1
|
Wang R, He Y, Wang Y, Wang J, Ding H. Palmitoylation in cardiovascular diseases: Molecular mechanism and therapeutic potential. IJC HEART & VASCULATURE 2025; 58:101675. [PMID: 40242212 PMCID: PMC12002947 DOI: 10.1016/j.ijcha.2025.101675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 03/20/2025] [Accepted: 03/27/2025] [Indexed: 04/18/2025]
Abstract
Cardiovascular disease is one of the leading causes of mortality worldwide, and involves complex pathophysiological mechanisms that encompass various biological processes and molecular pathways. Post-translational modifications of proteins play crucial roles in the occurrence and progression of cardiovascular diseases, among which palmitoylation is particularly important. Various proteins associated with cardiovascular diseases can be palmitoylated to enhance the hydrophobicity of their molecular subdomains. This lipidation can significantly affect some pathophysiological processes, such as metabolism, inflammation by altering protein stability, localization, and signal transduction. In this review, we narratively summarize recent advances in the palmitoylation of proteins related to cardiovascular diseases and discuss its potential as a therapeutic target.
Collapse
Affiliation(s)
- Rongli Wang
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, PR China
| | - Yi He
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, PR China
| | - Yan Wang
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, PR China
- Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuan 430030, PR China
| | - Jing Wang
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, PR China
| | - Hu Ding
- Division of Cardiology, Departments of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan 430030, PR China
- Genetic Diagnosis Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuan 430030, PR China
| |
Collapse
|
2
|
Geng X, Li M, Zhang L, Cai Y, Chen X, Mu X, Wang J, Liu B. P5CS deacetylation mediated by SIRT2 facilitates tumor growth by enhancing mitochondrial respiration in hepatocellular carcinoma. Oncogene 2025:10.1038/s41388-025-03456-3. [PMID: 40425834 DOI: 10.1038/s41388-025-03456-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 05/05/2025] [Accepted: 05/19/2025] [Indexed: 05/29/2025]
Abstract
Cancer cells typically exhibit enhanced mitochondrial metabolism to fulfill their energy and biosynthetic demands for growth. The mitochondrial response to fluctuations in cellular energy demand is essential for cellular adaptation and proper organ function. The mitochondrial delta-1-pyrroline-5-carboxylate synthase (P5CS) encoded by the ALDH18A1 gene, the key enzyme for proline synthesis, is frequently up-regulated during tumor development. However, the regulatory mechanisms governing P5CS activity in the occurrence and development of hepatocellular carcinoma (HCC) remain largely unknown. In this study, we observe that P5CS is highly expressed in HCC tissues, and elevated levels of P5CS expression are associated with poor prognosis in HCC patients. Notably, the knockdown of P5CS inhibits the proliferation, migratory and invasive capabilities of HCC cells by reducing mitochondrial respiration. Furthermore, we demonstrate that SIRT2 interacts with P5CS and mediates the deacetylation of P5CS at lysines K311 and K347, thereby activating its enzymatic activity. Activated P5CS significantly enhances mitochondrial respiration, which supports the proliferation and tumorigenesis of HCC cells. In addition, SIRT2 knockdown inhibits the proliferation, migratory and invasive capabilities of HCC cells. These observations suggest that SIRT2-mediated P5CS deacetylation is a crucial signaling event through which cancer cells sustain mitochondrial respiration and promote HCC progression. This finding offers the potential for targeting SIRT2-mediated P5CS deacetylation as a therapeutic strategy for HCC.
Collapse
Affiliation(s)
- Xiaofang Geng
- Xinxiang Key Laboratory of Inflammation and Immunology, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China.
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China.
| | - Mengyao Li
- Xinxiang Key Laboratory of Inflammation and Immunology, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Lu Zhang
- Xinxiang Key Laboratory of Inflammation and Immunology, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Yihan Cai
- Xinxiang Key Laboratory of Inflammation and Immunology, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Xin Chen
- Xinxiang Key Laboratory of Inflammation and Immunology, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Xiayue Mu
- Xinxiang Key Laboratory of Inflammation and Immunology, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Jie Wang
- Xinxiang Key Laboratory of Inflammation and Immunology, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China.
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China.
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China.
| | - Bowen Liu
- Xinxiang Key Laboratory of Inflammation and Immunology, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China.
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, 453003, China.
| |
Collapse
|
3
|
Xu M, Xu B. Protein lipidation in the tumor microenvironment: enzymology, signaling pathways, and therapeutics. Mol Cancer 2025; 24:138. [PMID: 40335986 PMCID: PMC12057185 DOI: 10.1186/s12943-025-02309-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 03/18/2025] [Indexed: 05/09/2025] Open
Abstract
Protein lipidation is a pivotal post-translational modification that increases protein hydrophobicity and influences their function, localization, and interaction network. Emerging evidence has shown significant roles of lipidation in the tumor microenvironment (TME). However, a comprehensive review of this topic is lacking. In this review, we present an integrated and in-depth literature review of protein lipidation in the context of the TME. Specifically, we focus on three major lipidation modifications: S-prenylation, S-palmitoylation, and N-myristoylation. We emphasize how these modifications affect oncogenic signaling pathways and the complex interplay between tumor cells and the surrounding stromal and immune cells. Furthermore, we explore the therapeutic potential of targeting lipidation mechanisms in cancer treatment and discuss prospects for developing novel anticancer strategies that disrupt lipidation-dependent signaling pathways. By bridging protein lipidation with the dynamics of the TME, our review provides novel insights into the complex relationship between them that drives tumor initiation and progression.
Collapse
Affiliation(s)
- Mengke Xu
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Intelligent Oncology Innovation Center Designated by the Ministry of Education, Chongqing University Cancer Hospital and Chongqing University School of Medicine, Chongqing, 400030, China
| | - Bo Xu
- Chongqing Key Laboratory of Intelligent Oncology for Breast Cancer, Intelligent Oncology Innovation Center Designated by the Ministry of Education, Chongqing University Cancer Hospital and Chongqing University School of Medicine, Chongqing, 400030, China.
| |
Collapse
|
4
|
Qian Y, Zhao Y, Zhang F. Protein palmitoylation: biological functions, disease, and therapeutic targets. MedComm (Beijing) 2025; 6:e70096. [PMID: 39991624 PMCID: PMC11843170 DOI: 10.1002/mco2.70096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 12/25/2024] [Accepted: 01/09/2025] [Indexed: 02/25/2025] Open
Abstract
Protein palmitoylation, a reversible post-translational lipid modification, is catalyzed by the ZDHHC family of palmitoyltransferases and reversed by several acyl protein thioesterases, regulating protein localization, accumulation, secretion, and function. Neurological disorders encompass a spectrum of diseases that affect both the central and peripheral nervous system. Recently, accumulating studies have revealed that pathological protein associated with neurological diseases, such as β-amyloid, α-synuclein, and Huntingtin, could undergo palmitoylation, highlighting the crucial roles of protein palmitoylation in the onset and development of neurological diseases. However, few preclinical studies and clinical trials focus on the interventional strategies that target protein palmitoylation. Here, we comprehensively reviewed the emerging evidence on the role of protein palmitoylation in various neurological diseases and summarized the classification, processes, and functions of protein palmitoylation, highlighting its impact on protein stability, membrane localization, protein-protein interaction, as well as signal transduction. Furthermore, we also discussed the potential interventional strategies targeting ZDHHC proteins and elucidated their underlying pathogenic mechanisms in neurological diseases. Overall, an in-depth understanding of the functions and significances of protein palmitoylation provide new avenues for investigating the mechanisms and therapeutic approaches for neurological disorders.
Collapse
Affiliation(s)
- Yan‐Ran Qian
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal CentreZunyi Medical UniversityZunyiGuizhouChina
| | - Yu‐Jia Zhao
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal CentreZunyi Medical UniversityZunyiGuizhouChina
| | - Feng Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal CentreZunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
5
|
Lu D, Aji G, Li G, Li Y, Fang W, Zhang S, Yu R, Jiang S, Gao X, Jiang Y, Wang Q. ZDHHC18 promotes renal fibrosis development by regulating HRAS palmitoylation. J Clin Invest 2025; 135:e180242. [PMID: 39913299 PMCID: PMC11910235 DOI: 10.1172/jci180242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 01/24/2025] [Indexed: 03/18/2025] Open
Abstract
Fibrosis is the final common pathway leading to end-stage chronic kidney disease (CKD). However, the function of protein palmitoylation in renal fibrosis and the underlying mechanisms remain unclear. In this study, we observed that expression of the palmitoyltransferase ZDHHC18 was significantly elevated in unilateral ureteral obstruction (UUO) and folic acid-induced (FA-induced) renal fibrosis mouse models and was significantly upregulated in fibrotic kidneys of patients with CKD. Functionally, tubule-specific deletion of ZDHHC18 attenuated tubular epithelial cells' partial epithelial-mesenchymal transition (EMT) and then reduced the production of profibrotic cytokines and alleviated tubulointerstitial fibrosis. In contrast, ZDHHC18 overexpression exacerbated progressive renal fibrosis. Mechanistically, ZDHHC18 catalyzed the palmitoylation of HRAS, which was pivotal for its translocation to the plasma membrane and subsequent activation. HRAS palmitoylation promoted downstream phosphorylation of MEK/ERK and further activated Ras-responsive element-binding protein 1 (RREB1), enhancing SMAD binding to the Snai1 cis-regulatory regions. Taken together, our findings suggest that ZDHHC18 plays a crucial role in renal fibrogenesis and represents a potential therapeutic target for combating kidney fibrosis.
