1
|
Goumenaki P, Günther S, Kikhi K, Looso M, Marín-Juez R, Stainier DYR. The innate immune regulator MyD88 dampens fibrosis during zebrafish heart regeneration. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1158-1176. [PMID: 39271818 PMCID: PMC11399109 DOI: 10.1038/s44161-024-00538-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/06/2024] [Indexed: 09/15/2024]
Abstract
The innate immune response is triggered rapidly after injury and its spatiotemporal dynamics are critical for regeneration; however, many questions remain about its exact role. Here we show that MyD88, a key component of the innate immune response, controls not only the inflammatory but also the fibrotic response during zebrafish cardiac regeneration. We find in cryoinjured myd88-/- ventricles a significant reduction in neutrophil and macrophage numbers and the expansion of a collagen-rich endocardial population. Further analyses reveal compromised PI3K/AKT pathway activation in the myd88-/- endocardium and increased myofibroblasts and scarring. Notably, endothelial-specific overexpression of myd88 reverses these neutrophil, fibrotic and scarring phenotypes. Mechanistically, we identify the endocardial-derived chemokine gene cxcl18b as a target of the MyD88 signaling pathway, and using loss-of-function and gain-of-function tools, we show that it controls neutrophil recruitment. Altogether, these findings shed light on the pivotal role of MyD88 in modulating inflammation and fibrosis during tissue regeneration.
Collapse
Affiliation(s)
- Pinelopi Goumenaki
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
| | - Stefan Günther
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Bioinformatics and Deep Sequencing Platform, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Khrievono Kikhi
- Flow Cytometry Service Group, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Mario Looso
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany
- Bioinformatics Core Unit (BCU), Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Rubén Marín-Juez
- Centre Hospitalier Universitaire Sainte-Justine Research Centre, Montreal, Quebec, Canada
- Department of Pathology and Cell Biology, University of Montreal, Montreal, Quebec, Canada
| | - Didier Y R Stainier
- Department of Developmental Genetics, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.
- DZHK German Centre for Cardiovascular Research, Partner Site Rhine-Main, Bad Nauheim, Germany.
- Cardio-Pulmonary Institute (CPI), Bad Nauheim, Germany.
| |
Collapse
|
2
|
Wu J, Wang J, Zeng X, Chen Y, Xia J, Wang S, Huang Z, Chen W, Shen Z. Protein phosphatase 2A regulatory subunit B56β modulates erythroid differentiation. Biochem Biophys Res Commun 2016; 478:1179-84. [PMID: 27544028 DOI: 10.1016/j.bbrc.2016.08.090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 08/16/2016] [Indexed: 11/29/2022]
Abstract
Anemia due to attenuated erythroid terminal differentiation is one of the most common hematological disorders occurring at all stages of life. We previously demonstrated that catalytic subunit α of protein phosphatase 2A (PP2Acα) modulates fetal liver erythropoiesis. However the corresponding PP2A regulatory subunit in this process remains unknown. In this study, we report that chemical inhibition of PP2A activity with okadaic acid impairs hemin-induced erythroid differentiation. Interestingly, B56 family member B56β is the only regulatory subunit whose expression is induced by both erythropoietin in fetal liver cells and hemin in erythroleukemia K562 cells. Finally, knockdown of B56β attenuates hemin-induced K562 erythroid differentiation. Collectively, our data identify B56β as the potential functional regulatory subunit of PP2A in erythroid differentiation, shedding light on new target for precise modulation of PP2A activity for treatment of anemia and related diseases.
Collapse
Affiliation(s)
- Jianping Wu
- Orthopedic Department of the Second Affiliated Hospital of Soochow University, Suzhou 215000, China
| | - Jun Wang
- Emergency Department of the First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Xiansheng Zeng
- Department of Cardiology of the First Affiliated Hospital, Soochow University, Suzhou 215006, China
| | - Yueqiu Chen
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou 215006, China
| | - Jun Xia
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou 215006, China
| | - Shizhen Wang
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou 215006, China
| | - Zan Huang
- Jiangsu Province Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agriculture University, Nanjing 210000, China.
| | - Weiqian Chen
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou 215006, China.
| | - Zhenya Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Soochow University, Suzhou 215006, China.
