1
|
Drozd M, Duszczyk A, Ivanova P, Pietrzak M. Interactions of proteins with metal-based nanoparticles from a point of view of analytical chemistry - Challenges and opportunities. Adv Colloid Interface Sci 2022; 304:102656. [PMID: 35367856 DOI: 10.1016/j.cis.2022.102656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 11/01/2022]
Abstract
Interactions of proteins with nanomaterials draw attention of many research groups interested in fundamental phenomena. However, alongside with valuable information regarding physicochemical aspects of such processes and their mechanisms, they more and more often prove to be useful from a point of view of bioanalytics. Deliberate use of processes based on adsorption of proteins on nanoparticles (or vice versa) allows for a development of new analytical methods and improvement of the existing ones. It also leads to obtaining of nanoparticles of desired properties and functionalities, which can be used as elements of analytical tools for various applications. Due to interactions with nanoparticles, proteins can also gain new functionalities or lose their interfering potential, which from perspective of bioanalytics seems to be very inviting and attractive. In the framework of this article we will discuss the bioanalytical potential of interactions of proteins with a chosen group of nanoparticles, and implementation of so driven processes for biosensing. Moreover, we will show both positive and negative (opportunities and challenges) aspects resulting from the presence of proteins in media/samples containing metal-based nanoparticles or their precursors.
Collapse
|
2
|
Bassous NJ, Jones CL, Webster TJ. 3-D printed Ti-6Al-4V scaffolds for supporting osteoblast and restricting bacterial functions without using drugs: Predictive equations and experiments. Acta Biomater 2019; 96:662-673. [PMID: 31279162 DOI: 10.1016/j.actbio.2019.06.055] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/20/2019] [Accepted: 06/27/2019] [Indexed: 12/28/2022]
Abstract
Conditions resulting from musculoskeletal deficiencies (MSDs) are wide-ranging and retain the likelihood for restricting motion or producing pain, especially in the lower back, neck, and upper limbs. Engineered scaffold devices are being produced to replace antiquated modalities that suffer from structural and mechanical deficiencies in the treatment of MSDs. Here, as-fabricated Ti-6Al-4V-based Hive™ interbody fusion scaffolds, commercialized by HD Lifesciences LLC, were assayed for their osteogenicity and antibacterial potential using a series of characterization and in vitro tests, as well as by quantitative analyses. A topographical assessment of the Hive™ meshes indicated that the elementally pure substrates are microscopically porous and rough, in addition to displaying structural heterogeneity. Roughness estimations and static contact angle measurements recommended the use of the as-fabricated Ti-6Al-4V substrates for supporting osteoblast attachment, especially, due to the improved surface roughness and wettability values of these scaffolds relative to the unembellished Ti-6Al-4V surfaces. Quantitative correlations relating the surface properties of roughness and energy were applied to predict cellular behaviors. Cell growth suppositions were experimentally corroborated. Critical in vitro data indicated the competencies of the Hive™ scaffolds for promoting the adhesion and proliferation of human fetal osteoblasts (hFOBs), accumulating substantial calcium deposition from metabolizing hFOBs, and restricting the attachment of bacteria. The model system that investigated the pre-adsorption of casein proteins along the Hive™ test substrates additionally furthered the notion that bacterial attachment may be restricted, with short-scale adhesion dynamics serving as the theoretical basis for this hypothesis. In this manner, this study showed that through predictive models and experiments, these novel 3D printed Ti-based scaffolds can increase bone cell while decreasing bacteria functions without using drugs. STATEMENT OF SIGNIFICANCE: Sintered Ti-6Al-4V spinal fusion devices (Hive™) manufactured and marketed by HD Lifesciences LLC were assessed for their biocompatibility and antibacterial performance. A mixed methods approach was employed, whereby quantitative measures were used to predict the ability for Hive™ substrates to adsorb specialized proteins and to restrict bacterial surface colonization. In vitro tests that evaluated bone cell and bacterial adhesion, calcium deposition, and protein adsorption supported quantitative predictions. The data herein presented demonstrate the following: (1) surface energy is an important predictor of implant-cell interactions, (2) strong correlations exist between surface energy and surface roughness, (3) mathematical models can be used to improve and predict implant device perofrmance, and (4) porous, rough, 3D-printed materials perform well in terms of biocompatibility and antimicrobial efficacy.
Collapse
|
3
|
Malekian B, Maximov I, Timm R, Cedervall T, Hessman D. A Method for Investigation of Size-Dependent Protein Binding to Nanoholes Using Intrinsic Fluorescence of Proteins. ACS OMEGA 2017; 2:4772-4778. [PMID: 30023730 PMCID: PMC6044499 DOI: 10.1021/acsomega.7b00241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 05/03/2017] [Indexed: 06/08/2023]
Abstract
We have developed a novel method to study the influence of surface nanotopography on human fibrinogen adsorption at a given surface chemistry. Well-ordered arrays of nanoholes with different diameters down to 45 nm and a depth of 50 nm were fabricated in silicon by electron beam lithography and reactive ion etching. The nanostructured chip was used as a model system to understand the effect of size of the nanoholes on fibrinogen adsorption. Fluorescence imaging, using the intrinsic fluorescence of proteins, was used to characterize the effect of the nanoholes on fibrinogen adsorption. Atomic force microscopy was used as a complementary technique for further characterization of the interaction. The results demonstrate that as the size of the nanoholes is reduced to 45 nm, fibrinogen adsorption is significantly increased.
