1
|
Serag I, Abouzid M, Moawad MHED, Jaradat JH, Hendawy M, Hendi NI, Alkhawaldeh IM, Abdullah JA, Elsakka MM, Muneer MA, Elnagar MA, Fakher MA, Elkenani AJ, Abbas A. Vaccines for Alzheimer's disease: a brief scoping review. Neurol Sci 2025:10.1007/s10072-025-08073-2. [PMID: 40111670 DOI: 10.1007/s10072-025-08073-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 02/20/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disorder and the most common cause of dementia among older adults. Existing treatments-such as cholinesterase inhibitors, N-methyl-D-aspartate receptor antagonists, and monoclonal antibodies targeting amyloid beta-can improve functional and neuropsychiatric outcomes but fail to prevent disease onset, halt progression, or adequately reduce amyloid-beta burden. Consequently, research efforts have shifted to primary prevention through immunization, although the efficacy of these strategies remains uncertain. This review explores the efficacy, safety, and adverse events of current immunotherapies for AD and discusses future research and clinical implications. METHODS A scoping review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses for Scoping Reviews (PRISMA-SR) checklist. A systematic search was carried out using PubMed, Scopus, and Web of Science. RESULTS A total of 145 studies were included. Preclinical research often employed transgenic mouse models to investigate AD pathology and vaccine benefits, while Phase I and II clinical trials centered on safety and preliminary efficacy in humans. Most studies were conducted in the USA, China, and Japan, highlighting these countries' strong clinical trial infrastructure. Vaccination frequently reduced amyloid-beta or tau pathology in preclinical settings, although cognitive outcomes were inconsistent. Clinical trials primarily focused on safety and immune response, with newer vaccines such as ABvac40 demonstrating encouraging results and minimal adverse events. CONCLUSION Although AD vaccines show promise in preclinical settings, longer and more comprehensive clinical trials are necessary to determine their long-term efficacy and safety. Standardized protocols and efforts to reduce regional disparities in research would facilitate better comparability and generalizability of findings, thereby guiding the future development of effective immunotherapies for Alzheimer's disease.
Collapse
Affiliation(s)
- Ibrahim Serag
- Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Mohamed Abouzid
- Department of Physical Pharmacy and Pharmacokinetics, Faculty of Pharmacy, Poznan University of Medical Sciences, Rokietnicka 3 St., 60-806, Poznan, Poland.
- Doctoral School, Poznan University of Medical Sciences, 60-812, Poznan, Poland.
| | - Mostafa Hossam El Din Moawad
- Alexandria Main University Hospital, Alexandria, Egypt
- Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | | | - Mohamed Hendawy
- Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | | | | | | | | | | | | | | | - Aya J Elkenani
- Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Abdallah Abbas
- Faculty of Medicine, Al-Azhar University, Damietta, Egypt
| |
Collapse
|
2
|
Tu HF, Wong M, Tseng SH, Ingavat N, Olczak P, Notarte KI, Hung CF, Roden RBS. Virus-like particle vaccine displaying an external, membrane adjacent MUC16 epitope elicits ovarian cancer-reactive antibodies. J Ovarian Res 2024; 17:19. [PMID: 38225646 PMCID: PMC10790439 DOI: 10.1186/s13048-023-01325-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 12/12/2023] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND MUC16 is a heavily glycosylated cell surface mucin cleaved in the tumor microenvironment to shed CA125. CA125 is a serum biomarker expressed by > 95% of non-mucinous advanced stage epithelial ovarian cancers. MUC16/CA125 contributes to the evasion of anti-tumor immunity, peritoneal spread and promotes carcinogenesis; consequently, it has been targeted with antibody-based passive and active immunotherapy. However, vaccination against this self-antigen likely requires breaking B cell tolerance and may trigger autoimmune disease. Display of self-antigens on virus-like particles (VLPs), including those produced with human papillomavirus (HPV) L1, can efficiently break B cell tolerance. RESULTS A 20 aa juxta-membrane peptide of the murine MUC16 (mMUC16) or human MUC16 (hMUC16) ectodomain was displayed either via genetic insertion into an immunodominant loop of HPV16 L1-VLPs between residues 136/137, or by chemical coupling using malemide to cysteine sulfhydryl groups on their surface. Female mice were vaccinated intramuscularly three times with either DNA expressing L1-MUC16 fusions via electroporation, or with alum-formulated VLP chemically-coupled to MUC16 peptides. Both regimens were well tolerated, and elicited MUC16-specific serum IgG, although titers were higher in mice vaccinated with MUC16-coupled VLP on alum as compared to L1-MUC16 DNA vaccination. Antibody responses to mMUC16-targeted vaccination cross-reacted with hMUC16 peptide, and vice versa; both were reactive with the surface of CA125+ OVCAR3 cells, but not SKOV3 that lack detectable CA125 expression. Interestingly, vaccination of mice with mMUC16 peptide mixed with VLP and alum elicited mMUC16-specific IgG, implying VLPs provide robust T help and that coupling may not be required to break tolerance to this epitope. CONCLUSION Vaccination with VLP displaying the 20 aa juxta-membrane MUC16 ectodomain, which includes the membrane proximal cleavage site, is likely to be well tolerated and induce IgG targeting ovarian cancer cells, even after CA125 is shed.
