1
|
Zhao XS, Chen XT, Chang YJ. Stem cell transplantation indications for patients with acute leukemia determined by measurable residual disease: what we know and what we do not know. BLOOD SCIENCE 2025; 7:e00229. [PMID: 40144893 PMCID: PMC11939945 DOI: 10.1097/bs9.0000000000000229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/19/2025] [Indexed: 03/28/2025] Open
Abstract
Acute leukemia (AL), which includes acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL), is a hematological malignancy characterized by the uncontrolled proliferation of immature myeloid or lymphoid cells. Allogeneic stem cell transplantation (ASCT) remains a therapeutic option for patients with AL. Determination of transplantation indications is a key step in successful ASCT and in curing patients. Currently, the measurable residual disease (MRD) is used as a biomarker for response evaluation, relapse prediction, preemptive therapy, and post-remission treatment selection. In this review, we discuss the advantages and disadvantages of these techniques for MRD detection. We focused mainly on the residual disease-directed selection of transplant indications for patients with either AML or ALL and provided expert opinions in these settings. We also discuss the challenges associated with transplantation indications and propose expert opinions and future directions for the selection of indications for transplantation.
Collapse
Affiliation(s)
- Xiao-Su Zhao
- Peking University People’s Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, No. 11 South Street of Xizhimen, Xicheng District, Beijing 100044, China
| | - Xiao-Tong Chen
- Peking University People’s Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, No. 11 South Street of Xizhimen, Xicheng District, Beijing 100044, China
| | - Ying-Jun Chang
- Peking University People’s Hospital & Peking University Institute of Hematology, National Clinical Research Center for Hematologic Disease, No. 11 South Street of Xizhimen, Xicheng District, Beijing 100044, China
| |
Collapse
|
2
|
He J, Zheng F, Zhang L, Cai J, Ogawa Y, Tsubota K, Liu S, Jin X. Single-cell RNA-sequencing reveals the transcriptional landscape of lacrimal gland in GVHD mouse model. Ocul Surf 2024; 33:50-63. [PMID: 38703817 DOI: 10.1016/j.jtos.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/02/2024] [Accepted: 04/26/2024] [Indexed: 05/06/2024]
Abstract
PURPOSE To investigate the global transcriptional landscape of lacrimal gland cell populations in the GVHD mouse model. METHODS Single-cell RNA sequencing and further bioinformatic analysis of dissociated lacrimal gland (LG) cells from the mouse model were performed. Parts of transcriptional results were confirmed by immunofluorescence staining. RESULTS We identified 23 cell populations belonging to 11 cell types. In GVHD LG, the proportion of acinar cells, myoepithelial cells, and endothelial cells was remarkably decreased, while T cells and macrophages were significantly expanded. Gene expression analysis indicated decreased secretion function, extracellular matrix (ECM) synthesis, and increased chemokines of myoepithelial cells. A newly described epithelial population named Lrg1high epithelial cells, expressing distinct gene signatures, was exclusively identified in GVHD LG. The fibroblasts exhibited an inflammation gene pattern. The gene pattern of endothelial cells suggested an increased ability to recruit immune cells and damaged cell-cell junctions. T cells were mainly comprised of Th2 cells and effective memory CD8+ T cells. GVHD macrophages exhibited a Th2 cell-linked pattern. CONCLUSIONS This single-cell atlas uncovered alterations of proportion and gene expression patterns of cell populations and constructed cell-cell communication networks of GVHD LG. These data may provide some new insight into understanding the development of ocular GVHD.
