitudes than at high latitudes, with Woesearchaeota and Bathyarchaeota as the most diverse and most abundant phyla, respectively. Beta nearest-taxon index analysis suggested a determinant role of homogeneous selection on the overall archaeon community in all mangroves and in each individual mangrove. In addition, the conditionally rare taxon community was strongly shaped by homogeneous selection, while stochastic processes shaped the dominant taxon and always-rare taxon communities. Further, a moderate effect of environmental selection on the archaeal community was noted, with the smallest effect on the always-rare taxon community. Mangrove location, mean annual temperature, and salinity were the major factors that greatly affected the community composition. Finally, network analysis revealed comprehensive cooccurrence relationships in the archaeal community, with a crucial role of Bathyarchaeota. This study expands the understanding of the biogeography, assembly patterns, driving factors, and cooccurrence relationships of the mangrove archaeal community and inspires functional exploration of archaeal resources in mangrove sediments. IMPORTANCE As a key microbial community component with important ecological roles, archaea merit the attention of biologists and ecologists. The mechanisms controlling microbial community diversity, composition, and biogeography are central to microbial ecology but poorly understood. Mangroves are located at the land-ocean interface and are an ideal environment for examining the above questions. We here provided the first-ever overview of archaeal community structure and biogeography in mangroves located along an over-9,000-km coastline of southeastern China. We observed that archaeal diversity in low-latitude mangroves was higher than that in high-latitude mangroves. Furthermore, our data indicated that homogeneous selection strongly controlled the assembly of the overall and conditionally rare taxon communities in mangrove sediments, while the dominant taxon and always-rare taxon communities were mainly controlled by dispersal limitation.
Collapse
Affiliation(s)
- Zhi-Feng Zhang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Jie Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Yue-Ping Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Meng Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| |
Collapse
|
39
|
Sun J, Evans PN, Gagen EJ, Woodcroft BJ, Hedlund BP, Woyke T, Hugenholtz P, Rinke C. Recoding of stop codons expands the metabolic potential of two novel Asgardarchaeota lineages. ISME COMMUNICATIONS 2021; 1:30. [PMID: 36739331 PMCID: PMC9723677 DOI: 10.1038/s43705-021-00032-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023]
Abstract
Asgardarchaeota have been proposed as the closest living relatives to eukaryotes, and a total of 72 metagenome-assembled genomes (MAGs) representing six primary lineages in this archaeal phylum have thus far been described. These organisms are predicted to be fermentative heterotrophs contributing to carbon cycling in sediment ecosystems. Here, we double the genomic catalogue of Asgardarchaeota by obtaining 71 MAGs from a range of habitats around the globe, including the deep subsurface, brackish shallow lakes, and geothermal spring sediments. Phylogenomic inferences followed by taxonomic rank normalisation confirmed previously established Asgardarchaeota classes and revealed four additional lineages, two of which were consistently recovered as monophyletic classes. We therefore propose the names Candidatus Sifarchaeia class nov. and Ca. Jordarchaeia class nov., derived from the gods Sif and Jord in Norse mythology. Metabolic inference suggests that both classes represent hetero-organotrophic acetogens, which also have the ability to utilise methyl groups such as methylated amines, with acetate as the probable end product in remnants of a methanogen-derived core metabolism. This inferred mode of energy conservation is predicted to be enhanced by genetic code expansions, i.e., stop codon recoding, allowing the incorporation of the rare 21st and 22nd amino acids selenocysteine (Sec) and pyrrolysine (Pyl). We found Sec recoding in Jordarchaeia and all other Asgardarchaeota classes, which likely benefit from increased catalytic activities of Sec-containing enzymes. Pyl recoding, on the other hand, is restricted to Sifarchaeia in the Asgardarchaeota, making it the first reported non-methanogenic archaeal lineage with an inferred complete Pyl machinery, likely providing members of this class with an efficient mechanism for methylamine utilisation. Furthermore, we identified enzymes for the biosynthesis of ester-type lipids, characteristic of bacteria and eukaryotes, in both newly described classes, supporting the hypothesis that mixed ether-ester lipids are a shared feature among Asgardarchaeota.