Collapse
Affiliation(s)
- Hsin-Fang Tu
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Margaret Wong
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Ssu-Hsueh Tseng
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Nattha Ingavat
- Downstream Processing (DSP), Bioprocessing Technology Institute (BTI), Agency for Science, Technology, and Research (A*STAR), Singapore, 138632, Singapore
| | - Pola Olczak
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Kin Israel Notarte
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Chien-Fu Hung
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21287, USA
- Department of Oncology, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Richard B S Roden
- Department of Pathology, Johns Hopkins University, Baltimore, MD, 21287, USA.
- Department of Oncology, Johns Hopkins University, Baltimore, MD, 21287, USA.
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD, 21287, USA.
| |
Collapse
|
3
|
Novel Strategy for Alzheimer’s Disease Treatment through Oral Vaccine Therapy with Amyloid Beta. Biologics 2023. [DOI: 10.3390/biologics3010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Alzheimer’s disease (AD) is a neuropathology characterized by progressive cognitive impairment and dementia. The disease is attributed to senile plaques, which are aggregates of amyloid beta (Aβ) outside nerve cells; neurofibrillary tangles, which are filamentous accumulations of phosphorylated tau in nerve cells; and loss of neurons in the brain tissue. Immunization of an AD mouse model with Aβ-eliminated pre-existing senile plaque amyloids and prevented new accumulation. Furthermore, its effect showed that cognitive function can be improved by passive immunity without side effects, such as lymphocyte infiltration in AD model mice treated with vaccine therapy, indicating the possibility of vaccine therapy for AD. Further, considering the possibility of side effects due to direct administration of Aβ, the practical use of the safe oral vaccine, which expressed Aβ in plants, is expected. Indeed, administration of this oral vaccine to Alzheimer’s model mice reduced Aβ accumulation in the brain. Moreover, almost no expression of inflammatory IgG was observed. Therefore, vaccination prior to Aβ accumulation or at an early stage of accumulation may prevent Aβ from causing AD.
Collapse
|
4
|
Liekniņa I, Černova D, Rūmnieks J, Tārs K. Novel ssRNA phage VLP platform for displaying foreign epitopes by genetic fusion. Vaccine 2020; 38:6019-6026. [PMID: 32713683 DOI: 10.1016/j.vaccine.2020.07.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/30/2020] [Accepted: 07/07/2020] [Indexed: 01/20/2023]
Abstract
Virus-like particles (VLPs) can be used as efficient carriers of various antigens and therefore serve as attractive tools in vaccine development. Although VLPs of different viruses can be used, VLPs of ssRNA phages have convincing advantages due to their unique properties, including efficient protein production in bacterial and yeast expression systems, low production cost and easy and fast purification. Currently, the range of ssRNA phage VLPs is limited. In particular, this is true for VLPs that tolerate insertions at the N- and C-termini of the coat protein. It is therefore necessary to find new alternatives within the known ssRNA phage VLP range. From previous studies, we found approximately 80 new VLPs forming ssRNA phage coat proteins. In the current study, we attached a model peptide to the N- and C-termini of coat proteins. As a model peptide, we used a triple repeat of 23 N-terminal residues of the ectodomain of the influenza M2 protein, used previously in the development of the flu vaccine. Examining 43 novel phage coat proteins for the ability to form chimeric VLPs, we found ten new promising candidates for further vaccine design, five of which were tolerant to insertions at both the N- and C-termini. Furthermore, we demonstrate that most of the chimeric VLPs have good antigenic properties as judged from their reactivity with anti-M2 antibodies.