Collapse
Affiliation(s)
- Jingliang He
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China; Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, China; Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Fang Zheng
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China; Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, China; Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | - Li Zhang
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China; Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, China; Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China
| | | | - Yoko Ogawa
- Department of Ophthalmology, Keio University, School of Medicine, Tokyo, Japan
| | - Kazuo Tsubota
- Department of Ophthalmology, Keio University, School of Medicine, Tokyo, Japan; Tsubota Laboratory, Inc., Tokyo, Japan
| | - Shan Liu
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai, China
| | - Xiuming Jin
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China; Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, China; Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Huang Z, Zhang R, Teng Y, Guo J, Zhang H, Wang L, Tang LV, Shi W, Wu Q, Xia L. Nuclear Matrix-associated Protein SMAR1 Attenuated Acute Graft-versus-host Disease by Targeting JAK-STAT Signaling in CD4 + T Cells. Transplantation 2024; 108:e23-e35. [PMID: 37817309 DOI: 10.1097/tp.0000000000004818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
BACKGROUND Acute graft-versus-host disease (aGVHD) mediated by alloreactive T cells remains a serious and life-threatening complication of allogeneic hematopoietic cell transplantation (allo-HCT). The contribution of the different CD4 + T helper cell subtypes to the pathogenesis and regulation of aGVHD is a central point in current research. The specialized effector subsets of T cells that differentiate from naive T cells into mature cells are closely related to scaffold/matrix-associated region-1-binding protein (SMAR1). However, the role of SMAR1 in aGVHD is unclear. METHODS Peripheral blood was collected from the patients with or without aGVHD after allo-HCT. The differences in CD4 + T cells transduced with the SMAR1 lentivirus vector and empty vector were analyzed. A humanized aGVHD mouse model was constructed to evaluate the function of SMAR1 in aGVHD. RESULTS The expression of SMAR1 was significantly reduced in the CD4 + T cells from aGVHD patients and related to the occurrence of aGVHD. SMAR1 overexpression in human CD4 + T cells regulated CD4 + T-cell subsets differentiation and inflammatory cytokines secretion and inhibited the Janus kinase/signal transducer and activator of transcription pathway. Moreover, SMAR1 changed chromatin accessibility landscapes and affected the binding motifs of key transcription factors regulating T cells. Additionally, upregulation of SMAR1 expression in CD4 + T cells improved the survival and pathology in a humanized aGVHD mouse model. CONCLUSIONS Our results showed that upregulation of SMAR1 regulated the CD4 + T-cell subpopulation and cytokines secretion and improved survival in a humanized aGVHD mouse model by alleviating inflammation. This study provides a promising therapeutic target for aGVHD.
Collapse
Affiliation(s)
- Zhenli Huang
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ran Zhang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yao Teng
- Department of Rheumatology and Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingjing Guo
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongyong Zhang
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Wang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liang V Tang
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Shi
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuling Wu
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Linghui Xia
- Department of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
4
|
Guo H, Li R, Wang M, Hou Y, Liu S, Peng T, Zhao X, Lu L, Han Y, Shao Y, Chang Y, Li C, Huang X. Multiomics Analysis Identifies SOCS1 as Restraining T Cell Activation and Preventing Graft-Versus-Host Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200978. [PMID: 35585676 PMCID: PMC9313503 DOI: 10.1002/advs.202200978] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/14/2022] [Indexed: 05/03/2023]
Abstract
Graft-versus-host disease (GVHD) is a major life-threatening complication of allogeneic hematopoietic stem cell transplantation (allo-HSCT). Inflammatory signaling pathways promote T-cell activation and are involved in the pathogenesis of GVHD. Suppressor of cytokine signaling 1 (SOCS1) is a critical negative regulator for several inflammatory cytokines. However, its regulatory role in T-cell activation and GVHD has not been elucidated. Multiomics analysis of the transcriptome and chromatin structure of granulocyte-colony-stimulating-factor (G-CSF)-administered hyporesponsive T cells from healthy donors reveal that G-CSF upregulates SOCS1 by reorganizing the chromatin structure around the SOCS1 locus. Parallel in vitro and in vivo analyses demonstrate that SOCS1 is critical for restraining T cell activation. Loss of Socs1 in T cells exacerbates GVHD pathogenesis and diminishes the protective role of G-CSF in GVHD mouse models. Further analysis shows that SOCS1 inhibits T cell activation not only by inhibiting the colony-stimulating-factor 3 receptor (CSF3R)/Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathway, but also by restraining activation of the inflammasome signaling pathway. Moreover, high expression of SOCS1 in T cells from patients correlates with low acute GVHD occurrence after HSCT. Overall, these findings identify that SOCS1 is critical for inhibiting T cell activation and represents a potential target for the attenuation of GVHD.
