1
|
Zhang T, Wang Z, Muaibati M, Huang F, Li K, Abasi A, Tong Q, Wang D, Jin L, Huang X, Zhuang L. Natural small molecule compounds targeting Wnt signaling pathway inhibit HPV infection. Microb Pathog 2024; 196:106960. [PMID: 39313132 DOI: 10.1016/j.micpath.2024.106960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 08/28/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND High-risk human papillomavirus (HPV) infection is a major risk factor of HPV-related tumors, especially cervical cancer. To date, there is no specific drug for the treatment of HPV infection. PURPOSE To explore the role of canonical Wnt signaling pathway in HPV16 infection and to screen inhibitors against HPV16 infection from natural small molecule compounds targeting the canonicalWnt pathway. METHODS Wnt pathway inhibitor IWP-2 and FH535 were used to inhibit Wnt/β-catenin signaling pathway. HPV16-GFP pseudovirus infectivity were analyzed by fluorescence microscopy and fluorescence activated cell sorting. A small molecule screening of a total of CFDA-approved 29 natural compounds targeting the Wnt pathway was performed. RESULTS Wnt signaling pathway inhibitor suppressed HPV16-GFP pseudovirus infection in HaCat cells. Natural small molecule compounds screening identified 6-Gingerol, gossypol, tanshinone II2A, and EGCG as inhibitors of HPV16-GFP pseudovirus infection. CONCLUSION Wnt signaling pathway is involved in the process of HPV infection of host cells. 6-Gingerol, gossypol, tanshinone II2A, and EGCG inhibited HPV16-GFP pseudovirus infection and suppressed Wnt/β-catenin pathway in HaCat cells.
Collapse
Affiliation(s)
- Tao Zhang
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, China; Shenzhen Huazhong University of Science and Technology Research Institute, Shenzhen, 518057, China
| | - Ze Wang
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, China
| | - Munawaer Muaibati
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, China
| | - Fanwei Huang
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, China
| | - Kexin Li
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, China
| | - Abuduyilimu Abasi
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, China
| | - Qing Tong
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, China
| | - Dan Wang
- Department of Ophthalmology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Jin
- Reproductive Medicine Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, China
| | - Xiaoyuan Huang
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, China
| | - Liang Zhuang
- Department of Oncology, Tongji Hospital, Tongji Medicine College, Huazhong University of Science and Technology, 1095 JieFang Avenue, Wuhan, 430030, China.
| |
Collapse
|
2
|
Olali AZ, Wallace J, Gonzalez H, Carpenter KA, Patel N, Winchester LC, Podany AT, Venkatesh I, Narasipura SD, Al-Harthi L, Ross RD. The anti-HIV drug abacavir stimulates β-catenin activity in osteoblast lineage cells. JBMR Plus 2024; 8:ziae037. [PMID: 38590756 PMCID: PMC11001392 DOI: 10.1093/jbmrpl/ziae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/28/2024] [Accepted: 03/14/2024] [Indexed: 04/10/2024] Open
Abstract
Bone mineral density (BMD) loss in people living with HIV occurs with the initiation of combined antiretroviral therapy (cART), particularly with tenofovir disoproxil fumarate (TDF) containing cART. Switching from TDF to abacavir (ABC) or dolutegravir (DTG) leads to increased BMD. Whether BMD gains are due to cessation of TDF or anabolic effects of ABC or DTG is unclear. We investigated the effects of ABC and DTG on osteoblast lineage cells in vitro and in vivo. Primary human osteoblasts and male C57BL/6 mice were treated with individual antiretrovirals (ARVs) or a combination of ABC/DTG/lamivudine (3TC). Nearly all ARVs and cART inhibited osteogenic activity in vitro. Due to the importance of Wnt/β-catenin in bone formation, we further investigated ARV effects on the Wnt/β-catenin pathway. ABC, alone and as part of ABC/DTG/3TC, increased osteoblastic β-catenin activity as indicated by increased TOPFlash activity, hypo-phosphorylated (active) β-catenin staining, and β-catenin targeted gene expression. Mice treated with TDF had decreased lumbar spine BMD and trabecular connectivity density in the vertebrae, while those treated with ABC/DTG/3TC reduced cortical area and thickness in the femur. Mice treated with ABC alone had no bone structural changes, increased circulating levels of the bone formation marker, P1NP, and elevated expression of the Wnt/β-catenin target gene, Lef1, in osteocyte enriched samples. Further, bones from ARV-treated mice were isolated to evaluate ARV distribution. All ARVs were detected in the bone tissue, which was inclusive of bone marrow, but when bone marrow was removed, only TDF, ABC, and DTG were detected at ~0.1% of the circulating levels. Overall, our findings demonstrate that ABC activates Wnt/β-catenin signaling, but whether this leads to increased bone formation requires further study. Assessing the impact of ARVs on bone is critical to informing ARV selection and/or discovery of regimens that do not negatively impact the skeleton.