Collapse
Affiliation(s)
- Ilva Liekniņa
- Latvian Biomedical Research and Study Center, Ratsupites 1 k-1, LV1067 Riga, Latvia
| | - Darja Černova
- Latvian Biomedical Research and Study Center, Ratsupites 1 k-1, LV1067 Riga, Latvia
| | - Jānis Rūmnieks
- Latvian Biomedical Research and Study Center, Ratsupites 1 k-1, LV1067 Riga, Latvia
| | - Kaspars Tārs
- Latvian Biomedical Research and Study Center, Ratsupites 1 k-1, LV1067 Riga, Latvia.
| |
Collapse
|
5
|
Chung YH, Cai H, Steinmetz NF. Viral nanoparticles for drug delivery, imaging, immunotherapy, and theranostic applications. Adv Drug Deliv Rev 2020; 156:214-235. [PMID: 32603813 PMCID: PMC7320870 DOI: 10.1016/j.addr.2020.06.024] [Citation(s) in RCA: 238] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/19/2020] [Accepted: 06/21/2020] [Indexed: 02/06/2023]
Abstract
Viral nanoparticles (VNPs) encompass a diverse array of naturally occurring nanomaterials derived from plant viruses, bacteriophages, and mammalian viruses. The application and development of VNPs and their genome-free versions, the virus-like particles (VLPs), for nanomedicine is a rapidly growing. VLPs can encapsulate a wide range of active ingredients as well as be genetically or chemically conjugated to targeting ligands to achieve tissue specificity. VLPs are manufactured through scalable fermentation or molecular farming, and the materials are biocompatible and biodegradable. These properties have led to a wide range of applications, including cancer therapies, immunotherapies, vaccines, antimicrobial therapies, cardiovascular therapies, gene therapies, as well as imaging and theranostics. The use of VLPs as drug delivery agents is evolving, and sufficient research must continuously be undertaken to translate these therapies to the clinic. This review highlights some of the novel research efforts currently underway in the VNP drug delivery field in achieving this greater goal.
Collapse
Affiliation(s)
- Young Hun Chung
- Department of Bioengineering, University of California-San Diego, La Jolla, CA 92093, United States
| | - Hui Cai
- Department of NanoEngineering, University of California-San Diego, La Jolla, CA 92093, United States
| | - Nicole F Steinmetz
- Department of Bioengineering, University of California-San Diego, La Jolla, CA 92093, United States; Department of NanoEngineering, University of California-San Diego, La Jolla, CA 92093, United States; Department of Radiology, University of California-San Diego, La Jolla, CA 92093, United States; Moores Cancer Center, University of California-San Diego, La Jolla, CA 92093, United States; Center for Nano-ImmunoEngineering, University of California-San Diego, La Jolla, CA 92093, United States.