Collapse
Affiliation(s)
- Di Lu
- Nephrology Department, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Gulibositan Aji
- Department of Endocrinology, The First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, China
| | - Guanyu Li
- Nephrology Department, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yue Li
- Nephrology Department, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wenlin Fang
- Department of Pediatrics, Jiangxi Children’s Medical Center, Nanchang, China
| | - Shuai Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ruiqi Yu
- The Key Laboratory of Experimental Teratology of the Ministry of Education and Department of Histology and Embryology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Sheng Jiang
- Department of Endocrinology, The First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, China
| | - Xia Gao
- Nephrology Department, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yuhang Jiang
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Qi Wang
- Qingyuan People’s Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| |
Collapse
|
6
|
Shen L, Wang J, Li Y, Sun C, Teng M, Ye X, Feng X. Transcription Factor STAT3-Activated LDHB Promotes Tumor Properties of Endometrial Cancer Cells by Inducing MDH2 Expression. Mol Biotechnol 2025; 67:562-574. [PMID: 38381377 DOI: 10.1007/s12033-024-01067-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 01/08/2024] [Indexed: 02/22/2024]
Abstract
The pathogenesis of endometrial cancer (EC) involves the regulation of lactate dehydrogenases. However, the role and mechanism of lactate dehydrogenase-B (LDHB) in EC progression have not been studied. The mRNA levels of LDHB and malate dehydrogenase 2 (MDH2) were detected by quantitative real-time polymerase chain reaction. Protein expression was checked by western blotting and immunohistochemistry assays. Cell proliferation, apoptosis, and invasion were analyzed by 5-Ethynyl-2'-deoxyuridine, transwell, and flow cytometry assay, respectively. Glycolysis was investigated using Glucose Assay Kit, CheKine™ Micro Lactate Assay Kit, and ADP/ATP ratio assay kit. An in vivo tumor formation assay was conducted to disclose the effect of LDHB on tumor growth in vivo. The associations among signal transducer and activator of transcription 3 (STAT3), LDHB, and MDH2 were predicted through JASPAR or GeneMANIA online database and identified by chromatin immunoprecipitation assay, dual-luciferase reporter assay, and co-immunoprecipitation assay. LDHB expression was increased in EC tissues and cells in comparison with normal endometrial tissues and human endometrial stromal cells. LDHB had the potential as a biomarker to predict the prognosis of EC patients. In addition, LDHB knockdown inhibited the proliferation, invasion, and glycolysis and promoted apoptosis of RL95-2 and Ishikawa cells. LDHB knockdown inhibited tumor property of Ishikawa cells in vivo. STAT3 bound to the promoter region of LDHB, and STAT3 silencing-induced effects were relieved after LDHB upregulation. LDHB interacted with and regulated MDH2 expression. Moreover, MDH2 overexpression rescued LDHB knockdown-induced effects on EC cell phenotypes. STAT3-activated LDHB promoted endometrial cancer cell malignancy by inducing MDH2 production.
Collapse
Affiliation(s)
- Li Shen
- Department of Obstetrics and Gynecology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, 430070, Hubei, China
| | - Juan Wang
- Department of Obstetrics and Gynecology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, 430070, Hubei, China
| | - Yanxia Li
- Department of Rehabilitation, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, 430070, Hubei, China
| | - Cuizhen Sun
- Department of Rehabilitation, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, 430070, Hubei, China
| | - Minjie Teng
- Department of Rehabilitation, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, 430070, Hubei, China
| | - Xiaohe Ye
- Department of Rehabilitation, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan City, 430070, Hubei, China
| | - Xiaomin Feng
- Department of Oncology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 39 Yanhu Road, East Lake Eco-Tourism Scenic Spot, Wuhan City, 430070, Hubei, China.
| |
Collapse
|
7
|
Xie D, Li G, Zheng Z, Zhang X, Wang S, Jiang B, Li X, Wang X, Wu G. The molecular code of kidney cancer: A path of discovery for gene mutation and precision therapy. Mol Aspects Med 2025; 101:101335. [PMID: 39746268 DOI: 10.1016/j.mam.2024.101335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/13/2024] [Accepted: 12/21/2024] [Indexed: 01/04/2025]
Abstract
Renal cell carcinoma (RCC) is a malignant tumor with highly heterogeneous and complex molecular mechanisms. Through systematic analysis of TCGA, COSMIC and other databases, 24 mutated genes closely related to RCC were screened, including VHL, PBRM1, BAP1 and SETD2, which play key roles in signaling pathway transduction, chromatin remodeling and DNA repair. The PI3K/AKT/mTOR signaling pathway is particularly important in the pathogenesis of RCC. Mutations in genes such as PIK3CA, MTOR and PTEN are closely associated with metabolic abnormalities and tumor cell proliferation. Clinically, mTOR inhibitors and VEGF-targeted drugs have shown significant efficacy in personalized therapy. Abnormal regulation of metabolic reprogramming, especially glycolysis and glutamine metabolic pathways, provides tumor cells with continuous energy supply and survival advantages, and GLS1 inhibitors have shown promising results in preclinical studies. This paper also explores the potential of immune checkpoint inhibitors in combination with other targeted drugs, as well as the promising application of nanotechnology in drug delivery and targeted therapy. In addition, unique molecular mechanisms are revealed and individualized therapeutic strategies are explored for specific subtypes such as TFE3, TFEB rearrangement type and SDHB mutant type. The review summarizes the common gene mutations in RCC and their molecular mechanisms, emphasizes their important roles in tumor diagnosis, treatment and prognosis, and looks forward to the application prospects of multi-pathway targeted therapy, metabolic targeted therapy, immunotherapy and nanotechnology in RCC treatment, providing theoretical support and clinical guidance for individualized treatment and new drug development.
Collapse
Affiliation(s)
- Deqian Xie
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, China
| | - Guandu Li
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, China
| | - Zunwen Zheng
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, China
| | - Xiaoman Zhang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, China
| | - Shijin Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, China
| | - Bowen Jiang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, China
| | - Xiaorui Li
- Department of Oncology, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, 110042, China.
| | - Xiaoxi Wang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, China.
| |
Collapse
|
8
|
Li D, Zhang L, Gong Q, Deng H, Luo C, Zhou T, Huang W, Xu Y. The role of myocardial energy metabolism perturbations in diabetic cardiomyopathy: from the perspective of novel protein post-translational modifications. Clin Epigenetics 2025; 17:15. [PMID: 39865334 PMCID: PMC11765930 DOI: 10.1186/s13148-025-01814-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/06/2025] [Indexed: 01/28/2025] Open
Abstract
Diabetic cardiomyopathy (DbCM), a significant chronic complication of diabetes, manifests as myocardial hypertrophy, fibrosis, and other pathological alterations that substantially impact cardiac function and elevate the risk of cardiovascular diseases and patient mortality. Myocardial energy metabolism disturbances in DbCM, encompassing glucose, fatty acid, ketone body and lactate metabolism, are crucial factors that contribute to the progression of DbCM. In recent years, novel protein post-translational modifications (PTMs) such as lactylation, β-hydroxybutyrylation, and succinylation have been demonstrated to be intimately associated with the myocardial energy metabolism process, and in conjunction with acetylation, they participate in the regulation of protein activity and gene expression activity in cardiomyocytes. This review examines the epigenetic pathogenesis of DbCM, primarily focusing on myocardial energy metabolism perturbations and novel PTMs associated with them. It provides a detailed analysis of the mechanisms of these novel PTMs in DbCM to enhance the understanding of DbCM pathophysiology and establish a theoretical foundation for the development of new treatment strategies for DbCM.
Collapse
Affiliation(s)
- Dongze Li
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, 646000, Sichuan, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, China
| | - Li Zhang
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, 646000, Sichuan, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, China
- Department of Du's Orthopedic Surgery, Sichuan Second Hospital of Traditional Chinese Medicine, Chengdu, 610000, Sichuan, China
| | - Qiming Gong
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Department of Nephrology, Youjiang Medical College for Nationalities Affiliated Hospital, Youjiang, 533000, Guangxi, China
- Guangxi Key Laboratory of Basic Medical Research Support for Immune Related Diseases, Youjiang Medical University for Nationalities, Youjiang, 533000, Guangxi, China
| | - Huilan Deng
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, 646000, Sichuan, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, China
| | - Changfang Luo
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, 646000, Sichuan, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, China
| | - Tingting Zhou
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, 646000, Sichuan, China
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, China
| | - Wei Huang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, 646000, Sichuan, China.
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, China.
| | - Yong Xu
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Sichuan Clinical Research Center for Diabetes and Metabolic Diseases, Luzhou, 646000, Sichuan, China.
- Metabolic Vascular Disease Key Laboratory of Sichuan Province, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
9
|
Shen K, Zhou H, Zuo Q, Gu Y, Cheng J, Yan K, Zhang H, Song H, Liang W, Zhou J, Liu J, Liu F, Zhai C, Fan W. GATD3A-deficiency-induced mitochondrial dysfunction facilitates senescence of fibroblast-like synoviocytes and osteoarthritis progression. Nat Commun 2024; 15:10923. [PMID: 39738099 PMCID: PMC11685659 DOI: 10.1038/s41467-024-55335-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 12/06/2024] [Indexed: 01/01/2025] Open
Abstract
Accumulating evidence indicates that cellular senescence is closely associated with osteoarthritis. However, there is limited research on the mechanisms underlying fibroblast-like synoviocyte senescence and its impact on osteoarthritis progression. Here, we elucidate a positive correlation between fibroblast-like synoviocyte senescence and osteoarthritis progression and reveal that GATD3A deficiency induces fibroblast-like synoviocyte senescence. Mechanistically, GATD3A deficiency enhances the binding of Sirt3 to MDH2, leading to deacetylation and decreased activity of MDH2. Reduced MDH2 activity impairs tricarboxylic acid cycle flux, resulting in mitochondrial dysfunction and fibroblast-like synoviocyte senescence. Intra-articular injection of recombinant adeno-associated virus carrying GATD3A significantly alleviates the osteoarthritis phenotype in male mice. This study increases our current understanding of GATD3A function. In particular, we reveal a novel mechanism of fibroblast-like synoviocyte senescence, suggesting that targeting GATD3A is a potential therapeutic approach for osteoarthritis.