Collapse
Affiliation(s)
- Arnold Z Olali
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL 60612, United States
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois 60612, United States
| | - Jennillee Wallace
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois 60612, United States
| | - Hemil Gonzalez
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois 60612, United States
- Division of Infectious Diseases, Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, United States
| | - Kelsey A Carpenter
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL 60612, United States
| | - Niyati Patel
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL 60612, United States
| | - Lee C Winchester
- UNMC Center for Drug Discovery, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Anthony T Podany
- UNMC Center for Drug Discovery, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Ishwarya Venkatesh
- Department of Internal Medicine, Drug Discovery Center, Rush University Medical Center, Chicago, IL 60612, United States
| | - Srinivas D Narasipura
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois 60612, United States
| | - Lena Al-Harthi
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois 60612, United States
| | - Ryan D Ross
- Department of Anatomy & Cell Biology, Rush University Medical Center, Chicago, IL 60612, United States
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois 60612, United States
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, United States
| |
Collapse
|
3
|
Koval A, Xu J, Williams N, Schmolke M, Krause KH, Katanaev VL. Wnt-Independent SARS-CoV-2 Infection in Pulmonary Epithelial Cells. Microbiol Spectr 2023; 11:e0482722. [PMID: 37367224 PMCID: PMC10433849 DOI: 10.1128/spectrum.04827-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 06/12/2023] [Indexed: 06/28/2023] Open
Abstract
The Wnt signaling pathway within host cells regulates infections by several pathogenic bacteria and viruses. Recent studies suggested that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection depends on β-catenin and can be inhibited by the antileprotic drug clofazimine. Since clofazimine has been identified by us as a specific inhibitor of Wnt/β-catenin signaling, these works could indicate a potential role of the Wnt pathway in SARS-CoV-2 infection. Here, we show that the Wnt pathway is active in pulmonary epithelial cells. However, we find that in multiple assays, SARS-CoV-2 infection is insensitive to Wnt inhibitors, including clofazimine, acting at different levels within the pathway. Our findings assert that endogenous Wnt signaling in the lung is unlikely required or involved in the SARS-CoV-2 infection and that pharmacological inhibition of this pathway with clofazimine or other compounds is not a universal way to develop treatments against the SARS-CoV-2 infection. IMPORTANCE The development of inhibitors of the SARS-CoV-2 infection remains a need of utmost importance. The Wnt signaling pathway in host cells is often implicated in infections by bacteria and viruses. In this work, we show that, despite previous indications, pharmacological modulation of the Wnt pathway does not represent a promising strategy to control SARS-CoV-2 infection in lung epithelia.
Collapse
Affiliation(s)
- Alexey Koval
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jiabin Xu
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Nathalia Williams
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Mirco Schmolke
- Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Karl-Heinz Krause
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Vladimir L. Katanaev
- Department of Cell Physiology and Metabolism, Translational Research Centre in Oncohaematology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| |
Collapse
|
4
|
Anyona S, Cheng Q, Guo Y, Raballah E, Hurwitz I, Onyango C, Seidenberg P, Schneider K, Lambert C, McMahon B, Ouma C, Perkins D. Entire Expressed Peripheral Blood Transcriptome in Pediatric Severe Malarial Anemia. RESEARCH SQUARE 2023:rs.3.rs-3150748. [PMID: 37503086 PMCID: PMC10371159 DOI: 10.21203/rs.3.rs-3150748/v1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
This study on severe malarial anemia (SMA: Hb < 6.0 g/dL), a leading global cause of childhood morbidity and mortality, analyzed the entire expressed transcriptome in whole blood from children with non-SMA (Hb ≥ 6.0 g/dL, n = 41) and SMA (n = 25). Analyses revealed 3,420 up-regulated and 3,442 down-regulated transcripts, signifying impairments in host inflammasome activation, cell death, innate immune responses, and cellular stress responses in SMA. Immune cell profiling showed a decreased antigenic and immune priming response in children with SMA, favoring polarization toward cellular proliferation and repair. Enrichment analysis further identified altered neutrophil and autophagy-related processes, consistent with neutrophil degranulation and altered ubiquitination and proteasome degradation. Pathway analyses highlighted SMA-related alterations in cellular homeostasis, signaling, response to environmental cues, and cellular and immune stress responses. Validation with a qRT-PCR array showed strong concordance with the sequencing data. These findings identify key molecular themes in SMA pathogenesis, providing potential targets for new malaria therapies.