Collapse
Affiliation(s)
- Bita Malekian
- Solid
State Physics, Biochemistry and Structural Biology, Synchrotron Radiation Research, and NanoLund, Lund University, P.O. Box 118, 221 00 Lund, Sweden
| | - Ivan Maximov
- Solid
State Physics, Biochemistry and Structural Biology, Synchrotron Radiation Research, and NanoLund, Lund University, P.O. Box 118, 221 00 Lund, Sweden
| | - Rainer Timm
- Solid
State Physics, Biochemistry and Structural Biology, Synchrotron Radiation Research, and NanoLund, Lund University, P.O. Box 118, 221 00 Lund, Sweden
| | - Tommy Cedervall
- Solid
State Physics, Biochemistry and Structural Biology, Synchrotron Radiation Research, and NanoLund, Lund University, P.O. Box 118, 221 00 Lund, Sweden
| | - Dan Hessman
- Solid
State Physics, Biochemistry and Structural Biology, Synchrotron Radiation Research, and NanoLund, Lund University, P.O. Box 118, 221 00 Lund, Sweden
| |
Collapse
|
4
|
Gonzalez Garcia LE, MacGregor-Ramiasa M, Visalakshan RM, Vasilev K. Protein Interactions with Nanoengineered Polyoxazoline Surfaces Generated via Plasma Deposition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:7322-7331. [PMID: 28658956 DOI: 10.1021/acs.langmuir.7b01279] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Protein adsorption to biomaterials is critical in determining their suitability for specific applications, such as implants or biosensors. Here, we show that surface nanoroughness can be tailored to control the covalent binding of proteins to plasma-deposited polyoxazoline (PPOx). Nanoengineered surfaces were created by immobilizing gold nanoparticles varying in size and surface density on PPOx films. To keep the surface chemistry consistent while preserving the nanotopography, all substrates were overcoated with a nanothin PPOx film. Bovine serum albumin was chosen to study protein interactions with the nanoengineered surfaces. The results demonstrate that the amount of protein bound to the surface is not directly correlated with the increase in surface area. Instead, it is determined by nanotopography-induced geometric effects and surface wettability. A densely packed array of 16 and 38 nm nanoparticles hinders protein adsorption compared to smooth PPOx substrates, while it increases for 68 nm nanoparticles. These adaptable surfaces could be used for designing biomaterials where proteins adsorption is or is not desirable.
Collapse
Affiliation(s)
- Laura E Gonzalez Garcia
- School of Engineering, Future Industries Institute, University of South Australia, Mawson Lakes Campus , Mawson Lakes, South Australia 5095, Australia
| | - Melanie MacGregor-Ramiasa
- School of Engineering, Future Industries Institute, University of South Australia, Mawson Lakes Campus , Mawson Lakes, South Australia 5095, Australia
| | - Rahul Madathiparambil Visalakshan
- School of Engineering, Future Industries Institute, University of South Australia, Mawson Lakes Campus , Mawson Lakes, South Australia 5095, Australia
| | - Krasimir Vasilev
- School of Engineering, Future Industries Institute, University of South Australia, Mawson Lakes Campus , Mawson Lakes, South Australia 5095, Australia
| |
Collapse
|
5
|
Hu Q, Ding Y, Shao H, Cong T, Yang X, Hong X. The Effect of Nano-ZnO Surface Wettability on Modulating Protein Adsorption. ACTA ACUST UNITED AC 2017. [DOI: 10.1088/1757-899x/220/1/012019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
6
|
Stetsyshyn Y, Raczkowska J, Lishchynskyi O, Bernasik A, Kostruba A, Harhay K, Ohar H, Marzec MM, Budkowski A. Temperature-Controlled Three-Stage Switching of Wetting, Morphology, and Protein Adsorption. ACS APPLIED MATERIALS & INTERFACES 2017; 9:12035-12045. [PMID: 28291326 DOI: 10.1021/acsami.7b00136] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The novel polymeric coatings of oligoperoxide-graft-poly(4-vinylpyridine-co-oligo(ethylene glycol)ethyl ether methacrylate246) [oligoperoxide-graft-P(4VP-co-OEGMA246)] attached to glass were successfully fabricated. The composition, thickness, morphology, and wettability of resulting coatings were analyzed using X-ray photoelectron spectroscopy, ellipsometry, atomic force microscopy, and contact angle measurements, respectively. In addition, adsorption of the bovine serum albumin was examined with fluorescence microscopy. The thermal response of wettability and morphology of the coatings followed by that of protein adsorption revealed two distinct transitions at 10 and 23 °C. For the first time, three stage switching was observed not only for surface wetting but also for morphology and protein adsorption. Moreover, the influence of the pH on thermo-sensitivity of modified surfaces was shown.