Collapse
Affiliation(s)
- Kai Shen
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hao Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qiang Zuo
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yue Gu
- Department of Orthopaedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiangqi Cheng
- Department of Orthopaedics, Zhongda Hospital Affiliated to Southeast University, Nanjing, Jiangsu, China
| | - Kai Yan
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Huiwen Zhang
- The Core Facility of the First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Huanghe Song
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wenwei Liang
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jinchun Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiuxiang Liu
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feng Liu
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chenjun Zhai
- Department of Orthopaedics, Yixing People's Hospital, Yixing, Jiangsu, China.
| | - Weimin Fan
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
10
|
Kouba S, Demaurex N. S-acylation of Ca 2+ transport proteins in cancer. Chronic Dis Transl Med 2024; 10:263-280. [PMID: 39429488 PMCID: PMC11483607 DOI: 10.1002/cdt3.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/03/2024] [Accepted: 07/11/2024] [Indexed: 10/22/2024] Open
Abstract
Alterations in cellular calcium (Ca2+) signals have been causally associated with the development and progression of human cancers. Cellular Ca2+ signals are generated by channels, pumps, and exchangers that move Ca2+ ions across membranes and are decoded by effector proteins in the cytosol or in organelles. S-acylation, the reversible addition of 16-carbon fatty acids to proteins, modulates the activity of Ca2+ transporters by altering their affinity for lipids, and enzymes mediating this reversible post-translational modification have also been linked to several types of cancers. Here, we compile studies reporting an association between Ca2+ transporters or S-acylation enzymes with specific cancers, as well as studies reporting or predicting the S-acylation of Ca2+ transporters. We then discuss the potential role of S-acylation in the oncogenic potential of a subset of Ca2+ transport proteins involved in cancer.
Collapse
Affiliation(s)
- Sana Kouba
- Department of Cell Physiology and MetabolismCentre Médical Universitaire, University of GenevaGenevaSwitzerland
| | - Nicolas Demaurex
- Department of Cell Physiology and MetabolismCentre Médical Universitaire, University of GenevaGenevaSwitzerland
| |
Collapse
|
11
|
She H, Hu Y, Zhao G, Du Y, Wu Y, Chen W, Li Y, Wang Y, Tan L, Zhou Y, Zheng J, Li Q, Yan H, Mao Q, Zuo D, Liu L, Li T. Dexmedetomidine Ameliorates Myocardial Ischemia-Reperfusion Injury by Inhibiting MDH2 Lactylation via Regulating Metabolic Reprogramming. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2409499. [PMID: 39467114 DOI: 10.1002/advs.202409499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/16/2024] [Indexed: 10/30/2024]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) significantly worsens the outcomes of patients with cardiovascular diseases. Dexmedetomidine (Dex) is recognized for its cardioprotective properties, but the related mechanisms, especially regarding metabolic reprogramming, have not been fully clarified. A total of 60 patients with heart valve disease are randomly assigned to Dex or control group. Blood samples are collected to analyze cardiac injury biomarkers and metabolomics. In vivo and vitro rat models of MIRI are utilized to assess the effects of Dex on cardiac function, lactate production, and mitochondrial function. It is found that postoperative CK-MB and cTNT levels are significantly lower in the Dex group. Metabolomics reveals that Dex regulates metabolic reprogramming and reduces lactate level. In Dex-treated rats, the myocardial infarction area is reduced, and myocardial contractility is improved. Dex inhibits glycolysis, reduces lactate, and improves mitochondrial function following MIRI. Lactylation proteomics identifies that Dex reduces the lactylation of Malate Dehydrogenase 2(MDH2), thus alleviating myocardial injury. Further studies reveal that MDH2 lactylation induces ferroptosis, leading to MIRI by impairing mitochondrial function. Mechanistic analyses reveal that Dex upregulates Nuclear Receptor Subfamily 3 Group C Member 1(NR3C1) phosphorylation, downregulates Pyruvate Dehydrogenase Kinase 4 (PDK4), and reduces lactate production and MDH2 lactylation. These findings provide new therapeutic targets and mechanisms for the treatment for MIRI.
Collapse
Affiliation(s)
- Han She
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yi Hu
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Guozhi Zhao
- Department of Urology Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yunxia Du
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yinyu Wu
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
- Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Wei Chen
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yong Li
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yi Wang
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Lei Tan
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Yuanqun Zhou
- Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Jie Zheng
- Department of Respiratory Disease, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Qinghui Li
- Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Hong Yan
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Qingxiang Mao
- Department of Anesthesiology, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Deyu Zuo
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Chongqing University of Chinese Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, 400021, China
- Department of Research and Development, Chongqing Precision Medical Industry Technology Research Institute, Chongqing, 400000, China
| | - Liangming Liu
- Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Tao Li
- Shock and Transfusion Department, Daping Hospital, Army Medical University, Chongqing, 400042, China
| |
Collapse
|
12
|
Zhu Q, Zhou H, Xie F. Regulation of ovarian cancer by protein post-translational modifications. Front Oncol 2024; 14:1437953. [PMID: 39678497 PMCID: PMC11638062 DOI: 10.3389/fonc.2024.1437953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 11/12/2024] [Indexed: 12/17/2024] Open
Abstract
Ovarian cancer is one of the predominant gynecologic malignancies worldwide, ranking as the fifth leading cause of cancer-induced mortality among women globally. Post-translational modifications (PTMs) refer to the enzyme-catalyzed attachment of functional groups to proteins, thereby inducing structural and functional alterations. Recent evidence suggests that PTMs play multifaceted roles in the pathogenesis of ovarian cancer, influencing processes such as cell cycle, metabolism reprogramming, chemoresistance, and immune responses against cancer. Accordingly, a comprehensive understanding of the diverse PTMs in ovarian cancer is imperative for decoding the complex molecular mechanisms that drive cancer progression. This review discusses the latest developments in the study of protein PTMs in ovarian cancer and introduces pharmacological approaches that target these modifications as therapeutic strategies.
Collapse
Affiliation(s)
- Qiugang Zhu
- Department of Laboratory Medicine, Shangyu People’s Hospital of Shaoxing, Shaoxing University, Shaoxing, China
| | - Huimin Zhou
- Department of Laboratory Medicine, Wuxi Ninth People’s Hospital Affiliated to Soochow University, Wuxi, China
| | - Feiting Xie
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
13
|
Tang B, Kang W, Dong Q, Qin Z, Duan L, Zhao X, Yuan G, Pan Y. Research progress on S-palmitoylation modification mediated by the ZDHHC family in glioblastoma. Front Cell Dev Biol 2024; 12:1413708. [PMID: 39563863 PMCID: PMC11573772 DOI: 10.3389/fcell.2024.1413708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 10/18/2024] [Indexed: 11/21/2024] Open
Abstract
S-Palmitoylation has been widely noticed and studied in a variety of diseases. Increasing evidence suggests that S-palmitoylation modification also plays a key role in Glioblastoma (GBM). The zDHHC family, as an important member of S-palmitoyltransferases, has received extensive attention for its function and mechanism in GBM which is one of the most common primary malignant tumors of the brain and has an adverse prognosis. This review focuses on the zDHHC family, essential S-palmitoyltransferases, and their involvement in GBM. By summarizing recent studies on zDHHC molecules in GBM, we highlight their significance in regulating critical processes such as cell proliferation, invasion, and apoptosis. Specifically, members of zDHHC3, zDHHC4, zDHHC5 and others affect key processes such as signal transduction and phenotypic transformation in GBM cells through different pathways, which in turn influence tumorigenesis and progression. This review systematically outlines the mechanism of zDHHC family-mediated S-palmitoylation modification in GBM, emphasizes its importance in the development of this disease, and provides potential targets and strategies for the treatment of GBM. It also offers theoretical foundations and insights for future research and clinical applications.
Collapse
Affiliation(s)
- Beiyan Tang
- The Second Medical College of Lanzhou University, Lanzhou, Gansu, China
| | - Wei Kang
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Qiang Dong
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Zhenwei Qin
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Lei Duan
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xianjun Zhao
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Guoqiang Yuan
- Key Laboratory of Neurology of Gansu Province, Lanzhou University, Lanzhou, Gansu, China
- Academician Workstation, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yawen Pan
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Neurology of Gansu Province, Lanzhou University, Lanzhou, Gansu, China
- Academician Workstation, The Second Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
14
|
Liu W, Li J, Xu S, Wang Y, Li J, Wang S, Fu L, Jiang M, Bai G. Phillyrin and its metabolites exert antipyretic effects by targeting the NAD + binding domain of GAPDH, MDH2 and IDH2. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 134:155955. [PMID: 39191169 DOI: 10.1016/j.phymed.2024.155955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/27/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024]
Abstract
BACKGROUND Fever is one of the main pathophysiological reactions that occurs during the acute phase of various diseases. Excessive body temperature can lead to various adverse consequences such as brain tissue damage and abnormal immune responses. Phillyrin (Phr) is the main active ingredient in Forsythia suspensa (Thunb.) Vahl (Lian Qiao) and has antipyretic effects; however, its antipyretic mechanism of action remains unclear. PURPOSE This study aimed to explore the antipyretic mechanisms of Phr and provide a new treatment plan for fever. METHODS The antipyretic effects of Phr were evaluated using a mouse model of pneumonia fever. The main metabolites of Phr involved in its antipyretic function were identified using a mitochondrial temperature-sensitive probe. Further synthesis of the main metabolite, phillygenin (Phg), an alkynylated probe, was performed, and chemical proteomics was used to capture and analyze its direct target for antipyretic effects. The mechanism of action of Phg and its antipyretic targets was explored using metabolomics and various molecular biology methods. RESULTS Phr showed significant antipyretic and anti-inflammatory effects in a mouse model of lipopolysaccharide-induced fever. Phg reversibly targeted the nicotinamide adenine dinucleotide (NAD+) binding domain of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), malate dehydrogenase 2 (MDH2), and isocitrate dehydrogenase 2 (IDH2) to inhibit their enzymatic activity. In-depth analysis of cellular metabolomics and mitochondrial stress testing indicated that inhibition of GAPDH, MDH2, and IDH2 enzyme activity by Phg led to a decrease in cellular energy supply and heat production regulated by glycolysis, tricarboxylic acid cycle, and oxidative phosphorylation signaling pathways. Phg specifically targeted macrophages and inhibited LPS-induced macrophage activation by downregulating GAPDH enzyme activity, thereby exerting anti-inflammatory effects. In vivo experiments also confirmed that the antipyretic effect of Phr in LPS-induced fever model mice was related to its main metabolites, Phg and Phg-sulfonate (Phg-S), which directly targeted the NAD+ binding domain of GAPDH, IDH2, and MDH2, inhibiting the activity of these enzymes, thereby reducing energy supply and regulating febrile-related inflammatory factors. CONCLUSION This study reported for the first time that the antipyretic effect of Phr is produced by targeting GAPDH, IDH2, and MDH2 to regulate energy supply and febrile-related inflammatory factors through its main metabolites Phg and Phg-S. This study not only provides potential drugs for fever treatment but also provides new ideas for improving clinical fever treatment plans.