Collapse
Affiliation(s)
- Jiarui Sun
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Paul N Evans
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Emma J Gagen
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
- School of Earth and Environmental Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Ben J Woodcroft
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, Australia
| | - Brian P Hedlund
- School of Life Sciences and Nevada Institute of Personalized Medicine, University of Nevada, Las Vegas, NV, USA
| | - Tanja Woyke
- DOE Joint Genome Institute, Berkeley, CA, USA
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| | - Christian Rinke
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|
40
|
Zhao R, Biddle JF. Helarchaeota and co-occurring sulfate-reducing bacteria in subseafloor sediments from the Costa Rica Margin. ISME COMMUNICATIONS 2021; 1:25. [PMID: 36737514 PMCID: PMC9723726 DOI: 10.1038/s43705-021-00027-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/11/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023]
Abstract
Deep sediments host many archaeal lineages, including the Asgard superphylum which contains lineages predicted to require syntrophic partnerships. Our knowledge about sedimentary archaeal diversity and their metabolic pathways and syntrophic partners is still very limited. We present here new genomes of Helarchaeota and the co-occurring sulfate-reducing bacteria (SRB) recovered from organic-rich sediments off Costa Rica Margin. Phylogenetic analyses revealed three new metagenome-assembled genomes (MAGs) affiliating with Helarchaeota, each of which has three variants of the methyl-CoM reductase-like (MCR-like) complex that may enable them to oxidize short-chain alkanes anaerobically. These Helarchaeota have no multi-heme cytochromes but have Group 3b and Group 3c [NiFe] hydrogenases, and formate dehydrogenase, and therefore have the capacity to transfer the reducing equivalents (in the forms of hydrogen and formate) generated from alkane oxidation to external partners. We also recovered five MAGs of SRB affiliated with the class of Desulfobacteria, two of which showed relative abundances (represented by genome coverages) positively correlated with those of the three Helarchaeota. Genome analysis suggested that these SRB bacteria have the capacity of H2 and formate utilization and could facilitate electron transfers from other organisms by means of these reduced substances. Their co-occurrence and metabolic features suggest that Helarchaeota may metabolize synergistically with some SRB, and together exert an important influence on the carbon cycle by mitigating the hydrocarbon emission from sediments to the overlying ocean.
Collapse
Affiliation(s)
- Rui Zhao
- School of Marine Science and Policy, University of Delaware, Lewes, DE, USA
| | - Jennifer F Biddle
- School of Marine Science and Policy, University of Delaware, Lewes, DE, USA.
| |
Collapse
|
41
|
Liu Y, Makarova KS, Huang WC, Wolf YI, Nikolskaya AN, Zhang X, Cai M, Zhang CJ, Xu W, Luo Z, Cheng L, Koonin EV, Li M. Expanded diversity of Asgard archaea and their relationships with eukaryotes. Nature 2021; 593:553-557. [PMID: 33911286 PMCID: PMC11165668 DOI: 10.1038/s41586-021-03494-3] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/26/2021] [Indexed: 01/21/2023]
Abstract
Asgard is a recently discovered superphylum of archaea that appears to include the closest archaeal relatives of eukaryotes1-5. Debate continues as to whether the archaeal ancestor of eukaryotes belongs within the Asgard superphylum or whether this ancestor is a sister group to all other archaea (that is, a two-domain versus a three-domain tree of life)6-8. Here we present a comparative analysis of 162 complete or nearly complete genomes of Asgard archaea, including 75 metagenome-assembled genomes that-to our knowledge-have not previously been reported. Our results substantially expand the phylogenetic diversity of Asgard and lead us to propose six additional phyla that include a deep branch that we have provisionally named Wukongarchaeota. Our phylogenomic analysis does not resolve unequivocally the evolutionary relationship between eukaryotes and Asgard archaea, but instead-depending on the choice of species and conserved genes used to build the phylogeny-supports either the origin of eukaryotes from within Asgard (as a sister group to the expanded Heimdallarchaeota-Wukongarchaeota branch) or a deeper branch for the eukaryote ancestor within archaea. Our comprehensive protein domain analysis using the 162 Asgard genomes results in a major expansion of the set of eukaryotic signature proteins. The Asgard eukaryotic signature proteins show variable phyletic distributions and domain architectures, which is suggestive of dynamic evolution through horizontal gene transfer, gene loss, gene duplication and domain shuffling. The phylogenomics of the Asgard archaea points to the accumulation of the components of the mobile archaeal 'eukaryome' in the archaeal ancestor of eukaryotes (within or outside Asgard) through extensive horizontal gene transfer.