Collapse
Affiliation(s)
- Yurij Stetsyshyn
- Lviv Polytechnic National University , S. Bandery 12, 79013 Lviv, Ukraine
| | - Joanna Raczkowska
- Smoluchowski Institute of Physics, Jagiellonian University , Łojasiewicza 11, 30-348 Kraków, Poland
| | - Ostap Lishchynskyi
- Lviv Polytechnic National University , S. Bandery 12, 79013 Lviv, Ukraine
| | - Andrzej Bernasik
- Faculty of Physics and Applied Computer Science, AGH University of Science and Technology , Al. Mickiewicza 30, 30-049 Kraków, Poland
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology , Al. Mickiewicza 30, 30-059 Kraków, Poland
| | | | - Khrystyna Harhay
- Lviv Polytechnic National University , S. Bandery 12, 79013 Lviv, Ukraine
| | - Halyna Ohar
- Lviv Polytechnic National University , S. Bandery 12, 79013 Lviv, Ukraine
| | - Mateusz M Marzec
- Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology , Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Andrzej Budkowski
- Smoluchowski Institute of Physics, Jagiellonian University , Łojasiewicza 11, 30-348 Kraków, Poland
| |
Collapse
|
7
|
Lu A, Li C, Wu Z, Luo X. The interaction between poly(ε-caprolactone) copolymers containing sulfobetaines and proteins. Colloid Polym Sci 2016. [DOI: 10.1007/s00396-016-3942-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Zhao C, Pandit S, Fu Y, Mijakovic I, Jesorka A, Liu J. Graphene oxide based coatings on nitinol for biomedical implant applications: effectively promote mammalian cell growth but kill bacteria. RSC Adv 2016. [DOI: 10.1039/c6ra06026a] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Graphene oxide based coating significantly enhances the proliferation of osteoblastic cells and shows toxicity towards the bacterial cells.
Collapse
Affiliation(s)
- Changhong Zhao
- SMIT Center
- School of Automation and Mechanical Engineering and Institute of Nanomicro-Energy
- Shanghai University
- Shanghai 201800
- China
| | - Santosh Pandit
- Systems and Synthetic Biology Division
- Department of Biology and Biological Engineering
- Chalmers University of Technology
- Gothenburg
- Sweden
| | - Yifeng Fu
- Electronics Materials and Systems Laboratory
- Department of Microtechnology and Nanoscience
- Chalmers University of Technology
- Gothenburg
- Sweden
| | - Ivan Mijakovic
- Systems and Synthetic Biology Division
- Department of Biology and Biological Engineering
- Chalmers University of Technology
- Gothenburg
- Sweden
| | - Aldo Jesorka
- Department of Chemistry and Chemical Engineering
- Physical Chemistry
- Chalmers University of Technology
- Gothenburg
- Sweden
| | - Johan Liu
- SMIT Center
- School of Automation and Mechanical Engineering and Institute of Nanomicro-Energy
- Shanghai University
- Shanghai 201800
- China
| |
Collapse
|
9
|
Bhakta SA, Evans E, Benavidez TE, Garcia CD. Protein adsorption onto nanomaterials for the development of biosensors and analytical devices: a review. Anal Chim Acta 2015; 872:7-25. [PMID: 25892065 PMCID: PMC4405630 DOI: 10.1016/j.aca.2014.10.031] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/25/2014] [Accepted: 10/21/2014] [Indexed: 12/11/2022]
Abstract
An important consideration for the development of biosensors is the adsorption of the biorecognition element to the surface of a substrate. As the first step in the immobilization process, adsorption affects most immobilization routes and much attention is given into the research of this process to maximize the overall activity of the biosensor. The use of nanomaterials, specifically nanoparticles and nanostructured films, offers advantageous properties that can be fine-tuned to maximize interactions with specific proteins to maximize activity, minimize structural changes, and enhance the catalytic step. In the biosensor field, protein-nanomaterial interactions are an emerging trend that span across many disciplines. This review addresses recent publications about the proteins most frequently used, their most relevant characteristics, and the conditions required to adsorb them to nanomaterials. When relevant and available, subsequent analytical figures of merits are discussed for selected biosensors. The general trend amongst the research papers allows concluding that the use of nanomaterials has already provided significant improvements in the analytical performance of many biosensors and that this research field will continue to grow.
Collapse
Affiliation(s)
- Samir A Bhakta
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | - Elizabeth Evans
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | - Tomás E Benavidez
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | - Carlos D Garcia
- Department of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA.
| |
Collapse
|
10
|
Liu X, Yuan L, Li D, Tang Z, Wang Y, Chen G, Chen H, Brash JL. Blood compatible materials: state of the art. J Mater Chem B 2014; 2:5718-5738. [PMID: 32262016 DOI: 10.1039/c4tb00881b] [Citation(s) in RCA: 189] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Devices that function in contact with blood are ubiquitous in clinical medicine and biotechnology. These devices include vascular grafts, coronary stents, heart valves, catheters, hemodialysers, heart-lung bypass systems and many others. Blood contact generally leads to thrombosis (among other adverse outcomes), and no material has yet been developed which remains thrombus-free indefinitely and in all situations: extracorporeally, in the venous circulation and in the arterial circulation. In this article knowledge on blood-material interactions and "thromboresistant" materials is reviewed. Current approaches to the development of thromboresistant materials are discussed including surface passivation; incorporation and/or release of anticoagulants, antiplatelet agents and thrombolytic agents; and mimicry of the vascular endothelium.