Collapse
Affiliation(s)
- Wenjuan Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, PR China
| | - Junjie Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, PR China
| | - Sihan Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, PR China
| | - Yixu Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, PR China
| | - Jiawei Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, PR China
| | - Shou Wang
- Dalian Fusheng Natural Medicine Development Co. Ltd. Dalian, PR China
| | - Li Fu
- Dalian Fusheng Natural Medicine Development Co. Ltd. Dalian, PR China.
| | - Min Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, PR China.
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, PR China.
| |
Collapse
|
15
|
Parente AD, Bolland DE, Huisinga KL, Provost JJ. Physiology of malate dehydrogenase and how dysregulation leads to disease. Essays Biochem 2024; 68:121-134. [PMID: 38962852 DOI: 10.1042/ebc20230085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024]
Abstract
Malate dehydrogenase (MDH) is pivotal in mammalian tissue metabolism, participating in various pathways beyond its classical roles and highlighting its adaptability to cellular demands. This enzyme is involved in maintaining redox balance, lipid synthesis, and glutamine metabolism and supports rapidly proliferating cells' energetic and biosynthetic needs. The involvement of MDH in glutamine metabolism underlines its significance in cell physiology. In contrast, its contribution to lipid metabolism highlights its role in essential biosynthetic processes necessary for cell maintenance and proliferation. The enzyme's regulatory mechanisms, such as post-translational modifications, underscore its complexity and importance in metabolic regulation, positioning MDH as a potential target in metabolic dysregulation. Furthermore, the association of MDH with various pathologies, including cancer and neurological disorders, suggests its involvement in disease progression. The overexpression of MDH isoforms MDH1 and MDH2 in cancers like breast, prostate, and pancreatic ductal adenocarcinoma, alongside structural modifications, implies their critical role in the metabolic adaptation of tumor cells. Additionally, mutations in MDH2 linked to pheochromocytomas, paragangliomas, and other metabolic diseases emphasize MDH's role in metabolic homeostasis. This review spotlights MDH's potential as a biomarker and therapeutic target, advocating for further research into its multifunctional roles and regulatory mechanisms in health and disease.
Collapse
Affiliation(s)
- Amy D Parente
- Department of Chemistry and Biochemistry, Mercyhurst University, Erie, PA, U.S.A
| | - Danielle E Bolland
- Department of Biology, University of Minnesota Morris, Morris, MN 56267, U.S.A
| | - Kathryn L Huisinga
- Department of Chemistry and Biochemistry, Malone University, Canton, OH 44709, U.S.A
| | - Joseph J Provost
- Department of Chemistry and Biochemistry, University of San Diego, San Diego, CA 92110, U.S.A
| |
Collapse
|
16
|
Huang X, Wang M, Zhang D, Meng J, Liu P. ZDHHC20 Activates AKT Signaling Pathway to Promote Cell Proliferation in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2024; 11:1763-1775. [PMID: 39309302 PMCID: PMC11416782 DOI: 10.2147/jhc.s457682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 07/03/2024] [Indexed: 09/25/2024] Open
Abstract
Background Liver cancer is the sixth most common cancer worldwide, and hepatocellular carcinoma (HCC) presents one of the most challenging global health issues. ZDHHC20, a member of the ZDHHC palmitoyltransferase (ZDHHC-PAT) family, is involved in a reversible lipid modification known as palmitoylation, which contributes to the occurrence and progression of various tumors. However, the specific mechanisms underlying the involvement of ZDHHC20 in this process are unclear. Methods The effects of both ZDHHC20 knockdown and overexpression on hepatocellular carcinoma cell proliferation were evaluated using PCR, Western blotting, CCK-8 assay, colony formation assay, cell cycle analysis, apoptosis analysis, and EDU assay. The TCGA-LIHC dataset was analyzed bioinformatically, and the phosphorylation level of PI3K and AKT in SK-Hep1 and Huh7 cells was assessed using Western blotting. Nude mouse subcutaneous xenograft experiments were conducted to evaluate the effects of different treatment conditions on mouse tumor growth. Results ZDHHC20 knockdown inhibited cell proliferation and promoted apoptosis, while overexpression of ZDHHC20 promoted cell proliferation and inhibited apoptosis. Knockdown of ZDHHC20 also decreased phosphorylation of PI3K and AKT in HCC, whereas overexpression of ZDHHC20 increased phosphorylation of PI3K and AKT. The PI3K-AKT pathway inhibitors, LY294002 and MK2206, effectively inhibited the promotional effects of ZDHHC20 on the proliferation and growth of HCC. Conclusion High expression of ZDHHC20 promotes the proliferation and tumor growth of HCC by activating the PI3K-AKT signaling pathway. The PI3K inhibitor LY294002 and the AKT inhibitor MK2206 inhibit the promotional effects of ZDHHC20 on the proliferation of HCC and the growth of tumors.
Collapse
Affiliation(s)
- Xiaoju Huang
- Cancer Center Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, People’s Republic of China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Mengmeng Wang
- Cancer Center Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, People’s Republic of China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Dan Zhang
- Cancer Center Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, People’s Republic of China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Junpeng Meng
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Department of General Surgery, the Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, People’s Republic of China
| | - Pian Liu
- Cancer Center Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, People’s Republic of China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| |
Collapse
|
17
|
Sun H, Cui Z, Li C, Gao Z, Xu J, Bian Y, Gu T, Zhang J, Li T, Zhou Q, Yang D, He Z, Li B, Li F, Xu Z, Xu H. USP5 Promotes Ripretinib Resistance in Gastrointestinal Stromal Tumors by MDH2 Deubiquition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401171. [PMID: 38973363 PMCID: PMC11425886 DOI: 10.1002/advs.202401171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/21/2024] [Indexed: 07/09/2024]
Abstract
Ripretinib, a broad-spectrum inhibitor of the KIT and PDGFRA receptor tyrosine kinases, is designated as a fourth-line treatment for gastrointestinal stromal tumor (GIST). It is tailored for patients resistant to imatinib, sunitinib, and regorafenib. As its increasing use, instances of resistance to ripretinib are becoming more frequent. Unfortunately, there are currently no scientifically mature treatment options available for patients resistant to ripretinib. Posttranslational modifications (PTMs) such as ubiquitination, in conjunction with its interplay with other modifications, play a collective role in regulating tumor initiation and progression. However, the specific association between ubiquitination and ripretinib resistance is not reported. Through proteome-ubiquitinome sequencing, increased levels of the USP5 protein and decreased ubiquitination in ripretinib-resistant GISTs are detected. Subsequent examination of the mass spectrometry findings validated the interaction through which TRIM21 governs USP5 expression via ubiquitination, and USP5 regulates MDH2 expression through deubiquitination, consequently fostering ripretinib resistance in GIST. Moreover, ZDHHC18 can palmitoylate MDH2, preventing its ubiquitination and further increasing its protein stability. The research underscores the correlation between posttranslational modifications, specifically ubiquitination, and drug resistance, emphasizing the potential of targeting the USP5-MDH2 axis to counteract ripretinib resistance in GIST.
Collapse
Affiliation(s)
- Haoyu Sun
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Zhiwei Cui
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Chao Li
- Department of General Surgery, Zhongshan Hospital, Fudan University School of Medicine, #180 Fenglin Road, Shanghai, 200032, China
| | - Zhishuang Gao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Jun Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Yibo Bian
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Tianhao Gu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Jianan Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Tengyun Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Qianzheng Zhou
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Dinghua Yang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Zhongyuan He
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Bowen Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Fengyuan Li
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Zekuan Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| | - Hao Xu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medical University, Nanjing, 211166, China
| |
Collapse
|
18
|
Shan J, Li X, Sun R, Yao Y, Sun Y, Kuang Q, Dai X, Sun Y. Palmitoyltransferase ZDHHC6 promotes colon tumorigenesis by targeting PPARγ-driven lipid biosynthesis via regulating lipidome metabolic reprogramming. J Exp Clin Cancer Res 2024; 43:227. [PMID: 39148124 PMCID: PMC11328492 DOI: 10.1186/s13046-024-03154-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 08/04/2024] [Indexed: 08/17/2024] Open
Abstract
BACKGROUND The failure of proper recognition of the intricate nature of pathophysiology in colorectal cancer (CRC) has a substantial effect on the progress of developing novel medications and targeted therapy approaches. Imbalances in the processes of lipid oxidation and biosynthesis of fatty acids are significant risk factors for the development of CRC. Therapeutic intervention that specifically targets the peroxisome proliferator-activated receptor gamma (PPARγ) and its downstream response element, in response to lipid metabolism, has been found to promote the growth of tumors and has shown significant clinical advantages in cancer patients. METHODS Clinical CRC samples and extensive in vitro and in vivo experiments were carried out to determine the role of ZDHHC6 and its downstream targets via a series of biochemical assays, molecular analysis approaches and lipid metabolomics assay, etc. RESULTS: To study the effect of ZDHHC6 on the progression of CRC and identify whether ZDHHC6 is a palmitoyltransferase that regulates fatty acid synthesis, which directly palmitoylates and stabilizes PPARγ, and this stabilization in turn activates the ACLY transcription-related metabolic pathway. In this study, we demonstrate that PPARγ undergoes palmitoylation in its DNA binding domain (DBD) section. This lipid-related modification enhances the stability of PPARγ protein by preventing its destabilization. As a result, palmitoylated PPARγ inhibits its degradation induced by the lysosome and facilitates its translocation into the nucleus. In addition, we have identified zinc finger-aspartate-histidine-cysteine 6 (ZDHHC6) as a crucial controller of fatty acid biosynthesis. ZDHHC6 directly interacts with and adds palmitoyl groups to stabilize PPARγ at the Cys-313 site within the DBD domain of PPARγ. Consequently, this palmitoylation leads to an increase in the expression of ATP citrate lyase (ACLY). Furthermore, our findings reveals that ZDHHC6 actively stimulates the production of fatty acids and plays a role in the development of colorectal cancer. However, we have observed a significant reduction in the cancer-causing effects when the expression of ZDHHC6 is inhibited in in vivo trials. Significantly, in CRC, there is a strong positive correlation between the high expression of ZDHHC6 and the expression of PPARγ. Moreover, this high expression of ZDHHC6 is connected with the severity of CRC and is indicative of a poor prognosis. CONCLUSIONS We have discovered a mechanism in which lipid biosynthesis is controlled by ZDHHC6 and includes the signaling of PPARγ-ACLY in the advancement of CRC. This finding provides a justification for targeting lipid synthesis by blocking ZDHHC6 as a potential therapeutic approach.