Collapse
Affiliation(s)
- Yang Liu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, P. R. China
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Wen-Cong Huang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, P. R. China
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Anastasia N Nikolskaya
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Xinxu Zhang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, P. R. China
| | - Mingwei Cai
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, P. R. China
| | - Cui-Jing Zhang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, P. R. China
| | - Wei Xu
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, P. R. China
| | - Zhuhua Luo
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, P. R. China
| | - Lei Cheng
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture, Chengdu, P. R. China
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
| | - Meng Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, P. R. China.
| |
Collapse
|
42
|
Zhang CJ, Chen YL, Sun YH, Pan J, Cai MW, Li M. Diversity, metabolism and cultivation of archaea in mangrove ecosystems. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:252-262. [PMID: 37073347 PMCID: PMC10077227 DOI: 10.1007/s42995-020-00081-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 10/19/2020] [Indexed: 05/03/2023]
Abstract
Mangroves comprise a globally significant intertidal ecosystem that contains a high diversity of microorganisms, including fungi, bacteria and archaea. Archaea is a major domain of life that plays important roles in biogeochemical cycles in these ecosystems. In this review, the potential roles of archaea in mangroves are briefly highlighted. Then, the diversity and metabolism of archaeal community of mangrove ecosystems across the world are summarized and Bathyarchaeota, Euryarchaeota, Thaumarchaeota, Woesearchaeota, and Lokiarchaeota are confirmed as the most abundant and ubiquitous archaeal groups. The metabolic potential of these archaeal groups indicates their important ecological function in carbon, nitrogen and sulfur cycling. Finally, some cultivation strategies that could be applied to uncultivated archaeal lineages from mangrove wetlands are suggested, including refinements to traditional cultivation methods based on genomic and transcriptomic information, and numerous innovative cultivation techniques such as single-cell isolation and high-throughput culturing (HTC). These cultivation strategies provide more opportunities to obtain previously uncultured archaea.
Collapse
Affiliation(s)
- Cui-Jing Zhang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060 China
| | - Yu-Lian Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060 China
| | - Yi-Hua Sun
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060 China
| | - Jie Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060 China
| | - Ming-Wei Cai
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060 China
| | - Meng Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060 China
| |
Collapse
|
43
|
Unraveling the Metabolic Potential of Asgardarchaeota in a Sediment from the Mediterranean Hydrocarbon-Contaminated Water Basin Mar Piccolo (Taranto, Italy). Microorganisms 2021; 9:microorganisms9040859. [PMID: 33923677 PMCID: PMC8072921 DOI: 10.3390/microorganisms9040859] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/10/2021] [Accepted: 04/14/2021] [Indexed: 12/02/2022] Open
Abstract
Increasing number of metagenome sequencing studies have proposed a central metabolic role of still understudied Archaeal members in natural and artificial ecosystems. However, their role in hydrocarbon cycling, particularly in the anaerobic biodegradation of aliphatic and aromatic hydrocarbons, is still mostly unknown in both marine and terrestrial environments. In this work, we focused our study on the metagenomic characterization of the archaeal community inhabiting the Mar Piccolo (Taranto, Italy, central Mediterranean) sediments heavily contaminated by petroleum hydrocarbons and polychlorinated biphenyls (PCB). Among metagenomic bins reconstructed from Mar Piccolo microbial community, we have identified members of the Asgardarchaeota superphylum that has been recently proposed to play a central role in hydrocarbon cycling in natural ecosystems under anoxic conditions. In particular, we found members affiliated with Thorarchaeota, Heimdallarchaeota, and Lokiarchaeota phyla and analyzed their genomic potential involved in central metabolism and hydrocarbon biodegradation. Metabolic prediction based on metagenomic analysis identified the malonyl-CoA and benzoyl-CoA routes as the pathways involved in aliphatic and aromatic biodegradation in these Asgardarchaeota members. This is the first study to give insight into the archaeal community functionality and connection to hydrocarbon degradation in marine sediment historically contaminated by hydrocarbons.