Collapse
Affiliation(s)
- Xiaoli Liu
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Hydroxyl density affects the interaction of fibrinogen with silica nanoparticles at physiological concentration. J Colloid Interface Sci 2014; 419:86-94. [DOI: 10.1016/j.jcis.2013.12.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 12/10/2013] [Accepted: 12/11/2013] [Indexed: 11/21/2022]
|
12
|
Li D, Zheng Q, Wang Y, Chen H. Combining surface topography with polymer chemistry: exploring new interfacial biological phenomena. Polym Chem 2014. [DOI: 10.1039/c3py00739a] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review focuses on combining surface topography and surface chemical modification by the grafting of polymers to develop optimal material interfaces with synergistic properties and functions for biological and biomedical applications.
Collapse
Affiliation(s)
- Dan Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry, Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Qing Zheng
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry, Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Yanwei Wang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry, Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Hong Chen
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry, Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| |
Collapse
|
13
|
Patel J, Radhakrishnan L, Zhao B, Uppalapati B, Daniels RC, Ward KR, Collinson MM. Electrochemical Properties of Nanostructured Porous Gold Electrodes in Biofouling Solutions. Anal Chem 2013; 85:11610-8. [PMID: 24245771 DOI: 10.1021/ac403013r] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jay Patel
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, Virginia 23284-2006, United States
| | - Logudurai Radhakrishnan
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, Virginia 23284-2006, United States
| | - Bo Zhao
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, Virginia 23284-2006, United States
| | - Badharinadh Uppalapati
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, Virginia 23284-2006, United States
| | - Rodney C. Daniels
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, Virginia 23284-2006, United States
| | - Kevin R. Ward
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, Virginia 23284-2006, United States
| | - Maryanne M. Collinson
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, Virginia 23284-2006, United States
| |
Collapse
|
14
|
Tay CY, Koh CG, Tan NS, Leong DT, Tan LP. Mechanoregulation of stem cell fate via micro-/nano-scale manipulation for regenerative medicine. Nanomedicine (Lond) 2013; 8:623-38. [PMID: 23560412 DOI: 10.2217/nnm.13.31] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Recent developments in the field of mechanobiology have renewed the call for a better understanding of the role of mechanical forces as potent regulators and indicators of stem cell fate. Although it is well established that mechanical forces play a crucial role in guiding tissue development, little is known about how submicroscopic biomechanical forces can influence key stem cell behaviors. This review will detail the use of micro-/nano-technologies that are advancing our current understanding of stem cell mechanobiology, and mechanoregulation of stem cell fate using engineered surface topographies and small-scale patterning techniques. The involvement of focal adhesions and the cytoskeleton systems as a common biophysical impetus through which these mechanical signals are transduced via distinct signaling pathways will also be discussed. These insights are envisioned to provide the basis for the rational design of future biocompatible materials and may inspire alternative drug-free therapeutic strategies to manage diseased sites via biomechanical management.
Collapse
Affiliation(s)
- Chor Yong Tay
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117576, Singapore
| | | | | | | | | |
Collapse
|
15
|
Zheng J, Li D, Yuan L, Liu X, Chen H. Lotus-leaf-like topography predominates over adsorbed ECM proteins in poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) surface/cell interactions. ACS APPLIED MATERIALS & INTERFACES 2013; 5:5882-5887. [PMID: 23721174 DOI: 10.1021/am4017329] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
It is well-known that extracellular matrix (ECM) proteins mediate cell/surface interactions. However, introduction of a specific surface topography may disturb the correlation between ECM proteins adsorption and cells adhesion on a given surface. In present study, lotus-leaf-like topography was introduced on the surface of a biodegradable material, poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx). Protein adsorption and cell interactions with this lotus-leaf-like surface (designated PHBHHx-L) were investigated. Water contact angle data indicated that the hydrophobicity of PHBHHx was enhanced by the introduction of lotus-leaf-like topography. The adsorption of extracellular matrix proteins (fibronectin and vitronectin) on PHBHHx-L was measured by enzyme linked immunosorbent assay (ELISA). Compared with flat PHBHHx, adsorption on the PHBHHx-L surface increased by ~260% for fibronectin and ~40% for vitronectin. In contrast, fibroblast and endothelial cell adhesion and proliferation were reduced on the PHBHHx-L compared to the flat polymer surface. These results suggest that the inhibition of cell adhesion and proliferation caused by the lotus-leaf-like topography dominates over the effect of the adsorbed adhesive proteins in promoting adhesion and proliferation. It can be concluded that the lotus-leaf-like topography plays a dominant role in cell/PHBHHx-L interactions. The present findings indicate the complexity of the interplay among surface topography, adsorbed proteins, and cell-surface interactions.