Collapse
Affiliation(s)
- Junqi Shan
- Department of Surgical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Xinyu Li
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong, 261000, China
| | - Runqi Sun
- School of Clinical Medicine, Jining Medical University, Jining, Shandong, 272000, China
| | - Yao Yao
- Department of Surgical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Yan Sun
- Key Laboratory of Biorheological Science and Technology, Chongqing University, College of Bioengineering, Ministry of Education, Chongqing University, Chongqing, 400030, PR China
| | - Qin Kuang
- Key Laboratory of Biorheological Science and Technology, Chongqing University, College of Bioengineering, Ministry of Education, Chongqing University, Chongqing, 400030, PR China
| | - Xianling Dai
- Key Laboratory of Biorheological Science and Technology, Chongqing University, College of Bioengineering, Ministry of Education, Chongqing University, Chongqing, 400030, PR China
| | - Yanlai Sun
- Department of Surgical Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| |
Collapse
|
19
|
Feng B, Su W, Guo X, Ding T, Duan Y, Hu L, Yu M. MDH2 regulates the sensitivity of clear cell renal cell carcinoma to ferroptosis through its interaction with FSP1. Cell Death Discov 2024; 10:363. [PMID: 39138167 PMCID: PMC11322664 DOI: 10.1038/s41420-024-02137-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 08/03/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024] Open
Abstract
Malate dehydrogenase 2 is a pivotal enzyme in the tricarboxylic acid cycle. Recent studies have highlighted the significant involvement of MDH2 in the pathogenesis and progression of diverse types of tumors, yet its precise mechanistic underpinnings remain elusive. This study revealed a significant decrease in MDH2 expression in renal cancer tissues. And knocking out MDH2 was observed to hinder the proliferation of normal renal tubular epithelial cells but notably enhance the proliferation of ccRCC. Furthermore, mechanistically, we found that MDH2 inhibits the proliferation of ccRCC by promoting ferroptosis, while enhancing the sensitivity of ccRCC to ferroptosis inducers, promoting lipid peroxidation. We also demonstrated that MDH2 regulates the ubiquitination of FSP1 through protein-protein interactions, leading to a decrease in FSP1 protein levels and maintaining high sensitivity of ccRCC to ferroptosis. In conclusion, our study demonstrates that the reduced MDH2 expression in ccRCC results in increased expression of FSP1, thereby reducing its sensitivity to ferroptosis. It unveils a non-metabolic role for the downregulation of MDH2 in ccRCC progression.
Collapse
Affiliation(s)
- Baijie Feng
- Fudan University Clinical Research Center for Cell-based Immunotherapy & Department of Oncology, Fudan University Pudong Medical Center, Shanghai, P. R. China
| | - Wei Su
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xianzhi Guo
- Fudan University Clinical Research Center for Cell-based Immunotherapy & Department of Oncology, Fudan University Pudong Medical Center, Shanghai, P. R. China
| | - Tingting Ding
- Fudan University Clinical Research Center for Cell-based Immunotherapy & Department of Oncology, Fudan University Pudong Medical Center, Shanghai, P. R. China
| | - Yingchun Duan
- Department of Gynecology and Obstetrics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, P. R. China
| | - Lina Hu
- Fudan University Clinical Research Center for Cell-based Immunotherapy & Department of Oncology, Fudan University Pudong Medical Center, Shanghai, P. R. China.
| | - Minghua Yu
- Fudan University Clinical Research Center for Cell-based Immunotherapy & Department of Oncology, Fudan University Pudong Medical Center, Shanghai, P. R. China.
| |
Collapse
|
20
|
Yang Z, Zheng Y, Gao Q. Lysine lactylation in the regulation of tumor biology. Trends Endocrinol Metab 2024; 35:720-731. [PMID: 38395657 DOI: 10.1016/j.tem.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024]
Abstract
Lysine lactylation (Kla), a newly discovered post-translational modification (PTM) of lysine residues, is progressively revealing its crucial role in tumor biology. A growing body of evidence supports its capacity of transcriptional regulation through histone modification and modulation of non-histone protein function. It intricately participates in a myriad of events in the tumor microenvironment (TME) by orchestrating the transitions of immune states and augmenting tumor malignancy. Its preferential modification of metabolic proteins underscores its specific regulatory influence on metabolism. This review focuses on the effect and the probable mechanisms of Kla-mediated regulation of tumor metabolism, the upstream factors that determine Kla intensity, and its potential implications for the clinical diagnosis and treatment of tumors.
Collapse
Affiliation(s)
- Zijian Yang
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yingqi Zheng
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, and Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China; Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China; State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China.
| |
Collapse
|
21
|
Guo Z, Huang J, Huo X, Huang C, Yu X, Sun Y, Li Y, He T, Guo H, Yang J, Xue L. Targeting LTA4H facilitates the reshaping of the immune microenvironment mediated by CCL5 and sensitizes ovarian cancer to Cisplatin. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1226-1241. [PMID: 38300441 DOI: 10.1007/s11427-023-2444-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/06/2023] [Indexed: 02/02/2024]
Abstract
Ovarian cancer is the most lethal and aggressive gynecological cancer with a high recurrence rate and is often diagnosed late. In ovarian cancer, multiple metabolic enzymes of lipid metabolism are abnormally expressed, resulting in metabolism disorder. As a characteristic pathway in polyunsaturated fatty acid (PUFA) metabolism, arachidonic acid (AA) metabolism is disturbed in ovarian cancer. Therefore, we established a 10-gene signature model to evaluate the prognostic risk of PUFA-related genes. This 10-gene signature has strong robustness and can play a stable predictive role in datasets of various platforms (TCGA, ICGC, and GSE17260). The high association between the risk subgroups and clinical characteristics indicated a good performance of the model. Our data further indicated that the high expression of LTA4H was positively correlated with poor prognosis in ovarian cancer. Deficiency of LTA4H enhanced sensitivity to Cisplatin and modified the characteristics of immune cell infiltration in ovarian cancer. Additionally, our results indicate that CCL5 was involved in the aberrant metabolism of the AA/LTA4H axis, which contributes to the reduction of tumor-infiltrating CD8+ T cells and immune escape in ovarian cancer. These findings provide new insights into the prognosis and potential target of LTA4H/CCL5 in treating ovarian cancer.
Collapse
Affiliation(s)
- Zhengyang Guo
- Cancer Center of Peking University Third Hospital, Beijing, 100191, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China
| | - Jiaqi Huang
- Cancer Center of Peking University Third Hospital, Beijing, 100191, China
- Peking University Third Hospital Cancer Center, Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China
| | - Xiao Huo
- Cancer Center of Peking University Third Hospital, Beijing, 100191, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China
| | - Chen Huang
- Cancer Center of Peking University Third Hospital, Beijing, 100191, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China
| | - Xiaotong Yu
- Cancer Center of Peking University Third Hospital, Beijing, 100191, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China
| | - Yan Sun
- Cancer Center of Peking University Third Hospital, Beijing, 100191, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China
| | - Yanfang Li
- Cancer Center of Peking University Third Hospital, Beijing, 100191, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China
| | - Tianhui He
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China
| | - Hongyan Guo
- Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, China.
| | - Jianling Yang
- Cancer Center of Peking University Third Hospital, Beijing, 100191, China.
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China.
| | - Lixiang Xue
- Cancer Center of Peking University Third Hospital, Beijing, 100191, China.
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China.
- Peking University Third Hospital Cancer Center, Department of Radiation Oncology, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
22
|
Yuan Y, Li P, Li J, Zhao Q, Chang Y, He X. Protein lipidation in health and disease: molecular basis, physiological function and pathological implication. Signal Transduct Target Ther 2024; 9:60. [PMID: 38485938 PMCID: PMC10940682 DOI: 10.1038/s41392-024-01759-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/31/2023] [Accepted: 01/24/2024] [Indexed: 03/18/2024] Open
Abstract
Posttranslational modifications increase the complexity and functional diversity of proteins in response to complex external stimuli and internal changes. Among these, protein lipidations which refer to lipid attachment to proteins are prominent, which primarily encompassing five types including S-palmitoylation, N-myristoylation, S-prenylation, glycosylphosphatidylinositol (GPI) anchor and cholesterylation. Lipid attachment to proteins plays an essential role in the regulation of protein trafficking, localisation, stability, conformation, interactions and signal transduction by enhancing hydrophobicity. Accumulating evidence from genetic, structural, and biomedical studies has consistently shown that protein lipidation is pivotal in the regulation of broad physiological functions and is inextricably linked to a variety of diseases. Decades of dedicated research have driven the development of a wide range of drugs targeting protein lipidation, and several agents have been developed and tested in preclinical and clinical studies, some of which, such as asciminib and lonafarnib are FDA-approved for therapeutic use, indicating that targeting protein lipidations represents a promising therapeutic strategy. Here, we comprehensively review the known regulatory enzymes and catalytic mechanisms of various protein lipidation types, outline the impact of protein lipidations on physiology and disease, and highlight potential therapeutic targets and clinical research progress, aiming to provide a comprehensive reference for future protein lipidation research.