Collapse
|
44
|
Farag IF, Zhao R, Biddle JF. " Sifarchaeota," a Novel Asgard Phylum from Costa Rican Sediment Capable of Polysaccharide Degradation and Anaerobic Methylotrophy. Appl Environ Microbiol 2021; 87:e02584-20. [PMID: 33608286 PMCID: PMC8091018 DOI: 10.1128/aem.02584-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/10/2021] [Indexed: 12/15/2022] Open
Abstract
The Asgard superphylum is a deeply branching monophyletic group of Archaea, recently described as some of the closest relatives of the eukaryotic ancestor. The wide application of genomic analyses from metagenome sequencing has established six distinct phyla, whose genomes encode diverse metabolic capacities and which play important biogeochemical and ecological roles in marine sediments. Here, we describe two metagenome-assembled genomes (MAGs) recovered from deep marine sediments off the Costa Rica margin, defining a novel lineage phylogenetically married to "Candidatus Thorarchaeota"; as such, we propose the name "Sifarchaeota" for this phylum. The two Sifarchaeota MAGs encode an anaerobic pathway for methylotrophy enabling the utilization of C1 to C3 compounds (methanol and methylamines) to synthesize acetyl coenzyme A (acetyl-CoA). The MAGs showed a remarkable saccharolytic capabilities compared to other Asgard lineages and encoded diverse classes of carbohydrate active enzymes (CAZymes) targeting different mono-, di-, and oligosaccharides. Comparative genomic analysis based on the full metabolic profiles of different Asgard lineages revealed the close relation between Sifarchaeota and "Candidatus Odinarchaeota" MAGs, which suggested similar metabolic potentials and ecological roles. Furthermore, we identified multiple HGT events from different bacterial donors within Sifarchaeota MAGs, which hypothetically expanded Sifarchaeota capacities for substrate utilization, energy production, and niche adaptation.IMPORTANCE The exploration of deep marine sediments has unearthed many new lineages of microbes. The finding of this novel phylum of Asgard archaea is important, since understanding the diversity and evolution of Asgard archaea may inform also about the evolution of eukaryotic cells. The comparison of metabolic potentials of the Asgard archaea can help inform about selective pressures the lineages have faced during evolution.
Collapse
Affiliation(s)
- Ibrahim F Farag
- School of Marine Science and Policy, University of Delaware, Lewes, Delaware, USA
| | - Rui Zhao
- School of Marine Science and Policy, University of Delaware, Lewes, Delaware, USA
| | - Jennifer F Biddle
- School of Marine Science and Policy, University of Delaware, Lewes, Delaware, USA
| |
Collapse
|
45
|
Cai M, Richter-Heitmann T, Yin X, Huang WC, Yang Y, Zhang C, Duan C, Pan J, Liu Y, Liu Y, Friedrich MW, Li M. Ecological features and global distribution of Asgard archaea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143581. [PMID: 33223169 DOI: 10.1016/j.scitotenv.2020.143581] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 06/11/2023]
Abstract
Asgard is a newly proposed archaeal superphylum, which has been suggested to hold the key to decipher the origin of Eukaryotes. However, their ecology remains largely unknown. Here, we conducted a meta-analysis of publicly available Asgard-associated 16S rRNA gene fragments, and found that just three previously proposed clades (Lokiarchaeota, Thorarchaeota, and Asgard clade 4) are widely distributed, whereas the other seven clades (phylum or class level) are restricted to the sediment biosphere. Asgard archaea, especially Loki- and Thorarchaeota, seem to adapt to marine sediments, and water depth (the depth of the sediment below water surface) and salinity might be crucial factors for the proportion of these microorganisms as revealed by multivariate regression analyses. However, the abundance of Asgard archaea exhibited distinct environmental drivers at the clade-level; for instance, the proportion of Asgard clade 4 was higher in less saline environments (salinity <6.35 psu), while higher for Heimdallarchaeota-AAG and Asgard clade 2 in more saline environment (salinity ≥35 psu). Furthermore, co-occurrence analysis allowed us to find a significant non-random association of different Asgard clades with other groups (e.g., Lokiarchaeota with Deltaproteobacteria and Anaerolineae; Odinarchaeota with Bathyarchaeota), suggesting different interaction potentials among these clades. Overall, these findings reveal Asgard archaea as a ubiquitous group worldwide and provide initial insights into their ecological features on a global scale.