Collapse
Affiliation(s)
| | | | | | - Evans Raballah
- School of Public Health, Biomedical Sciences and Technology, Masinde Muliro University of Science and Technology
| | - Ivy Hurwitz
- Center for Global Health, University of New Mexico
| | - Clinton Onyango
- School of Public Health and Community Development, Maseno University
| | | | | | | | | | | | | |
Collapse
|
5
|
Denys A, Norman A, Perrien DS, Suva LJ, Simon L, McDaniel LS, Ferguson T, Pedersen K, Welsh D, Molina PE, Ronis MJJ. Impact of Alcohol on Bone Health in People Living With HIV: Integrating Clinical Data From Serum Bone Markers With Morphometric Analysis in a Non-Human Primate Model. JBMR Plus 2023; 7:e10703. [PMID: 36699637 PMCID: PMC9850440 DOI: 10.1002/jbm4.10703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 09/30/2022] [Accepted: 11/07/2022] [Indexed: 11/18/2022] Open
Abstract
People living with HIV (PLWH) represent a vulnerable population to adverse musculoskeletal outcomes due to HIV infection, antiretroviral therapy (ART), and at-risk alcohol use. Developing measures to prevent skeletal degeneration in this group requires a grasp of the relationship between alcohol use and low bone mass in both the PLWH population and its constituents as defined by sex, age, and race. We examined the association of alcohol use with serum biochemical markers of bone health in a diverse cohort of PLWH enrolled in the New Orleans Alcohol Use in HIV (NOAH) study. To explore the effects of alcohol on bone in the context of HIV and ART and the role of estrogen, we conducted a parallel, translational study using simian immunodeficiency virus (SIV)+/ART+ female rhesus macaques divided into four groups: vehicle (Veh)/Sham; chronic binge alcohol (CBA)/Sham; Veh/ovariectomy (OVX); and CBA/OVX. Clinical data showed that both osteocalcin (Ocn) and procollagen type I N-propeptide (PINP) levels were inversely associated with multiple measures of alcohol consumption. Age (>50 years) significantly increased susceptibility to alcohol-associated suppression of bone formation in both female and male PLWH, with postmenopausal status appearing as an additional risk factor in females. Serum sclerostin (Scl) levels correlated positively with measures of alcohol use and negatively with Ocn. Micro-CT analysis of the macaque tibias revealed that although both CBA and OVX independently decreased trabecular number and bone mineral density, only OVX decreased trabecular bone volume fraction and impacted cortical geometry. The clinical data implicate circulating Scl in the pathogenesis of alcohol-induced osteopenia and suggest that bone morphology can be significantly altered in the absence of net change in osteoblast function as measured by serum markers. Inclusion of sophisticated tools to evaluate skeletal strength in clinical populations will be essential to understand the impact of alcohol-induced changes in bone microarchitecture. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Alexandra Denys
- Department of Pharmacology and Experimental TherapeuticsLouisiana State University Health Sciences CenterNew OrleansLAUSA
| | - Allison Norman
- Department of Pharmacology and Experimental TherapeuticsLouisiana State University Health Sciences CenterNew OrleansLAUSA
| | - Daniel S Perrien
- Division of Clinical Pharmacology in the Department of MedicineVanderbilt University Medical CenterNashvilleTNUSA
| | - Larry J Suva
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical SciencesTexas A&M UniversityCollege StationTXUSA
| | - Liz Simon
- Comprehensive Alcohol Research CenterLouisiana State University Health Sciences CenterNew OrleansLAUSA
| | - Lee S McDaniel
- Comprehensive Alcohol Research CenterLouisiana State University Health Sciences CenterNew OrleansLAUSA
| | - Tekeda Ferguson
- Comprehensive Alcohol Research CenterLouisiana State University Health Sciences CenterNew OrleansLAUSA
| | - Kim Pedersen
- Department of Pharmacology and Experimental TherapeuticsLouisiana State University Health Sciences CenterNew OrleansLAUSA
| | - David Welsh
- Comprehensive Alcohol Research CenterLouisiana State University Health Sciences CenterNew OrleansLAUSA
| | - Patricia E Molina