Collapse
Affiliation(s)
- Yuan Yuan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peiyuan Li
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianghui Li
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China
| | - Qiu Zhao
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China.
| | - Ying Chang
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China.
| | - Xingxing He
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Diseases, Wuhan, China.
| |
Collapse
|
23
|
Chen HW, Zhang YG, Zhang WJ, Su J, Wu H, Fu ZF, Cui M. Palmitoylation of hIFITM1 inhibits JEV infection and contributes to BBB stabilization. Int J Biol Macromol 2024; 262:129731. [PMID: 38278394 DOI: 10.1016/j.ijbiomac.2024.129731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 01/28/2024]
Abstract
Human brain microvascular endothelial cells (hBMECs) are the main component cells of the blood-brain barrier (BBB) and play a crucial role in responding to viral infections to prevent the central nervous system (CNS) from viral invasion. Interferon-inducible transmembrane protein 1 (IFITM1) is a multifunctional membrane protein downstream of type-I interferon. In this study, we discovered that hIFITM1 expression was highly upregulated in hBMECs during Japanese encephalitis virus (JEV) infection. Depletion of hIFITM1 with CRISPR/Cas9 in hBMECs enhanced JEV replication, while overexpression of hIFITM1 restricted the viruses. Additionally, overexpression of hIFITM1 promoted the monolayer formation of hBMECs with a better integrity and a higher transendothelial electrical resistance (TEER), and reduced the penetration of JEV across the BBB. However, the function of hIFITM1 is governed by palmitoylation. Mutations of palmitoylation residues in conserved CD225 domain of hIFITM1 impaired its antiviral capacity. Moreover, mutants retained hIFITM1 in the cytoplasm and lessened its interaction with tight junction protein Occludin. Taken together, palmitoylation of hIFITM1 is essential for its antiviral activity in hBMECs, and more notably, for the maintenance of BBB homeostasis.
Collapse
Affiliation(s)
- Hao-Wei Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Ya-Ge Zhang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Wei-Jia Zhang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Jie Su
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Hao Wu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Zhen-Fang Fu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Min Cui
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, Hubei, China; Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.
| |
Collapse
|
24
|
Shen Y, Zheng LL, Fang CY, Xu YY, Wang C, Li JT, Lei MZ, Yin M, Lu HJ, Lei QY, Qu J. ABHD7-mediated depalmitoylation of lamin A promotes myoblast differentiation. Cell Rep 2024; 43:113720. [PMID: 38308845 DOI: 10.1016/j.celrep.2024.113720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 07/04/2023] [Accepted: 01/12/2024] [Indexed: 02/05/2024] Open
Abstract
LMNA gene mutation can cause muscular dystrophy, and post-translational modification plays a critical role in regulating its function. Here, we identify that lamin A is palmitoylated at cysteine 522, 588, and 591 residues, which are reversely catalyzed by palmitoyltransferase zinc finger DHHC-type palmitoyltransferase 5 (ZDHHC5) and depalmitoylase α/β hydrolase domain 7 (ABHD7). Furthermore, the metabolite lactate promotes palmitoylation of lamin A by inhibiting the interaction between it and ABHD7. Interestingly, low-level palmitoylation of lamin A promotes, whereas high-level palmitoylation of lamin A inhibits, murine myoblast differentiation. Together, these observations suggest that ABHD7-mediated depalmitoylation of lamin A controls myoblast differentiation.
Collapse
Affiliation(s)
- Yuan Shen
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, Shanghai Key Laboratory of Radiation Oncology, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Liang-Liang Zheng
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, Shanghai Key Laboratory of Radiation Oncology, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Cai-Yun Fang
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Yao-Yao Xu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, Shanghai Key Laboratory of Radiation Oncology, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Chao Wang
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, Shanghai Key Laboratory of Radiation Oncology, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jin-Tao Li
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, Shanghai Key Laboratory of Radiation Oncology, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Ming-Zhu Lei
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, Shanghai Key Laboratory of Radiation Oncology, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Miao Yin
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, Shanghai Key Laboratory of Radiation Oncology, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Hao-Jie Lu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, Shanghai Key Laboratory of Radiation Oncology, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai 200032, China; NHC Key Laboratory of Glycoconjugates Research, Fudan University, Shanghai 200032, China; Department of Chemistry, Fudan University, Shanghai 200438, China.
| | - Qun-Ying Lei
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, Shanghai Key Laboratory of Radiation Oncology, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China; New Cornerstone Science Laboratory, Fudan University, Shanghai 200032, China.
| | - Jia Qu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, Cancer Institutes, Key Laboratory of Breast Cancer in Shanghai, Shanghai Key Laboratory of Radiation Oncology, The Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College, Fudan University, Shanghai 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
25
|
Chen Y, Li Y, Wu L. Protein S-palmitoylation modification: implications in tumor and tumor immune microenvironment. Front Immunol 2024; 15:1337478. [PMID: 38415253 PMCID: PMC10896991 DOI: 10.3389/fimmu.2024.1337478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/29/2024] [Indexed: 02/29/2024] Open
Abstract
Protein S-palmitoylation is a reversible post-translational lipid modification that involves the addition of a 16-carbon palmitoyl group to a protein cysteine residue via a thioester linkage. This modification plays a crucial role in the regulation protein localization, accumulation, secretion, stability, and function. Dysregulation of protein S-palmitoylation can disrupt cellular pathways and contribute to the development of various diseases, particularly cancers. Aberrant S-palmitoylation has been extensively studied and proven to be involved in tumor initiation and growth, metastasis, and apoptosis. In addition, emerging evidence suggests that protein S-palmitoylation may also have a potential role in immune modulation. Therefore, a comprehensive understanding of the regulatory mechanisms of S-palmitoylation in tumor cells and the tumor immune microenvironment is essential to improve our understanding of this process. In this review, we summarize the recent progress of S-palmitoylation in tumors and the tumor immune microenvironment, focusing on the S-palmitoylation modification of various proteins. Furthermore, we propose new ideas for immunotherapeutic strategies through S-palmitoylation intervention.
Collapse
Affiliation(s)
- Yijiao Chen
- Department of Medical Oncology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Lei Wu
- Department of Medical Oncology, Chongqing University Cancer Hospital, School of Medicine, Chongqing University, Chongqing, China
| |
Collapse
|
26
|
Teng P, Cui K, Yao S, Fei B, Ling F, Li C, Huang Z. SIRT5-mediated ME2 desuccinylation promotes cancer growth by enhancing mitochondrial respiration. Cell Death Differ 2024; 31:65-77. [PMID: 38007551 PMCID: PMC10781994 DOI: 10.1038/s41418-023-01240-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/27/2023] Open
Abstract
Mitochondrial malic enzyme 2 (ME2), which catalyzes the conversion of malate to pyruvate, is frequently upregulated during tumorigenesis and is a potential target for cancer therapy. However, the regulatory mechanism underlying ME2 activity is largely unknown. In this study, we demonstrate that ME2 is highly expressed in human colorectal cancer (CRC) tissues, and that ME2 knockdown inhibits the proliferation of CRC cells. Furthermore, we reveal that ME2 is succinylated and identify Sirtuins 5 (SIRT5) as an ME2 desuccinylase. Glutamine deprivation directly enhances the interaction of SIRT5 with ME2 and thus promotes SIRT5-mediated desuccinylation of ME2 at lysine 346, activating ME2 enzymatic activity. Activated ME2 significantly enhances mitochondrial respiration, thereby counteracting the effects of glutamine deprivation and supporting cell proliferation and tumorigenesis. Additionally, the levels of succinylated ME2 at K346 and SIRT5 in CRC tissues, which are negatively correlated, are associated with patient prognosis. These observations suggest that SIRT5-catalyzed ME2 desuccinylation is a key signaling event through which cancer cells maintain mitochondrial respiration and promote CRC progression under glutamine deficiency conditions, offering the possibility of targeting SIRT5-mediated ME2 desuccinylation for CRC treatment.
Collapse
Affiliation(s)
- Peng Teng
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, 214062, Jiangsu, China
| | - Kaisa Cui
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, 214062, Jiangsu, China
| | - Surui Yao
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, 214062, Jiangsu, China
| | - Bojian Fei
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, 214062, Jiangsu, China
- Department of General Surgery, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China
| | - Feng Ling
- Chemical Genetics Laboratory, RIKEN Advanced Science Institute, Hirosawa 2-1, Wako-shi, Saitama, 351-0198, Japan
| | - Chaoqun Li
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China.
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, 214062, Jiangsu, China.
| | - Zhaohui Huang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China.
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, 214062, Jiangsu, China.
| |
Collapse
|
27
|
Gao Y, Long Q, Yang H, Hu Y, Xu Y, Tang C, Gu C, Yong S. Transcriptomics and metabolomics study in mouse kidney of the molecular mechanism underlying energy metabolism response to hypoxic stress in highland areas. Exp Ther Med 2023; 26:533. [PMID: 37869643 PMCID: PMC10587886 DOI: 10.3892/etm.2023.12232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/25/2023] [Indexed: 10/24/2023] Open
Abstract
Exposure to hypoxia disrupts energy metabolism and induces inflammation. However, the pathways and mechanisms underlying energy metabolism disorders caused by hypoxic conditions remain unclear. In the present study, a hypoxic animal model was created and transcriptomic and non-targeted metabolomics techniques were applied to further investigate the pathways and mechanisms of hypoxia exposure that disrupt energy metabolism. Transcriptome results showed that 3,007 genes were significantly differentially expressed under hypoxic exposure, and Gene Ontology annotation analysis and Kyoto Encyclopaedia of Genes and Genomes (KEGG) enrichment analysis showed that the differentially expressed genes (DEGs) were mainly involved in energy metabolism and were significantly enriched in the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS) pathway. The DEGs IDH3A, SUCLA2, and MDH2 in the TCA cycle and the DEGs NDUFA3, NDUFS7, UQCRC1, CYC1 and UQCRFS1 in the OXPHOS pathway were validated using mRNA and protein expression, and the results showed downregulation. The results of non-targeted metabolomics showed that 365 significant differential metabolites were identified under plateau hypoxia stress. KEGG enrichment analysis showed that the differential metabolites were mainly enriched in metabolic processes, such as energy, nucleotide and amino acid metabolism. Hypoxia exposure disrupted the TCA cycle and reduced the synthesis of amino acids and nucleotides by decreasing the concentration of cis-aconitate, α-ketoglutarate, NADH, NADPH and that of most amino acids, purines, and pyrimidines. Bioinformatics analysis was used to identify inflammatory genes related to hypoxia exposure and some of them were selected for verification. It was shown that the mRNA and protein expression levels of IL1B, IL12B, S100A8 and S100A9 in kidney tissues were upregulated under hypoxic exposure. The results suggest that hypoxia exposure inhibits the TCA cycle and the OXPHOS signalling pathway by inhibiting IDH3A, SUCLA2, MDH2, NDUFFA3, NDUFS7, UQCRC1, CYC1 and UQCRFS1, thereby suppressing energy metabolism, inducing amino acid and nucleotide deficiency and promoting inflammation, ultimately leading to kidney damage.