Collapse
Affiliation(s)
- Jun Zheng
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | | | | | | | | |
Collapse
|
16
|
Shi X, Wang Y, Li D, Yuan L, Zhou F, Wang Y, Song B, Wu Z, Chen H, Brash JL. Cell adhesion on a POEGMA-modified topographical surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:17011-17018. [PMID: 23157582 DOI: 10.1021/la303042d] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
It is well known that adsorbed proteins play a major role in cell adhesion. However, it has also been reported that cells can adhere to a protein-resistant surface. In this work, the behavior of L02 and BEL-7402 cells on a protein-resistant, 3D topographical surface was investigated. The topographical gold nanoparticle layer (GNPL) surfaces were prepared by chemical gold plating, and the topography was described by roughness parameters acquired from a multiscale analysis. Both smooth Au and GNPL surfaces were modified with POEGMA polymer brushes using surface-initiated ATRP. The dry and hydrated thicknesses of POEGMA brushes on both smooth and rough surfaces were measured by AFM using a nanoindentation method. Protein adsorption experiments using (125)I radiolabeling revealed similarly low levels of protein adsorption on smooth and GNPL surfaces modified with POEGMA, thus allowing an investigation of the effects of topography on cell behavior under conditions of minimal protein adsorption. The roles of VN and FN adsorption in both L02 cells and BEL-7402 cells adhesion were investigated using cell culturing with and without a serum supplement. It was found that initial cell adhesion occurred via proteins adsorbed from the cell culture medium, whereas subsequent durable cell adhesion could be attributed to the topographical structure of the surface. Although cell spreading on protein-resistant surfaces was constrained because of the lack of adsorbed proteins, we found that cells adherent to topographical surfaces were more firmly attached and thus were more durable compared to those on smooth surfaces. In general, however, we conclude that topography is more important for cell adhesion on a protein-resistant surface.
Collapse
Affiliation(s)
- Xiujuan Shi
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Koegler P, Clayton A, Thissen H, Santos GNC, Kingshott P. The influence of nanostructured materials on biointerfacial interactions. Adv Drug Deliv Rev 2012; 64:1820-39. [PMID: 22705547 DOI: 10.1016/j.addr.2012.06.001] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 05/29/2012] [Accepted: 06/07/2012] [Indexed: 01/08/2023]
Abstract
Control over biointerfacial interactions in vitro and in vivo is the key to many biomedical applications: from cell culture and diagnostic tools to drug delivery, biomaterials and regenerative medicine. The increasing use of nanostructured materials is placing a greater demand on improving our understanding of how these new materials influence biointerfacial interactions, including protein adsorption and subsequent cellular responses. A range of nanoscale material properties influence these interactions, and material toxicity. The ability to manipulate both material nanochemistry and nanotopography remains challenging in its own right, however, a more in-depth knowledge of the subsequent biological responses to these new materials must occur simultaneously if they are ever to be affective in the clinic. We highlight some of the key technologies used for fabrication of nanostructured materials, examine how nanostructured materials influence the behavior of proteins and cells at surfaces and provide details of important analytical techniques used in this context.
Collapse
Affiliation(s)
- Peter Koegler
- Industrial Research Institute Swinburne, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | | | | | | | | |
Collapse
|
18
|
Zemła J, Budkowski A, Rysz J, Raczkowska J, Lekka M. Reverse contrast and substructures in protein micro-patterns on 3D polymer surfaces. Colloids Surf B Biointerfaces 2012; 90:144-51. [DOI: 10.1016/j.colsurfb.2011.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2011] [Revised: 10/04/2011] [Accepted: 10/07/2011] [Indexed: 02/05/2023]
|
19
|
Zhou F, Wang M, Yuan L, Cheng Z, Wu Z, Chen H. Sensitive sandwich ELISA based on a gold nanoparticle layer for cancer detection. Analyst 2012; 137:1779-84. [DOI: 10.1039/c2an16257a] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
20
|
Fibrinogen and albumin adsorption on titanium nanoroughness gradients. Colloids Surf B Biointerfaces 2011; 91:90-6. [PMID: 22112496 DOI: 10.1016/j.colsurfb.2011.10.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 10/22/2011] [Accepted: 10/23/2011] [Indexed: 11/23/2022]
Abstract
The influence of nanoscale roughness on protein adsorption has been efficiently studied through the application of Ti roughness gradients. Gradients were prepared by sputter deposition with a length of 76 mm and a range in RMS roughness varying linearly from 1 to 16 nm. They were then exposed to solutions containing either 1 mg/mL of fibrinogen or albumin. The amount of protein that adsorbed as a function of roughness was measured ex situ by electron microprobe analysis and compared to values obtained for smooth Ti films. The adsorption profiles of fibrinogen and albumin along the gradients were found to be highly similar when normalized by their respective amounts from smooth films, each showing a 50% increase in adsorption with roughness. A statistic called the average surface curvature was created to provide a plausible explanation for the similar adsorption behavior and connect findings from random topographies with earlier research on curved substrates like nanoparticles.