- Comprehensive Alcohol Research CenterLouisiana State University Health Sciences CenterNew OrleansLAUSA
- Department of PhysiologyLouisiana State University Health Sciences CenterNew OrleansLAUSA
| | - Martin JJ Ronis
- Department of Pharmacology and Experimental TherapeuticsLouisiana State University Health Sciences CenterNew OrleansLAUSA
- Comprehensive Alcohol Research CenterLouisiana State University Health Sciences CenterNew OrleansLAUSA
| |
Collapse
|
6
|
Desai D, Londhe R, Chandane M, Kulkarni S. Altered HIV-1 Viral Copy Number and Gene Expression Profiles of Peripheral (CEM CCR5+) and Mucosal (A3R5.7) T Cell Lines Co-Infected with HSV-2 In Vitro. Viruses 2022; 14:v14081715. [PMID: 36016337 PMCID: PMC9413683 DOI: 10.3390/v14081715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 01/27/2023] Open
Abstract
Co-infecting pathogens have been speculated to influence Human Immunodeficiency Virus (HIV) disease progression. Herpes Simplex Virus Type-2 (HSV-2), another sexually transmitted pathogen, is commonly observed in individuals with HIV-1. Some clinical studies have observed an increase in HIV-1 viral copy number in HSV-2 co-infected individuals. In vitro studies have also demonstrated an increase in the expression of HIV-1 co-receptors on immune cells infected with HSV-2. Although both the viruses show distinctive persistent infection, the influence of HSV-2 on HIV-1 is poorly understood. Here we present a comparative analysis of primary CD4+ T-cells and four different T-cell lines (PM-1, CEM CCR5+, MOLT4 CCR5+, and A3R5.7) to assess the influence of HSV-2 co-infection on HIV-1 replication in vitro. Cell lines indicating significant changes in HIV-1 viral copy number [CEM CCR5+ (0.61 Log10), A3R5.7 (0.78 Log10)] were further evaluated for the infectivity of HIV-1 virions and the changes in gene expression profiles of HSV-2/HIV-1 co-infected and mono-infected cells, which were further confirmed by qPCR. Significant changes in NUP, MED, and VPS mRNA expression were observed in the gene expression profiles in co-infected CEM CCR5+ and A3R5.7 cells. In both cell lines, it was observed that the WNT signaling, PI3 kinase, apoptosis, and T-cell activation pathways were negatively affected in co-infected cells. The data suggest that HSV-2 infection of T-cells may influence the expression of genes that have been previously shown to affect HIV-1 replication in vitro. This idea needs to be explored further to identify anti-viral targets for HSV-2 and HIV-1.
Collapse
|
7
|
Hernandez CA, Eliseo E. The Role of Pannexin-1 Channels in HIV and NeuroHIV Pathogenesis. Cells 2022; 11:2245. [PMID: 35883688 PMCID: PMC9323506 DOI: 10.3390/cells11142245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 02/06/2023] Open
Abstract
The human immunodeficiency virus-1 (HIV) enters the brain shortly after infection, leading to long-term neurological complications in half of the HIV-infected population, even in the current anti-retroviral therapy (ART) era. Despite decades of research, no biomarkers can objectively measure and, more importantly, predict the onset of HIV-associated neurocognitive disorders. Several biomarkers have been proposed; however, most of them only reflect late events of neuronal damage. Our laboratory recently identified that ATP and PGE2, inflammatory molecules released through Pannexin-1 channels, are elevated in the serum of HIV-infected individuals compared to uninfected individuals and other inflammatory diseases. More importantly, high circulating ATP levels, but not PGE2, can predict a decline in cognition, suggesting that HIV-infected individuals have impaired ATP metabolism and associated signaling. We identified that Pannexin-1 channel opening contributes to the high serological ATP levels, and ATP in the circulation could be used as a biomarker of HIV-associated cognitive impairment. In addition, we believe that ATP is a major contributor to chronic inflammation in the HIV-infected population, even in the anti-retroviral era. Here, we discuss the mechanisms associated with Pannexin-1 channel opening within the circulation, as well as within the resident viral reservoirs, ATP dysregulation, and cognitive disease observed in the HIV-infected population.