Collapse
Affiliation(s)
- Yujie Gao
- Department of Basic Medicine, School of Medicine, Qinghai University, Xining, Qinghai 810016, P.R. China
| | - Qifu Long
- Department of Basic Medicine, School of Medicine, Qinghai University, Xining, Qinghai 810016, P.R. China
| | - Hui Yang
- Department of Basic Medicine, School of Medicine, Qinghai University, Xining, Qinghai 810016, P.R. China
| | - Ying Hu
- Department of Basic Medicine, School of Medicine, Qinghai University, Xining, Qinghai 810016, P.R. China
| | - Yuzhen Xu
- Department of Basic Medicine, School of Medicine, Qinghai University, Xining, Qinghai 810016, P.R. China
| | - Chaoqun Tang
- Department of Basic Medicine, School of Medicine, Qinghai University, Xining, Qinghai 810016, P.R. China
| | - Cunlin Gu
- Department of Basic Medicine, School of Medicine, Qinghai University, Xining, Qinghai 810016, P.R. China
| | - Sheng Yong
- Department of Basic Medicine, School of Medicine, Qinghai University, Xining, Qinghai 810016, P.R. China
| |
Collapse
|
28
|
Li M, Zhang L, Chen CW. Diverse Roles of Protein Palmitoylation in Cancer Progression, Immunity, Stemness, and Beyond. Cells 2023; 12:2209. [PMID: 37759431 PMCID: PMC10526800 DOI: 10.3390/cells12182209] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/27/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Protein S-palmitoylation, a type of post-translational modification, refers to the reversible process of attachment of a fatty acyl chain-a 16-carbon palmitate acid-to the specific cysteine residues on target proteins. By adding the lipid chain to proteins, it increases the hydrophobicity of proteins and modulates protein stability, interaction with effector proteins, subcellular localization, and membrane trafficking. Palmitoylation is catalyzed by a group of zinc finger DHHC-containing proteins (ZDHHCs), whereas depalmitoylation is catalyzed by a family of acyl-protein thioesterases. Increasing numbers of oncoproteins and tumor suppressors have been identified to be palmitoylated, and palmitoylation is essential for their functions. Understanding how palmitoylation influences the function of individual proteins, the physiological roles of palmitoylation, and how dysregulated palmitoylation leads to pathological consequences are important drivers of current research in this research field. Further, due to the critical roles in modifying functions of oncoproteins and tumor suppressors, targeting palmitoylation has been used as a candidate therapeutic strategy for cancer treatment. Here, based on recent literatures, we discuss the progress of investigating roles of palmitoylation in regulating cancer progression, immune responses against cancer, and cancer stem cell properties.
Collapse
Affiliation(s)
- Mingli Li
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA;
| | - Leisi Zhang
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA;
| | - Chun-Wei Chen
- Department of Systems Biology, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA;
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| |
Collapse
|
29
|
Xu F, Cai D, Yang Z, Yin J, Sun Y. Commentary: Copper and cuproptosis-related genes in hepatocellular carcinoma: therapeutic biomarkers targeting tumor immune microenvironment and immune checkpoints. Front Immunol 2023; 14:1265565. [PMID: 37691933 PMCID: PMC10485830 DOI: 10.3389/fimmu.2023.1265565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023] Open
Affiliation(s)
- Fangshi Xu
- Department of Urology, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
| | - Danrui Cai
- Department of Ophthalmology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Zheng Yang
- Department of Urology, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
| | - Jian Yin
- Department of Urology, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
| | - Yi Sun
- Department of Urology, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
| |
Collapse
|
30
|
He Q, Qu M, Shen T, Su J, Xu Y, Xu C, Barkat MQ, Cai J, Zhu H, Zeng LH, Wu X. Control of mitochondria-associated endoplasmic reticulum membranes by protein S-palmitoylation: Novel therapeutic targets for neurodegenerative diseases. Ageing Res Rev 2023; 87:101920. [PMID: 37004843 DOI: 10.1016/j.arr.2023.101920] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 04/03/2023]
Abstract
Mitochondria-associated endoplasmic reticulum membranes (MAMs) are dynamic coupling structures between mitochondria and the endoplasmic reticulum (ER). As a new subcellular structure, MAMs combine the two critical organelle functions. Mitochondria and the ER could regulate each other via MAMs. MAMs are involved in calcium (Ca2+) homeostasis, autophagy, ER stress, lipid metabolism, etc. Researchers have found that MAMs are closely related to metabolic syndrome and neurodegenerative diseases (NDs). The formation of MAMs and their functions depend on specific proteins. Numerous protein enrichments, such as the IP3R-Grp75-VDAC complex, constitute MAMs. The changes in these proteins govern the interaction between mitochondria and the ER; they also affect the biological functions of MAMs. S-palmitoylation is a reversible protein post-translational modification (PTM) that mainly occurs on protein cysteine residues. More and more studies have shown that the S-palmitoylation of proteins is closely related to their membrane localization. Here, we first briefly describe the composition and function of MAMs, reviewing the component and biological roles of MAMs mediated by S-palmitoylation, elaborating on S-palmitoylated proteins in Ca2+ flux, lipid rafts, and so on. We try to provide new insight into the molecular basis of MAMs-related diseases, mainly NDs. Finally, we propose potential drug compounds targeting S-palmitoylation.
Collapse
Affiliation(s)
- Qiangqiang He
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Pharmacology, Hangzhou City University, Hangzhou 310015, China
| | - Meiyu Qu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Tingyu Shen
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jiakun Su
- Technology Center, China Tobacco Jiangxi Industrial Co. Ltd., Nanchang 330096, China
| | - Yana Xu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Chengyun Xu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Muhammad Qasim Barkat
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jibao Cai
- Technology Center, China Tobacco Jiangxi Industrial Co. Ltd., Nanchang 330096, China
| | - Haibin Zhu
- Department of Gynecology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Ling-Hui Zeng
- Department of Pharmacology, Hangzhou City University, Hangzhou 310015, China.
| | - Ximei Wu
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
31
|
Zhong Q, Xiao X, Qiu Y, Xu Z, Chen C, Chong B, Zhao X, Hai S, Li S, An Z, Dai L. Protein posttranslational modifications in health and diseases: Functions, regulatory mechanisms, and therapeutic implications. MedComm (Beijing) 2023; 4:e261. [PMID: 37143582 PMCID: PMC10152985 DOI: 10.1002/mco2.261] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 05/06/2023] Open
Abstract
Protein posttranslational modifications (PTMs) refer to the breaking or generation of covalent bonds on the backbones or amino acid side chains of proteins and expand the diversity of proteins, which provides the basis for the emergence of organismal complexity. To date, more than 650 types of protein modifications, such as the most well-known phosphorylation, ubiquitination, glycosylation, methylation, SUMOylation, short-chain and long-chain acylation modifications, redox modifications, and irreversible modifications, have been described, and the inventory is still increasing. By changing the protein conformation, localization, activity, stability, charges, and interactions with other biomolecules, PTMs ultimately alter the phenotypes and biological processes of cells. The homeostasis of protein modifications is important to human health. Abnormal PTMs may cause changes in protein properties and loss of protein functions, which are closely related to the occurrence and development of various diseases. In this review, we systematically introduce the characteristics, regulatory mechanisms, and functions of various PTMs in health and diseases. In addition, the therapeutic prospects in various diseases by targeting PTMs and associated regulatory enzymes are also summarized. This work will deepen the understanding of protein modifications in health and diseases and promote the discovery of diagnostic and prognostic markers and drug targets for diseases.
Collapse
Affiliation(s)
- Qian Zhong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xina Xiao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Yijie Qiu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhiqiang Xu
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Chunyu Chen
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Baochen Chong
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Xinjun Zhao
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shan Hai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Shuangqing Li
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Zhenmei An
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| | - Lunzhi Dai
- Department of Endocrinology and MetabolismGeneral Practice Ward/International Medical Center WardGeneral Practice Medical Center and National Clinical Research Center for GeriatricsState Key Laboratory of BiotherapyWest China Hospital, Sichuan UniversityChengduChina
| |
Collapse
|
32
|
Dennis KMJH, Heather LC. Post-translational palmitoylation of metabolic proteins. Front Physiol 2023; 14:1122895. [PMID: 36909239 PMCID: PMC9998952 DOI: 10.3389/fphys.2023.1122895] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/03/2023] [Indexed: 03/14/2023] Open
Abstract
Numerous cellular proteins are post-translationally modified by addition of a lipid group to their structure, which dynamically influences the proteome by increasing hydrophobicity of proteins often impacting protein conformation, localization, stability, and binding affinity. These lipid modifications include myristoylation and palmitoylation. Palmitoylation involves a 16-carbon saturated fatty acyl chain being covalently linked to a cysteine thiol through a thioester bond. Palmitoylation is unique within this group of modifications, as the addition of the palmitoyl group is reversible and enzyme driven, rapidly affecting protein targeting, stability and subcellular trafficking. The palmitoylation reaction is catalyzed by a large family of Asp-His-His-Cys (DHHCs) motif-containing palmitoyl acyltransferases, while the reverse reaction is catalyzed by acyl-protein thioesterases (APTs), that remove the acyl chain. Palmitoyl-CoA serves an important dual purpose as it is not only a key metabolite fueling energy metabolism, but is also a substrate for this PTM. In this review, we discuss protein palmitoylation in regulating substrate metabolism, focusing on membrane transport proteins and kinases that participate in substrate uptake into the cell. We then explore the palmitoylation of mitochondrial proteins and the palmitoylation regulatory enzymes, a less explored field for potential lipid metabolic regulation.