| |
Collapse
|
6
|
Medina CS, Uselman TW, Barto DR, Cháves F, Jacobs RE, Bearer EL. Decoupling the Effects of the Amyloid Precursor Protein From Amyloid-β Plaques on Axonal Transport Dynamics in the Living Brain. Front Cell Neurosci 2019; 13:501. [PMID: 31849608 PMCID: PMC6901799 DOI: 10.3389/fncel.2019.00501] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/22/2019] [Indexed: 11/16/2022] Open
Abstract
Amyloid precursor protein (APP) is the precursor to Aβ plaques. The cytoplasmic domain of APP mediates attachment of vesicles to molecular motors for axonal transport. In APP-KO mice, transport of Mn2+ is decreased. In old transgenic mice expressing mutated human (APPSwInd) linked to Familial Alzheimer's Disease, with both expression of APPSwInd and plaques, the rate and destination of Mn2+ axonal transport is altered, as detected by time-lapse manganese-enhanced magnetic resonance imaging (MEMRI) of the brain in living mice. To determine the relative contribution of expression of APPSwInd versus plaque on transport dynamics, we developed a Tet-off system to decouple expression of APPSwInd from plaque, and then studied hippocampal to forebrain transport by MEMRI. Three groups of mice were compared to wild-type (WT): Mice with plaque and APPSwInd expression; mice with plaque but suppression of APPSwInd expression; and mice with APPSwInd suppressed from mating until 2 weeks before imaging with no plaque. MR images were captured before at successive time points after stereotactic injection of Mn2+ (3-5 nL) into CA3 of the hippocampus. Mice were returned to their home cage between imaging sessions so that transport would occur in the awake freely moving animal. Images of multiple mice from the three groups (suppressed or expressed) together with C57/B6J WT were aligned and processed with our automated computational pipeline, and voxel-wise statistical parametric mapping (SPM) performed. At the conclusion of MR imaging, brains were harvested for biochemistry or histopathology. Paired T-tests within-group between time points (p = 0.01 FDR corrected) support the impression that both plaque alone and APPSwInd expression alone alter transport rates and destination of Mn2+ accumulation. Expression of APPSwInd in the absence of plaque or detectable Aβ also resulted in transport defects as well as pathology of hippocampus and medial septum, suggesting two sources of pathology occur in familial Alzheimer's disease, from toxic mutant protein as well as plaque. Alternatively mice with plaque without APPSwInd expression resemble the human condition of sporadic Alzheimer's, and had better transport. Thus, these mice with APPSwInd expression suppressed after plaque formation will be most useful in preclinical trials.
Collapse
Affiliation(s)
- Christopher S. Medina
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Taylor W. Uselman
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Daniel R. Barto
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Frances Cháves
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Russell E. Jacobs
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- California Institute of Technology, Pasadena, CA, United States
| | - Elaine L. Bearer
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
- California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
7
|
Qß Virus-like particle-based vaccine induces robust immunity and protects against tauopathy. NPJ Vaccines 2019; 4:26. [PMID: 31231552 PMCID: PMC6547647 DOI: 10.1038/s41541-019-0118-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/10/2019] [Indexed: 12/14/2022] Open
Abstract
Tauopathies, including frontotemporal dementia (FTD) and Alzheimer’s disease (AD) are progressive neurodegenerative diseases clinically characterized by cognitive decline and could be caused by the aggregation of hyperphosphorylated pathological tau (pTau) as neurofibrillary tangles (NFTs) inside neurons. There is currently no FDA-approved treatment that cures, slows or prevents tauopathies. Current immunotherapy strategies targeting pTau have generated encouraging data but may pose concerns about scalability, affordability, and efficacy. Here, we engineered a virus-like particle (VLP)-based vaccine in which tau peptide, phosphorylated at threonine 181, was linked at high valency to Qß bacteriophage VLPs (pT181-Qß). We demonstrate that vaccination with pT181-Qß is sufficient to induce a robust and long-lived anti-pT181 antibody response in the sera and the brains of both Non-Tg and rTg4510 mice. Only sera from pT181-Qß vaccinated mice are reactive to classical somatodendritic pTau in human FTD and AD post-mortem brain sections. Finally, we demonstrate that pT181-Qß vaccination reduces both soluble and insoluble species of hyperphosphorylated pTau in the hippocampus and cortex, avoids a Th1-mediated pro-inflammatory cell response, prevents hippocampal and corpus callosum atrophy and rescues cognitive dysfunction in a 4-month-old rTg4510 mouse model of FTD. These studies provide a valid scientific premise for the development of VLP-based immunotherapy to target pTau and potentially prevent Alzheimer’s diseases and related tauopathies. Tauopathies such as fronto-temporal dementia or Alzheimer’s disease are characterized by the accumulation of phosphorylated Tau (pTau) protein into pathogenic neurofibrillary tangles (NFT). Kiran Bhaskar and colleagues at the University of New Mexico investigate the efficacy of an active vaccine approach in the treatment of rTg4510 mice—an aggressive model of tauopathy. Mice receive 3 intramuscular doses of a disease-relevant pTau peptide (pT181) multivalently conjugated to an immunostimulatory bacteriophage virus-like particle (pT181-Qß). Vaccination induces high titers of anti-pTau—stable to at least 20 weeks—that is also able to bind human disease samples, but importantly does not react to unphosphorylated physiological Tau protein. Antibody can enter the brain and bind both soluble and intraneuronal pTau. Vaccination of mice reduces brain NFT, pathology, indicators of neuroinflammation and improves cognitive function in two different models of memory.