Collapse
Affiliation(s)
| | - Eugenin Eliseo
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Galveston, TX 77555, USA;
| |
Collapse
|
8
|
Abstract
The latest outbreak of Zika virus (ZIKV) in the Americas was associated with significant neurologic complications, including microcephaly of newborns. We evaluated mechanisms that regulate ZIKV entry into human fetal astrocytes (HFAs). Astrocytes are key players in maintaining brain homeostasis. We show that the central mediator of canonical Wnt signaling, β-catenin, regulates Axl, a receptor for ZIKV infection of HFAs, at the transcriptional level. In turn, ZIKV inhibited β-catenin, potentially as a mechanism to overcome its restriction of ZIKV internalization through regulation of Axl. This was evident with three ZIKV strains tested but not with a laboratory-adapted strain which has a large deletion in its envelope gene. Finally, we show that β-catenin-mediated Axl-dependent internalization of ZIKV may be of increased importance for brain cells, as it regulated ZIKV infection of astrocytes and human brain microvascular cells but not kidney epithelial (Vero) cells. Collectively, our studies reveal a role for β-catenin in ZIKV infection and highlight a dynamic interplay between ZIKV and β-catenin to modulate ZIKV entry into susceptible target cells. IMPORTANCE ZIKV is an emerging pathogen with sporadic outbreaks throughout the world. The most recent outbreak in North America was associated with small brains (microcephaly) in newborns. We studied the mechanism(s) that may regulate ZIKV entry into astrocytes. Astrocytes are a critical resident brain cell population with diverse functions that maintain brain homeostasis, including neurogenesis and neuronal survival. We show that three ZIKV strains (and not a heavily laboratory-adapted strain with a large deletion in its envelope gene) require Axl for internalization. Most importantly, we show that β-catenin, the central mediator of canonical Wnt signaling, negatively regulates Axl at the transcriptional level to prevent ZIKV internalization into human fetal astrocytes. To overcome this restriction, ZIKV downregulates β-catenin to facilitate Axl expression. This highlights a dynamic host-virus interaction whereby ZIKV inhibits β-catenin to promote its internalization into human fetal astrocytes through the induction of Axl.
Collapse
|
9
|
Robinson KF, Narasipura SD, Wallace J, Ritz EM, Al-Harthi L. Negative regulation of IL-8 in human astrocytes depends on β-catenin while positive regulation is mediated by TCFs/LEF/ATF2 interaction. Cytokine 2020; 136:155252. [PMID: 32818703 PMCID: PMC7554258 DOI: 10.1016/j.cyto.2020.155252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 08/01/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022]
Abstract
Expression of cytokines/chemokines is tightly regulated at the transcription level. This is crucial in the central nervous system to maintain neuroimmune homeostasis. IL-8 a chemoattractant, which recruits neutrophils, T cells, and basophils into the brain in response to inflammation and/or injury is secreted predominantly by neurons, microglia, and astrocytes. Here, we investigated the mechanism by which astrocytes regulate IL-8 expression. We demonstrate that while β-catenin negatively regulated IL-8 transcription, its canonical transcriptional partners, members of the TCF/LEF transcription factors (TCF1, TCF3, TCF4 and LEF1) and Activating transcription factor 2 (ATF2) positively regulated IL-8 transcription. We further identified a putative TCF/LEF binding site at -175nt close to the minimal transcription region on the IL-8 promoter, mutation of which caused a significant reduction in IL-8 promoter activity. Chromatin immunoprecipitation demonstrated binding of TCF1, TCF4, LEF1 and ATF2 on the IL-8 promoter suggesting that TCFs/LEF partner with ATF2 to induce IL-8 transcription. These findings demonstrate a novel role for β-catenin in suppression of IL-8 expression and for TCFs/LEF/ATF2 in inducing IL-8. These findings reveal a unique mechanism by which astrocytes tightly regulate IL-8 expression.