Collapse
Affiliation(s)
- Kaitlyn M J H Dennis
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Lisa C Heather
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
33
|
Wen J, Wan L, Dong X. Novel peripheral blood diagnostic biomarkers screened by machine learning algorithms in ankylosing spondylitis. Front Genet 2022; 13:1032010. [PMID: 36386830 PMCID: PMC9663919 DOI: 10.3389/fgene.2022.1032010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/14/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Ankylosing spondylitis (AS) is a chronic inflammatory disorder of unknown etiology that is hard to diagnose early. Therefore, it is imperative to explore novel biomarkers that may contribute to the easy and early diagnosis of AS. Methods: Common differentially expressed genes between normal people and AS patients in GSE73754 and GSE25101 were screened by machine learning algorithms. A diagnostic model was established by the hub genes that were screened. Then, the model was validated in several data sets. Results: IL2RB and ZDHHC18 were screened using machine learning algorithms and established as a diagnostic model. Nomograms suggested that the higher the expression of ZDHHC18, the higher was the risk of AS, while the reverse was true for IL2RB in vivo. C-indexes of the model were no less than 0.84 in the validation sets. Calibration analyses suggested high prediction accuracy of the model in training and validation cohorts. The area under the curve (AUC) values of the model in GSE73754, GSE25101, GSE18781, and GSE11886 were 0.86, 0.84, 0.85, and 0.89, respectively. The decision curve analyses suggested a high net benefit offered by the model. Functional analyses of the differentially expressed genes indicated that they were mainly clustered in immune response-related processes. Immune microenvironment analyses revealed that the neutrophils were expanded and activated in AS while some T cells were decreased. Conclusion: IL2RB and ZDHHC18 are potential blood biomarkers of AS, which might be used for the early diagnosis of AS and serve as a supplement to the existing diagnostic methods. Our study deepens the insight into the pathogenesis of AS.
Collapse
Affiliation(s)
- Jian Wen
- Medical College of Nanchang University, Nanchang, Jiangxi, China,JXHC Key Laboratory of Digital Orthopedics, Department of Orthopedics, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China
| | - Lijia Wan
- Department of Child Healthcare, Hunan Provincial Maternal and Child Health Hospital, Changsha, Hunan, China
| | - Xieping Dong
- Medical College of Nanchang University, Nanchang, Jiangxi, China,JXHC Key Laboratory of Digital Orthopedics, Department of Orthopedics, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, China,*Correspondence: Xieping Dong,
| |
Collapse
|
34
|
Jia Z, Long D, Yu Y. Dynamic Expression of Palmitoylation Regulators across Human Organ Development and Cancers Based on Bioinformatics. Curr Issues Mol Biol 2022; 44:4472-4489. [PMID: 36286021 PMCID: PMC9600046 DOI: 10.3390/cimb44100306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/10/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Protein palmitoylation is a reversible modification process that links palmitate to cysteine residues via a reversible thioester bond. Palmitoylation exerts an important role in human organ development and tumor progression. However, a comprehensive landscape regarding the dynamic expression of palmitoylation regulators in human organ development remains unclear. In this study, we analyzed the dynamic expression of palmitoylation regulators in seven organ development and eight cancer types based on bioinformatics. We found that the expression levels of most palmitoylation regulators were altered after birth. In particular, ZDHHC7/20/21 exhibited converse expression patterns in multiple cancer types. Survival analysis showed that the poor prognosis in patients with kidney renal clear carcinoma (KIRC) is related to low expression of ZDHHC7/20/21, and a high expression of ZDHHC7/20/21 is related to worse survival in patients with liver hepatocellular carcinoma (LIHC). Furthermore, we found that the expression of ZDHHC7 is associated with infiltration levels of some types of immune cells in the tumor microenvironment (TME), and we explored the relationship between ZDHHC7 expression and immune checkpoint (ICP) genes across 33 cancer types. In addition, gene set enrichment analysis (GSEA) results indicated that ZDHHC7 might regulate different genes to mediate the same pathway in different organs. In summary, the comprehensive analysis of palmitoylation regulators reveals their functions in human organ development and cancer, which may provide new insights for developing new tumor markers.
Collapse
Affiliation(s)
- Zixian Jia
- College of Life Sciences, Northwest A&F University, Xianyang 712100, China
| | - Deyu Long
- College of Life Sciences, Northwest A&F University, Xianyang 712100, China
| | - Yingcui Yu
- College of Natural Resources and Environment, Northwest A&F University, Xianyang 712100, China
- Correspondence:
| |
Collapse
|
35
|
Lu G, Zhu YY, Li HX, Yin YL, Shen J, Shen MH. Effects of acupuncture treatment on microRNAs expression in ovarian tissues from Tripterygium glycoside-induced diminished ovarian reserve rats. Front Genet 2022; 13:968711. [PMID: 36212128 PMCID: PMC9532950 DOI: 10.3389/fgene.2022.968711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/15/2022] [Indexed: 11/23/2022] Open
Abstract
Acupuncture is widely used to improve ovarian function. Previously, we demonstrated that acupuncture can improve oxidative stress in rats with tripterygium glycoside tablet suspension (TG)-induced diminished ovarian reserve (DOR). Herein, we aimed to explore the antioxidation mechanism of acupuncture for ameliorating the ovarian reserve in DOR rats. We performed microRNA sequencing and bioinformatics analysis to screen differentially expressed miRNAs (DE miRNAs) in ovarian tissues. In total, 1,172 miRNAs were identified by miRNA sequencing, of which 28 DE miRNAs were detected (including 14 upregulated and 14 downregulated) in ovarian tissues from the acupuncture group when compared with the DOR model rats. Based on functional enrichment analysis, the target genes of DE miRNAs were significantly enriched in GO-biological process (BP) terms associated with biological processes, positive regulation of transcription by RNA polymerase II, signal transduction, regulation of transcription, DNA-templated processes, and oxidation–reduction processes. In the Kyoto Encyclopedia of Genes and Genomes analysis, the main pathways were the MAPK signaling pathway, hepatitis B, proteoglycans in cancer, human cytomegalovirus infection, and the Ras signaling pathway. Finally, reverse transcription-quantitative PCR results confirmed that rno-miR-92b-3p, mdo-miR-26b-5p_R+1_1ss10TC, and bta-miR-7857-3p_R-1 were downregulated in the acupuncture group. The results revealed the impact of acupuncture on miRNA profiling of ovarian tissues from DOR rats, suggesting that rno-miR-92b-3p, mdo-miR-26b-5p_R+1_1ss10TC, and bta-miR-7857-3p_R-1 might provide relevant cues to relieve DOR-mediated oxidative stress.
Collapse
Affiliation(s)
- Ge Lu
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yao-yao Zhu
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hong-xiao Li
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yao-li Yin
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Shen
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Jie Shen, ; Mei-hong Shen,
| | - Mei-hong Shen
- College of Acupuncture Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, China
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
- *Correspondence: Jie Shen, ; Mei-hong Shen,
| |
Collapse
|
36
|
Wang T, Cao Y, Zhang H, Wang Z, Man CH, Yang Y, Chen L, Xu S, Yan X, Zheng Q, Wang Y. COVID-19 metabolism: Mechanisms and therapeutic targets. MedComm (Beijing) 2022; 3:e157. [PMID: 35958432 PMCID: PMC9363584 DOI: 10.1002/mco2.157] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 01/18/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) dysregulates antiviral signaling, immune response, and cell metabolism in human body. Viral genome and proteins hijack host metabolic network to support viral biogenesis and propagation. However, the regulatory mechanism of SARS-CoV-2-induced metabolic dysfunction has not been elucidated until recently. Multiomic studies of coronavirus disease 2019 (COVID-19) revealed an intensive interaction between host metabolic regulators and viral proteins. SARS-CoV-2 deregulated cellular metabolism in blood, intestine, liver, pancreas, fat, and immune cells. Host metabolism supported almost every stage of viral lifecycle. Strikingly, viral proteins were found to interact with metabolic enzymes in different cellular compartments. Biochemical and genetic assays also identified key regulatory nodes and metabolic dependencies of viral replication. Of note, cholesterol metabolism, lipid metabolism, and glucose metabolism are broadly involved in viral lifecycle. Here, we summarized the current understanding of the hallmarks of COVID-19 metabolism. SARS-CoV-2 infection remodels host cell metabolism, which in turn modulates viral biogenesis and replication. Remodeling of host metabolism creates metabolic vulnerability of SARS-CoV-2 replication, which could be explored to uncover new therapeutic targets. The efficacy of metabolic inhibitors against COVID-19 is under investigation in several clinical trials. Ultimately, the knowledge of SARS-CoV-2-induced metabolic reprogramming would accelerate drug repurposing or screening to combat the COVID-19 pandemic.
Collapse
Affiliation(s)
- Tianshi Wang
- Shanghai Key Laboratory for Tumor Microenvironment and InflammationDepartment of Biochemistry and Molecular Cell BiologyShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ying Cao
- State Key Laboratory of Oncogenes and Related GenesShanghai Cancer InstituteRenji HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Haiyan Zhang
- Bai Jia Obstetrics and Gynecology HospitalShanghaiChina
| | - Zihao Wang
- Fudan University Shanghai Cancer CenterKey Laboratory of Breast Cancer in ShanghaiShanghai Key Laboratory of Radiation OncologyCancer Instituteand The Shanghai Key Laboratory of Medical EpigeneticsInstitutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- The International Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyShanghaiChina
| | - Cheuk Him Man
- Division of HematologyDepartment of MedicineUniversity of Hong KongPokfulamHong Kong, China
| | - Yunfan Yang
- Department of Cell BiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanChina
| | - Lingchao Chen
- Department of NeurosurgeryHuashan HospitalShanghai Medical CollegeFudan UniversityNational Center for Neurological DisordersShanghai Key Laboratory of Brain Function and Restoration and Neural RegenerationNeurosurgical Institute of Fudan UniversityShanghai Clinical Medical Center of NeurosurgeryShanghaiChina
| | - Shuangnian Xu
- Department of HematologySouthwest HospitalArmy Medical UniversityChongqingChina
| | - Xiaojing Yan
- Department of HematologyThe First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Quan Zheng
- Center for Single‐Cell OmicsSchool of Public HealthShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yi‐Ping Wang
- Fudan University Shanghai Cancer CenterKey Laboratory of Breast Cancer in ShanghaiShanghai Key Laboratory of Radiation OncologyCancer Instituteand The Shanghai Key Laboratory of Medical EpigeneticsInstitutes of Biomedical SciencesShanghai Medical CollegeFudan UniversityShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
- The International Co‐laboratory of Medical Epigenetics and MetabolismMinistry of Science and TechnologyShanghaiChina
| |
Collapse
|