Collapse
Affiliation(s)
- Mingwei Cai
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Tim Richter-Heitmann
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany
| | - Xiuran Yin
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany; MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Wen-Cong Huang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Yuchun Yang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Guangzhou 510275, China
| | - Cuijing Zhang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Changhai Duan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Jie Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Yang Liu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Yue Liu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Michael W Friedrich
- Microbial Ecophysiology Group, Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany; MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Meng Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| |
Collapse
|
46
|
Yin X, Cai M, Liu Y, Zhou G, Richter-Heitmann T, Aromokeye DA, Kulkarni AC, Nimzyk R, Cullhed H, Zhou Z, Pan J, Yang Y, Gu JD, Elvert M, Li M, Friedrich MW. Subgroup level differences of physiological activities in marine Lokiarchaeota. THE ISME JOURNAL 2021; 15:848-861. [PMID: 33149207 PMCID: PMC8027215 DOI: 10.1038/s41396-020-00818-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 11/12/2022]
Abstract
Asgard is a recently discovered archaeal superphylum, closely linked to the emergence of eukaryotes. Among Asgard archaea, Lokiarchaeota are abundant in marine sediments, but their in situ activities are largely unknown except for Candidatus 'Prometheoarchaeum syntrophicum'. Here, we tracked the activity of Lokiarchaeota in incubations with Helgoland mud area sediments (North Sea) by stable isotope probing (SIP) with organic polymers, 13C-labelled inorganic carbon, fermentation intermediates and proteins. Within the active archaea, we detected members of the Lokiarchaeota class Loki-3, which appeared to mixotrophically participate in the degradation of lignin and humic acids while assimilating CO2, or heterotrophically used lactate. In contrast, members of the Lokiarchaeota class Loki-2 utilized protein and inorganic carbon, and degraded bacterial biomass formed in incubations. Metagenomic analysis revealed pathways for lactate degradation, and involvement in aromatic compound degradation in Loki-3, while the less globally distributed Loki-2 instead rely on protein degradation. We conclude that Lokiarchaeotal subgroups vary in their metabolic capabilities despite overlaps in their genomic equipment, and suggest that these subgroups occupy different ecologic niches in marine sediments.
Collapse
Affiliation(s)
- Xiuran Yin
- Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Mingwei Cai
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Yang Liu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Guowei Zhou
- Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany
| | | | - David A Aromokeye
- Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Ajinkya C Kulkarni
- Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Rolf Nimzyk
- Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany
| | - Henrik Cullhed
- International Max-Planck Research School for Marine Microbiology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Zhichao Zhou
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Jie Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Yuchun Yang
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Ji-Dong Gu
- Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Marcus Elvert
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany
| | - Meng Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - Michael W Friedrich
- Faculty of Biology/Chemistry, University of Bremen, Bremen, Germany.
- MARUM, Center for Marine Environmental Sciences, University of Bremen, Bremen, Germany.
| |
Collapse
|
47
|
Zhang JW, Dong HP, Hou LJ, Liu Y, Ou YF, Zheng YL, Han P, Liang X, Yin GY, Wu DM, Liu M, Li M. Newly discovered Asgard archaea Hermodarchaeota potentially degrade alkanes and aromatics via alkyl/benzyl-succinate synthase and benzoyl-CoA pathway. ISME JOURNAL 2021; 15:1826-1843. [PMID: 33452484 PMCID: PMC8163825 DOI: 10.1038/s41396-020-00890-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023]
Abstract
Asgard archaea are widely distributed in anaerobic environments. Previous studies revealed the potential capability of Asgard archaea to utilize various organic substrates including proteins, carbohydrates, fatty acids, amino acids and hydrocarbons, suggesting that Asgard archaea play an important role in sediment carbon cycling. Here, we describe a previously unrecognized archaeal phylum, Hermodarchaeota, affiliated with the Asgard superphylum. The genomes of these archaea were recovered from metagenomes generated from mangrove sediments, and were found to encode alkyl/benzyl-succinate synthases and their activating enzymes that are similar to those identified in alkane-degrading sulfate-reducing bacteria. Hermodarchaeota also encode enzymes potentially involved in alkyl-coenzyme A and benzoyl-coenzyme A oxidation, the Wood–Ljungdahl pathway and nitrate reduction. These results indicate that members of this phylum have the potential to strictly anaerobically degrade alkanes and aromatic compounds, coupling the reduction of nitrate. By screening Sequence Read Archive, additional genes encoding 16S rRNA and alkyl/benzyl-succinate synthases analogous to those in Hermodarchaeota were identified in metagenomic datasets from a wide range of marine and freshwater sediments. These findings suggest that Asgard archaea capable of degrading alkanes and aromatics via formation of alkyl/benzyl-substituted succinates are ubiquitous in sediments.