Collapse
Affiliation(s)
- Huidong Guo
- Peking University Institute of HematologyNational Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationSchool of Life SciencesPeking University People's HospitalPeking UniversityBeijing100044China
| | - Ruifeng Li
- Peking University Institute of HematologyNational Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationSchool of Life SciencesPeking University People's HospitalPeking UniversityBeijing100044China
- Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijing100080China
- Institute for Immunology and School of MedicineTsinghua UniversityBeijing100084China
| | - Ming Wang
- Peking University Institute of HematologyNational Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationSchool of Life SciencesPeking University People's HospitalPeking UniversityBeijing100044China
| | - Yingping Hou
- Peking University Institute of HematologyNational Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationSchool of Life SciencesPeking University People's HospitalPeking UniversityBeijing100044China
- Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijing100080China
| | - Shuoshuo Liu
- Institute for Immunology and School of MedicineTsinghua UniversityBeijing100084China
- Beijing Tsinghua Changgeng HospitalBeijing102218China
| | - Ting Peng
- Peking University Institute of HematologyNational Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationSchool of Life SciencesPeking University People's HospitalPeking UniversityBeijing100044China
| | - Xiang‐Yu Zhao
- Peking University Institute of HematologyNational Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationSchool of Life SciencesPeking University People's HospitalPeking UniversityBeijing100044China
| | - Liming Lu
- Shanghai Institute of ImmunologyShanghai Jiaotong University School of Medicine280 South Chongqing RoadShanghai200025China
| | - Yali Han
- Shanghai Jiayin Biotechnology, Ltd.Shanghai200092China
| | - Yiming Shao
- Shanghai Jiayin Biotechnology, Ltd.Shanghai200092China
| | - Ying‐Jun Chang
- Peking University Institute of HematologyNational Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationSchool of Life SciencesPeking University People's HospitalPeking UniversityBeijing100044China
| | - Cheng Li
- Peking University Institute of HematologyNational Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationSchool of Life SciencesPeking University People's HospitalPeking UniversityBeijing100044China
- Center for Statistical ScienceCenter for BioinformaticsPeking UniversityBeijingChina
| | - Xiao‐Jun Huang
- Peking University Institute of HematologyNational Clinical Research Center for Hematologic DiseaseBeijing Key Laboratory of Hematopoietic Stem Cell TransplantationSchool of Life SciencesPeking University People's HospitalPeking UniversityBeijing100044China
- Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijing100080China
- Research Unit of Key Technique for Diagnosis and Treatments of Hematologic Malignancies (2019RU029)Chinese Academy of Medical SciencesBeijing100730China
| |
Collapse
|
5
|
Chang YJ, Zhao XY, Huang XJ. Haploidentical Stem Cell Transplantation for Acute Myeloid Leukemia: Current Therapies, Challenges and Future Prospective. Front Oncol 2021; 11:758512. [PMID: 34778077 PMCID: PMC8581046 DOI: 10.3389/fonc.2021.758512] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 10/05/2021] [Indexed: 01/01/2023] Open
Abstract
Haploidentical stem cell transplantation (haplo-SCT), an alternative donor source, offers a curative therapy for patients with acute myeloid leukemia (AML) who are transplant candidates. Advances in transplantation techniques, such as donor selection, conditioning regimen modification, and graft-versus-host disease prophylaxis, have successfully improved the outcomes of AML patients receiving haplo-SCT and extended the haploidentical transplant indictions for AML. Presently, treating de novo AML, secondary AML, therapy-related AML and refractory and relapsed AML with haplo-SCT can achieve comparable outcomes to those of human leukocyte antigen (HLA)-matched sibling donor transplantation (MSDT), unrelated donor transplantation or umbilical cord blood transplantation. For some subgroups of AML subjects, such as patients with positive pretransplantation minimal/measurable residual disease, recent studies suggest that haplo-SCT might be superior to MSDT in decreasing relapse and improving survival. Unfortunately, for patients with AML after haplo-SCT, relapse and infections remain the causes of death that restrict further improvement in clinical outcomes. In this review, we discuss the recent advances and challenges in haplo-SCT for AML treatment, mainly focusing on unmanipulated haplo-SCT protocols. We provide an outlook on future prospects and suggest that relapse prophylaxis, intervention, and treatment, as well as infection prevention and therapy, are areas of active research in AML patients who receive haploidentical allografts.
Collapse
Affiliation(s)
- Ying-Jun Chang
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Xiang-Yu Zhao
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Xiao-Jun Huang
- Peking University Institute of Hematology, Peking University People's Hospital, Beijing, China.,National Clinical Research Center for Hematologic Disease, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| |
Collapse
|