Collapse
|
21
|
Huang H, Xie J, Liu X, Yuan L, Wang S, Guo S, Yu H, Chen H, Zhang Y, Wu X. Conformational Changes of Protein Adsorbed on Tailored Flat Substrates with Different Chemistries. Chemphyschem 2011; 12:3642-6. [DOI: 10.1002/cphc.201100398] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 08/22/2011] [Indexed: 11/07/2022]
|
22
|
Elter P, Lange R, Beck U. Electrostatic and dispersion interactions during protein adsorption on topographic nanostructures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:8767-8775. [PMID: 21678937 DOI: 10.1021/la201358c] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Recently, biomaterials research has focused on developing functional implant surfaces with well-defined topographic nanostructures in order to influence protein adsorption and cellular behavior. To enhance our understanding of how proteins interact with such surfaces, we analyze the adsorption of lysozyme on an oppositely charged nanostructure using a computer simulation. We present an algorithm that combines simulated Brownian dynamics with numerical field calculation methods to predict the preferred adsorption sites for arbitrarily shaped substrates. Either proteins can be immobilized at their initial adsorption sites or surface diffusion can be considered. Interactions are analyzed on the basis of Derjaguin-Landau-Verway-Overbeek (DLVO) theory, including electrostatic and London dispersion forces, and numerical solutions are derived using the Poisson-Boltzmann and Hamaker equations. Our calculations show that for a grooved nanostructure (i.e., groove and plateau width 8 nm, height 4 nm), proteins first contact the substrate primarily near convex edges because of better geometric accessibility and increased electric field strengths. Subsequently, molecules migrate by surface diffusion into grooves and concave corners, where short-range dispersion interactions are maximized. In equilibrium, this mechanism leads to an increased surface protein concentration in the grooves, demonstrating that the total amount of protein per surface area can be increased if substrates have concave nanostructures.
Collapse
Affiliation(s)
- Patrick Elter
- Department of Interface Science, Institute for Electronic Appliances and Circuits, University of Rostock, Rostock, Germany.
| | | | | |
Collapse
|
23
|
Zhou F, Yuan L, Wang H, Li D, Chen H. Gold nanoparticle layer: a promising platform for ultra-sensitive cancer detection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:2155-2158. [PMID: 21319767 DOI: 10.1021/la1049937] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Developing new technologies applicable to the sensitive detection of cancer in its early stages has always been attractive in diagnosis. A stable gold nanoparticle layer (GNPL)-modified high-binding ELISA plate was obtained via chemical plating and was proven to be more efficient in binding proteins while maintaining their activity. GNPL-based ELISA for the representative biomarker carcinoembryonic antigen (CEA) demonstrated that GNPL markedly amplified the ELISA signal and significantly improved the limit of detection (LOD). Antithrombin detection further confirms the effectiveness and universality of this GNPL-based platform. The entire assay procedure is simple and low in cost and does not require special facilities. All these virtues indicate that this GNPL platform holds great promise in clinical applications for the early diagnosis of cancer.
Collapse
Affiliation(s)
- Feng Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199# Ren'ai Road, Suzhou 215123, P. R. China
| | | | | | | | | |
Collapse
|
24
|
Yuan L, Yu Q, Li D, Chen H. Surface Modification to Control Protein/Surface Interactions. Macromol Biosci 2011; 11:1031-40. [DOI: 10.1002/mabi.201000464] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 01/06/2011] [Indexed: 12/22/2022]
|
25
|
Brammer KS, Choi C, Frandsen CJ, Oh S, Jin S. Hydrophobic nanopillars initiate mesenchymal stem cell aggregation and osteo-differentiation. Acta Biomater 2011; 7:683-90. [PMID: 20863916 DOI: 10.1016/j.actbio.2010.09.022] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 09/09/2010] [Accepted: 09/16/2010] [Indexed: 11/20/2022]
Abstract
Surface engineering approaches that alter the physical topography of a substrate could be used as an effective tool and as an alternative to biochemical means of directing stem cell interactions and their subsequent differentiation. In this paper we compare hydrophobic micro- vs. nanopillar type fabrication techniques for probing mesenchymal stem cell (MSC) interaction with the surface physical environment. The roles played by the topography of the nanopillar in particular influenced MSC growth and allowed for regulatory control of the stem cell fate. The nanopillar induced large 3-D cell aggregates to form on the surface which had up-regulated osteogenic specific matrix components. The ability to control MSC differentiation, using only the topographical factors, has a profound effect on both MSC biology and tissue engineering. This study aims to highlight the importance of the physical material carrier in stem cell based tissue engineering schemes.
Collapse
Affiliation(s)
- Karla S Brammer
- Materials Science & Engineering, University of California, San Diego, La Jolla, CA, USA
| | | | | | | | | |
Collapse
|
26
|
Elter P, Weihe T, Lange R, Gimsa J, Beck U. The influence of topographic microstructures on the initial adhesion of L929 fibroblasts studied by single-cell force spectroscopy. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2010; 40:317-27. [PMID: 21153809 PMCID: PMC3045512 DOI: 10.1007/s00249-010-0649-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 11/11/2010] [Accepted: 11/22/2010] [Indexed: 12/13/2022]
Abstract
Single-cell force spectroscopy was used to investigate the initial adhesion of L929 fibroblasts onto periodically grooved titanium microstructures (height ~6 μm, groove width 20 μm). The position-dependent local adhesion strength of the cells was correlated with their rheological behavior. Spherical cells exhibited a significantly lower Young’s modulus (<1 kPa) than that reported for spread cells, and their elastic properties can roughly be explained by the Hertz model for an elastic sphere. While in contact with the planar regions of the substrate, the cells started to adapt their shape through slight ventral flattening. The process was found to be independent of the applied contact force for values between 100 and 1,000 pN. The degree of flattening correlated with the adhesion strength during the first 60 s. Adhesion strength can be described by fast exponential kinetics as \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$ C_{1} \left[ {1 - \exp \left( { - C_{2} \cdot t} \right)} \right] $$\end{document} with C1 = 2.34 ± 0.19 nN and C2 = 0.09 ± 0.02 s−1. A significant drop in the adhesion strength of up to 50% was found near the groove edges. The effect can be interpreted by the geometric decrease of the contact area, which indicates the inability of the fibroblasts to adapt to the shape of the substrate. Our results explain the role of the substrate’s topography in contact guidance and suggest that rheological cell properties must be considered in cell adhesion modeling.