| |
Collapse
|
3
|
Chen W, Xia J, Hu P, Zhou F, Chen Y, Wu J, Lei W, Shen Z. Follistatin-like 1 protects cardiomyoblasts from injury induced by sodium nitroprusside through modulating Akt and Smad1/5/9 signaling. Biochem Biophys Res Commun 2016; 469:418-23. [DOI: 10.1016/j.bbrc.2015.12.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 12/03/2015] [Indexed: 01/05/2023]
|
4
|
Chen W, Wang S, Xia J, Huang Z, Tu X, Shen Z. Protein phosphatase 2A plays an important role in migration of bone marrow stroma cells. Mol Cell Biochem 2015; 412:173-80. [PMID: 26708215 DOI: 10.1007/s11010-015-2624-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 12/08/2015] [Indexed: 01/07/2023]
Abstract
Administration of bone marrow stroma cells (BMSCs) has the potential to ameliorate degenerative disorders and to repair injured sites. The homing of transplanted BMSCs to damaged tissues is a critical property of engraftment. Therefore, it is important to understand signal molecules controlling migration of BMSCs. Here, we demonstrate that serine-threonine protein phosphatase 2A (PP2A) is responsive to migration of BMSCs. Pharmacological Inhibition of PP2A, using okadaic acid (OA), leads to attenuated cell migration in rat primary BMSCs both in the absence or presence of stromal cell-derived factor-1 (SDF-1). Consistent with the above findings, knockdown of the main catalytic subunit PP2Acα using small interfering RNA also attenuates chemotaxis of BMSCs. On the other hand, cell viability of BMSCs remains unchanged with OA treatment or knockdown of PP2Acα subunit. Moreover, we observed an upregulation of PP2A-B55β in transcription level after SDF-1 treatment, indicating their potential role as the functioning regulatory subunit of PP2A phosphatase in BMSCs migration model. Collectively, these data provide first insight into the modulation of BMSCs migration by PP2A phosphatase activity and lay a foundation for exploring PP2A signaling as a modulating target for BMSCs transplantation.
Collapse
Affiliation(s)
- Weiqian Chen
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Shizhen Wang
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Jun Xia
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Zan Huang
- Jiangsu Province Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agriculture University, Nanjing, 210095, Jiangsu, China
| | - Xin Tu
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, 210061, Jiangsu, China
| | - Zhenya Shen
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
5
|
Chen W, Huang Z, Jiang X, Li C, Gao X. Overexpression of myeloid differentiation protein 88 in mice induces mild cardiac dysfunction, but no deficit in heart morphology. ACTA ACUST UNITED AC 2015; 49:e4794. [PMID: 26628395 PMCID: PMC4681416 DOI: 10.1590/1414-431x20154794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 09/15/2015] [Indexed: 02/06/2023]
Abstract
Cardiac remodeling involves changes in heart shape, size, structure, and function
after injury to the myocardium. The proinflammatory adaptor protein myeloid
differentiation protein 88 (MyD88) contributes to cardiac remodeling. To investigate
whether excessive MyD88 levels initiate spontaneous cardiac remodeling at the
whole-organism level, we generated a transgenic MyD88 mouse model with a
cardiac-specific promoter. MyD88 mice (male, 20-30 g, n=∼80) were born at the
expected Mendelian ratio and demonstrated similar morphology of the heart and
cardiomyocytes with that of wild-type controls. Although heart weight was unaffected,
cardiac contractility of MyD88 hearts was mildly reduced, as shown by
echocardiographic examination, compared with wild-type controls. Moreover, the
cardiac dysfunction phenotype was associated with elevation of ANF
and BNP expression. Collectively, our data provide novel evidence of
the critical role of balanced MyD88 signaling in maintaining physiological function
in the adult heart.
Collapse
Affiliation(s)
- W Chen
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Soochow University, Suzhou, Jiangsu, China
| | - Z Huang
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, Jiangsu, China
| | - X Jiang
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, Jiangsu, China
| | - C Li
- Department of Surgery, East Tennessee State University, Johnson City, TN, USA
| | - X Gao
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Follistatin-like 1 attenuates differentiation and survival of erythroid cells through Smad2/3 signaling. Biochem Biophys Res Commun 2015; 466:711-6. [PMID: 26365350 DOI: 10.1016/j.bbrc.2015.09.044] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 09/08/2015] [Indexed: 02/03/2023]
Abstract
Hematopoiesis is a complex process tightly controlled by sets of transcription factors in a context-dependent and stage-specific manner. Smad2/3 transcription factor plays a central role in differentiation and survival of erythroid cells. Here we report that follistatin-like 1 (FSTL1) treatment impairs hemin-induced erythroid differentiation and cell survival. FSTL1 differentially regulates transforming growth factor beta (TGF-β) and bone morphogenetic protein (BMP) signaling. Blockade of Smad2/3 signaling with the ALK5/type I TGF-βR kinase inhibitor, SB-525334, was efficacious for rescue of erythroid differentiation blockage and apoptosis. Reversely, activation of Smad1/5/8 signaling with BMP4 cannot rescue FSTL1-mediated erythroid differentiation blockage and apoptosis. Collectively, these data provide mechanistic insight into the regulation of erythropoiesis by FSTL1 signaling and lay a foundation for exploring FSTL1 signaling as a therapeutic target for anemia.
Collapse
|