Collapse
|
8
|
Pumpens P, Renhofa R, Dishlers A, Kozlovska T, Ose V, Pushko P, Tars K, Grens E, Bachmann MF. The True Story and Advantages of RNA Phage Capsids as Nanotools. Intervirology 2016; 59:74-110. [DOI: 10.1159/000449503] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/30/2016] [Indexed: 11/19/2022] Open
|
9
|
McCarthy DP, Hunter ZN, Chackerian B, Shea LD, Miller SD. Targeted immunomodulation using antigen-conjugated nanoparticles. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 6:298-315. [PMID: 24616452 DOI: 10.1002/wnan.1263] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 01/23/2014] [Accepted: 02/01/2014] [Indexed: 12/20/2022]
Abstract
The growing prevalence of nanotechnology in the fields of biology, medicine, and the pharmaceutical industry is confounded by the relatively small amount of data on the impact of these materials on the immune system. In addition to concerns surrounding the potential toxicity of nanoparticle (NP)-based delivery systems, there is also a demand for a better understanding of the mechanisms governing interactions of NPs with the immune system. Nanoparticles can be tailored to suppress, enhance, or subvert recognition by the immune system. This 'targeted immunomodulation' can be achieved by delivery of unmodified particles, or by modifying particles to deliver drugs, proteins/peptides, or genes to a specific site. In order to elicit the desired, beneficial immune response, considerations should be made at every step of the design process: the NP platform itself, ligands, and other modifiers, the delivery route, and the immune cells that will encounter the conjugated NPs can all impact host immune responses.
Collapse
Affiliation(s)
- Derrick P McCarthy
- Department of Microbiology-Immunology and Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | | | | | | |
Collapse
|
10
|
Noninfectious disease vaccines. Vaccines (Basel) 2013. [DOI: 10.1016/b978-1-4557-0090-5.00057-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
11
|
The immunological potency and therapeutic potential of a prototype dual vaccine against influenza and Alzheimer's disease. J Transl Med 2011; 9:127. [PMID: 21806809 PMCID: PMC3162512 DOI: 10.1186/1479-5876-9-127] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Accepted: 08/01/2011] [Indexed: 12/18/2022] Open
Abstract
Background Numerous pre-clinical studies and clinical trials demonstrated that induction of antibodies to the β-amyloid peptide of 42 residues (Aβ42) elicits therapeutic effects in Alzheimer's disease (AD). However, an active vaccination strategy based on full length Aβ42 is currently hampered by elicitation of T cell pathological autoreactivity. We attempt to improve vaccine efficacy by creating a novel chimeric flu vaccine expressing the small immunodominant B cell epitope of Aβ42. We hypothesized that in elderly people with pre-existing memory Th cells specific to influenza this dual vaccine will simultaneously boost anti-influenza immunity and induce production of therapeutically active anti-Aβ antibodies. Methods Plasmid-based reverse genetics system was used for the rescue of recombinant influenza virus containing immunodominant B cell epitopes of Aβ42 (Aβ1-7/10). Results Two chimeric flu viruses expressing either 7 or 10 aa of Aβ42 (flu-Aβ1-7 or flu-Aβ1-10) were generated and tested in mice as conventional inactivated vaccines. We demonstrated that this dual vaccine induced therapeutically potent anti-Aβ antibodies and anti-influenza antibodies in mice. Conclusion We suggest that this strategy might be beneficial for treatment of AD patients as well as for prevention of development of AD pathology in pre-symptomatic individuals while concurrently boosting immunity against influenza.
Collapse
|
12
|
|