Collapse
Affiliation(s)
- Patrick Elter
- Department for Interface Science, Institute for Electronic Appliances and Circuits, University of Rostock, Albert-Einstein-Str. 2, 18059 Rostock, Germany.
| | | | | | | | | |
Collapse
|
27
|
Xie L, Wang P, Pan J, Sun Z, Cui F. The Effect of Platelet-rich Plasma with Mineralized Collagen-based Scaffold on Mandible Defect Repair in Rabbits. J BIOACT COMPAT POL 2010. [DOI: 10.1177/0883911510382132] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The effect of platelet-rich plasma (PRP) on a porous scaffold of nano-hydroxyapatite/collagen/poly(lactic-acid) (nHAC/PLA) to repair a mandible defect in a rabbit model was evaluated. A 10 × 8 mm2 perforated defect roughly 5 mm thick was made in the right mandible of each animal, preserving the periosteum in situ. The defects were treated using nHAC/PLA grafts with or without autologous PRP. The results of X-ray, dual energy X-ray measurements of bone mineral density, scanning electron microscopy, histology, and newly formed bony area evaluated by ANOVA showed that PRP significantly shorten recovery time and accelerate defect repair, especially in the first month. The incorporation of PRP appears to be an effective approach for improving bone repair.
Collapse
Affiliation(s)
- L.N. Xie
- Department of Oral and Maxillo-facial Surgery, School of Stomatology Capital Medical University, Beijing 100050, China
| | - P. Wang
- Department of Oral and Maxillo-facial Surgery, School of Stomatology Capital Medical University, Beijing 100050, China
| | - J.L. Pan
- Department of Oral and Maxillo-facial Surgery, School of Stomatology Capital Medical University, Beijing 100050, China,
| | - Z. Sun
- Department of Oral and Maxillo-facial Surgery, School of Stomatology Capital Medical University, Beijing 100050, China
| | - F.Z. Cui
- State Key Laboratory of New Ceramics and Fine Processing, Department of Materials Science and Engineering, Tsinghua University, Beijing 100084, China,
| |
Collapse
|
28
|
Xie HG, Zheng JN, Li XX, Liu XD, Zhu J, Wang F, Xie WY, Ma XJ. Effect of surface morphology and charge on the amount and conformation of fibrinogen adsorbed onto alginate/chitosan microcapsules. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:5587-5594. [PMID: 19919044 DOI: 10.1021/la903874g] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We report the influence of surface morphology and charge of alginate/chitosan (ACA) microcapsules on both the amount of adsorbed protein and its secondary structural changes during adsorption. Variations in surface morphology and charge were controlled by varying alginate molecular weight and chitosan concentration. Plasma fibrinogen (Fgn) was chosen to model this adsorption to foreign surfaces. The surface of ACA microcapsules exhibited a granular structure after incubating calcium alginate beads with chitosan solution to form membranes. The surface roughness of ACA microcapsule membranes decreased with decreasing alginate molecular weight and chitosan concentration. Zeta potential measurements showed that there was a net negative charge on the surface of ACA microcapsules which decreased with decreasing alginate molecular weight and chitosan concentration. The increase in both surface roughness and zeta potential resulted in an increase in the amount of Fgn adsorbed. Moreover, the higher the zeta potential was, the stronger the protein-surface interaction between fibrinogen and ACA microcapsules was. More protein molecules adsorbed spread and had a greater conformational change on rougher surfaces for more surfaces being available for protein to attach.
Collapse
Affiliation(s)
- Hong G Xie
- Laboratory of Biomedical Material Engineering, Biotechnology Division, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Khan S, Newaz G. A comprehensive review of surface modification for neural cell adhesion and patterning. J Biomed Mater Res A 2010; 93:1209-24. [DOI: 10.1002/jbm.a.32698] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
30
|
Beşkardeş IG, Gümüşderelioğlu M. Biomimetic Apatite-coated PCL Scaffolds: Effect of Surface Nanotopography on Cellular Functions. J BIOACT COMPAT POL 2009. [DOI: 10.1177/0883911509349311] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In this study, polycaprolactone (PCL) scaffolds, consisting of agglomerated microspheres with nanotopographic surface structures, were fabricated by the freeze-drying method. These scaffolds were coated with bone-like apatite by using a calcium phosphate solution similar to saturated simulated body fluid (10× SBF-like) in two different immersion periods (6 and 24 h). Scanning electron microscopic views of the 6-h treatment in 10× SBF-like solution showed formation of calcium phosphate nucleation sites on the PCL scaffolds, while the apatite particles formed characteristic cauliflower-like morphology after 24 h. The X-ray diffraction (XRD) data showed that the mineral phase was made of hydroxyapatite (HA). The osteogenic activity of untreated and SBF-treated PCL scaffolds was examined by pre-osteoblastic MC3T3 cell culture studies. Cells had attached and spread on both the PCL scaffolds and the 6-h SBF immersion-treated scaffolds.