Collapse
Affiliation(s)
- Jia-Wei Zhang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China.,School of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Hong-Po Dong
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China.
| | - Li-Jun Hou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China.
| | - Yang Liu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Ya-Fei Ou
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Yan-Ling Zheng
- Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai, 200241, China
| | - Ping Han
- Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai, 200241, China
| | - Xia Liang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China
| | - Guo-Yu Yin
- Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai, 200241, China
| | - Dian-Ming Wu
- Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai, 200241, China
| | - Min Liu
- Key Laboratory of Geographic Information Science, Ministry of Education, East China Normal University, Shanghai, 200241, China
| | - Meng Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
48
|
Akıl C, Kitaoku Y, Tran LT, Liebl D, Choe H, Muengsaen D, Suginta W, Schulte A, Robinson RC. Mythical origins of the actin cytoskeleton. Curr Opin Cell Biol 2020; 68:55-63. [PMID: 33049465 DOI: 10.1016/j.ceb.2020.08.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/13/2020] [Accepted: 08/17/2020] [Indexed: 10/23/2022]
Abstract
The origin of the eukaryotic cell is one of the greatest mysteries in modern biology. Eukaryotic-wide specific biological processes arose in the lost ancestors of eukaryotes. These distinctive features, such as the actin cytoskeleton, define what it is to be a eukaryote. Recent sequencing, characterization, and isolation of Asgard archaea have opened an intriguing window into the pre-eukaryotic cell. Firstly, sequencing of anaerobic sediments identified a group of uncultured organisms, Asgard archaea, which contain genes with homology to eukaryotic signature genes. Secondly, characterization of the products of these genes at the protein level demonstrated that Asgard archaea have related biological processes to eukaryotes. Finally, the isolation of an Asgard archaeon has produced a model organism in which the morphological consequences of the eukaryotic-like processes can be studied. Here, we consider the consequences for the Asgard actin cytoskeleton and for the evolution of a regulated actin system in the archaea-to-eukaryotic transition.
Collapse
Affiliation(s)
- Caner Akıl
- Institute of Molecular and Cell Biology, A∗STAR (Agency for Science, Technology and Research), Biopolis, 138673, Singapore; Tokyo Institute of Technology, Earth-Life Science Institute (ELSI), Tokyo 152-8551, Japan
| | - Yoshihito Kitaoku
- Research Institute for Interdisciplinary Science (RIIS), Okayama University, Okayama 700-8530, Japan
| | - Linh T Tran
- Research Institute for Interdisciplinary Science (RIIS), Okayama University, Okayama 700-8530, Japan
| | - David Liebl
- A∗STAR Microscopy Platform, Research Support Center, A∗STAR, Biopolis 138673, Singapore
| | - Han Choe
- Department of Physiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea
| | - Duangkamon Muengsaen
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Wipa Suginta
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Albert Schulte
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Robert C Robinson
- Institute of Molecular and Cell Biology, A∗STAR (Agency for Science, Technology and Research), Biopolis, 138673, Singapore; Research Institute for Interdisciplinary Science (RIIS), Okayama University, Okayama 700-8530, Japan; School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| |
Collapse
|
49
|
Zou D, Liu H, Li M. Community, Distribution, and Ecological Roles of Estuarine Archaea. Front Microbiol 2020; 11:2060. [PMID: 32983044 PMCID: PMC7484942 DOI: 10.3389/fmicb.2020.02060] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/05/2020] [Indexed: 12/04/2022] Open
Abstract
Archaea are diverse and ubiquitous prokaryotes present in both extreme and moderate environments. Estuaries, serving as links between the land and ocean, harbor numerous microbes that are relatively highly active because of massive terrigenous input of nutrients. Archaea account for a considerable portion of the estuarine microbial community. They are diverse and play key roles in the estuarine biogeochemical cycles. Ammonia-oxidizing archaea (AOA) are an abundant aquatic archaeal group in estuaries, greatly contributing estuarine ammonia oxidation. Bathyarchaeota are abundant in sediments, and they may involve in sedimentary organic matter degradation, acetogenesis, and, potentially, methane metabolism, based on genomics. Other archaeal groups are also commonly detected in estuaries worldwide. They include Euryarchaeota, and members of the DPANN and Asgard archaea. Based on biodiversity surveys of the 16S rRNA gene and some functional genes, the distribution and abundance of estuarine archaea are driven by physicochemical factors, such as salinity and oxygen concentration. Currently, increasing amount of genomic information for estuarine archaea is becoming available because of the advances in sequencing technologies, especially for AOA and Bathyarchaeota, leading to a better understanding of their functions and environmental adaptations. Here, we summarized the current knowledge on the community composition and major archaeal groups in estuaries, focusing on AOA and Bathyarchaeota. We also highlighted the unique genomic features and potential adaptation strategies of estuarine archaea, pointing out major unknowns in the field and scope for future research.