Collapse
|
31
|
Choubey A, Marton D, Sprague EA. Human aortic endothelial cell response to 316L stainless steel material microstructure. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2009; 20:2105-2116. [PMID: 19466532 DOI: 10.1007/s10856-009-3780-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 05/07/2009] [Indexed: 05/27/2023]
Abstract
The role of metal microstructure (e.g. grain sizes) in modulating cell adherence behavior is not well understood. This study investigates the effect of varying grain sizes of 316L stainless steel (SS) on the attachment and spreading of human aortic endothelial cells (HAECs). Four different grain size samples; from 16 to 66 microm (ASTM 9.0-4.9) were sectioned from sheets. Grain structure was revealed by polishing and etching with glycergia. Contact angle measurement was done to assess the hydrophilicity of the specimens. Atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) were used to characterize the roughness and surface chemistry of the specimens. Cells were seeded on mechanically polished and chemically etched specimens followed by identification of activated focal adhesion sites using fluorescently tagged anti-pFAK (phosphorylated focal adhesion kinase). The 16 microm grain size etched specimens had significantly (P < 0.01) higher number of cells attached per cm(2) than other specimens, which may be attributed to the greater grain boundary area and associated higher surface free energy. This study shows that the underlying material microstructure may influence the HAEC behavior and may have important implications in endothelialization.
Collapse
Affiliation(s)
- Animesh Choubey
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249-1644, USA.
| | | | | |
Collapse
|
32
|
Phenomenon of “contact guidance“ on the surface with nano-micro-groove-like pattern and cell physiological effects. ACTA ACUST UNITED AC 2009. [DOI: 10.1007/s11434-009-0366-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
Chen H, Song W, Zhou F, Wu Z, Huang H, Zhang J, Lin Q, Yang B. The effect of surface microtopography of poly(dimethylsiloxane) on protein adsorption, platelet and cell adhesion. Colloids Surf B Biointerfaces 2009; 71:275-81. [DOI: 10.1016/j.colsurfb.2009.02.018] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 02/16/2009] [Accepted: 02/19/2009] [Indexed: 11/26/2022]
|
34
|
Hulander M, Hong J, Andersson M, Gervén F, Ohrlander M, Tengvall P, Elwing H. Blood interactions with noble metals: coagulation and immune complement activation. ACS APPLIED MATERIALS & INTERFACES 2009; 1:1053-1062. [PMID: 20355891 DOI: 10.1021/am900028e] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Noble metals are interesting biomaterials for a number of reasons, e.g., their chemical inertness and relative mechanical softness, silver's long known antimicrobial properties, and the low allergenic response shown by gold. Although important for the final outcome of biomaterials, little is reported about early events between pure noble metals and blood. In this article, we used whole blood in the "slide chamber model" to study the activation of the immune complement activation, generation of thrombin/antithrombin (TAT) complexes, and platelet depletion from blood upon contact with silver (Ag), palladium (Pd), gold (Au), titanium (Ti), and Bactiguard, a commercial nanostructured biomaterial coating comprised of Ag, Pd, and Au. The results show the highest TAT generation and platelet depletion on Ti and Au and lower on Pd, Ag, and the Bactiguard coating. The immune complement factor 3 fragment (C3a) was generated by the surfaces in the following order: Ag > Au > Pd > Bactiguard > Ti. Quartz crystal microbalance adsorption studies with human fibrinogen displayed the highest deposition to Ag and the lowest onto the Bactiguard coating. The adsorbed amounts of fibrinogen did not correlate with thrombogenicity in terms of TAT formation and platelet surface accumulation in blood. The combined results suggest, hence, that noble metal chemistry has a different impact on the protein adsorption properties and general blood compatibility. The low thrombogenic response by the Bactiguard coating cannot be explained by any of the single noble metal properties but is likely a successful combination of the nanostructure, nanogalvanic effects, or combinatory chemical and physical materials properties.
Collapse
Affiliation(s)
- Mats Hulander
- Department of Cell and Molecular Biology/Interface Biophysics, Gothenburg University, Medicinaregatan 9E, 41390 Gothenburg, Sweden.
| | | | | | | | | | | | | |
Collapse
|
35
|
Zhdanov VP, Rechendorff K, Hovgaard MB, Besenbacher F. Deposition at glancing angle, surface roughness, and protein adsorption: Monte Carlo simulations. J Phys Chem B 2008; 112:7267-72. [PMID: 18503271 DOI: 10.1021/jp709806k] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To generate rough surfaces in Monte Carlo simulations, we use the 2 + 1 solid-on-solid model of deposition with rapid transient diffusion of newly arrived atoms supplied at glancing angle. The surfaces generated are employed to scrutinize the effect of surface roughness on adsorption of globular and anisotropic rodlike proteins. The obtained results are compared with the available experimental data for Ta deposition at glancing angle and for the bovine serum albumin and fibrinogen uptake on the corresponding Ta films.
Collapse
Affiliation(s)
- Vladimir P Zhdanov
- Interdisciplinary Nanoscience Center (i NANO) and Department of Physics and Astronomy, University of Aarhus, DK-8000 Aarhus C, Denmark.
| | | | | | | |
Collapse
|