Collapse
Affiliation(s)
- Dayu Zou
- SZU-HKUST Joint Ph.D. Program in Marine Environmental Science, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Hongbin Liu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
- Hong Kong Branch of Southern Marine Science & Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Meng Li
- SZU-HKUST Joint Ph.D. Program in Marine Environmental Science, Shenzhen University, Shenzhen, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
| |
Collapse
|
50
|
Insights into the evolution of regulated actin dynamics via characterization of primitive gelsolin/cofilin proteins from Asgard archaea. Proc Natl Acad Sci U S A 2020; 117:19904-19913. [PMID: 32747565 PMCID: PMC7444086 DOI: 10.1073/pnas.2009167117] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Eukaryotic gelsolin superfamily proteins generally comprise three or more related domains. Here we characterize single- and double-domain gelsolins from Thorarchaeota (Thor). Similar domain architectures are present in Heimdall-, Loki-, and Odinarchaeota. Thor gelsolins are functional in regulating rabbit actin in in vitro assays, showing a range of activities including actin filament severing and bundling. These gelsolins bind to the eukaryotic gelsolin/cofilin-binding site on actin. Two-domain, but not one-domain, gelsolins are calcium regulated. Thor gelsolins appear to have the characteristics and structure consistent with primitive gelsolins/cofilins, suggesting that these single- and double-domain gelsolins are a record of a nascent preeukaryotic actin-regulation machinery. Asgard archaea genomes contain potential eukaryotic-like genes that provide intriguing insight for the evolution of eukaryotes. The eukaryotic actin polymerization/depolymerization cycle is critical for providing force and structure in many processes, including membrane remodeling. In general, Asgard genomes encode two classes of actin-regulating proteins from sequence analysis, profilins and gelsolins. Asgard profilins were demonstrated to regulate actin filament nucleation. Here, we identify actin filament severing, capping, annealing and bundling, and monomer sequestration activities by gelsolin proteins from Thorarchaeota (Thor), which complete a eukaryotic-like actin depolymerization cycle, and indicate complex actin cytoskeleton regulation in Asgard organisms. Thor gelsolins have homologs in other Asgard archaea and comprise one or two copies of the prototypical gelsolin domain. This appears to be a record of an initial preeukaryotic gene duplication event, since eukaryotic gelsolins are generally comprise three to six domains. X-ray structures of these proteins in complex with mammalian actin revealed similar interactions to the first domain of human gelsolin or cofilin with actin. Asgard two-domain, but not one-domain, gelsolins contain calcium-binding sites, which is manifested in calcium-controlled activities. Expression of two-domain gelsolins in mammalian cells enhanced actin filament disassembly on ionomycin-triggered calcium release. This functional demonstration, at the cellular level, provides evidence for a calcium-controlled Asgard actin cytoskeleton, indicating that the calcium-regulated actin cytoskeleton predates eukaryotes. In eukaryotes, dynamic bundled actin filaments are responsible for shaping filopodia and microvilli. By correlation, we hypothesize that the formation of the protrusions observed from Lokiarchaeota cell bodies may involve the gelsolin-regulated actin structures.
Collapse
|