Collapse
Affiliation(s)
- KaReisha F Robinson
- Department of Microbial Pathogens and Immunity, Rush University Medical College, Chicago, IL, USA
| | - Srinivas D Narasipura
- Department of Microbial Pathogens and Immunity, Rush University Medical College, Chicago, IL, USA
| | - Jennillee Wallace
- Department of Microbial Pathogens and Immunity, Rush University Medical College, Chicago, IL, USA
| | - Ethan M Ritz
- Rush Biostatistics Core, Rush University Medical College, Chicago, IL, USA
| | - Lena Al-Harthi
- Department of Microbial Pathogens and Immunity, Rush University Medical College, Chicago, IL, USA.
| |
Collapse
|
10
|
Edara VV, Nooka S, Proulx J, Stacy S, Ghorpade A, Borgmann K. β-Catenin Regulates Wound Healing and IL-6 Expression in Activated Human Astrocytes. Biomedicines 2020; 8:E479. [PMID: 33171974 PMCID: PMC7694627 DOI: 10.3390/biomedicines8110479] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 02/06/2023] Open
Abstract
Reactive astrogliosis is prominent in most neurodegenerative disorders and is often associated with neuroinflammation. The molecular mechanisms regulating astrocyte-linked neuropathogenesis during injury, aging and human immunodeficiency virus (HIV)-associated neurocognitive disorders (HAND) are not fully understood. In this study, we investigated the implications of the wingless type (Wnt)/β-catenin signaling pathway in regulating astrocyte function during gliosis. First, we identified that HIV-associated inflammatory cytokines, interleukin (IL)-1β and tumor necrosis factor (TNF)-α induced mediators of the Wnt/β-catenin pathway including β-catenin and lymphoid enhancer-binding factor (LEF)-1 expression in astrocytes. Next, we investigated the regulatory role of β-catenin on primary aspects of reactive astrogliosis, including proliferation, migration and proinflammatory responses, such as IL-6. Knockdown of β-catenin impaired astrocyte proliferation and migration as shown by reduced cyclin-D1 levels, bromodeoxyuridine incorporation and wound healing. HIV-associated cytokines, IL-1β alone and in combination with TNF-α, strongly induced the expression of proinflammatory cytokines including C-C motif chemokine ligand (CCL)2, C-X-C motif chemokine ligand (CXCL)8 and IL-6; however, only IL-6 levels were regulated by β-catenin as demonstrated by knockdown and pharmacological stabilization. In this context, IL-6 levels were negatively regulated by β-catenin. To better understand this relationship, we examined the crossroads between β-catenin and nuclear factor (NF)-κB pathways. While NF-κB expression was significantly increased by IL-1β and TNF-α, NF-κB levels were not affected by β-catenin knockdown. IL-1β treatment significantly increased glycogen synthase kinase (GSK)-3β phosphorylation, which inhibits β-catenin degradation. Further, pharmacological inhibition of GSK-3β increased nuclear translocation of both β-catenin and NF-κB p65 into the nucleus in the absence of any other inflammatory stimuli. HIV+ human astrocytes show increased IL-6, β-catenin and NF-κB expression levels and are interconnected by regulatory associations during HAND. In summary, our study demonstrates that HIV-associated inflammation increases β-catenin pathway mediators to augment activated astrocyte responses including migration and proliferation, while mitigating IL-6 expression. These findings suggest that β-catenin plays an anti-inflammatory role in activated human astrocytes during neuroinflammatory pathologies, such as HAND.
Collapse
Affiliation(s)
- Venkata Viswanadh Edara
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (V.V.E.); (J.P.); (S.S.)
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (S.N.); (A.G.)
| | - Shruthi Nooka
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (S.N.); (A.G.)
| | - Jessica Proulx
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (V.V.E.); (J.P.); (S.S.)
| | - Satomi Stacy
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (V.V.E.); (J.P.); (S.S.)
| | - Anuja Ghorpade
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (S.N.); (A.G.)
| | - Kathleen Borgmann
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (V.V.E.); (J.P.); (S.S.)
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (S.N.); (A.G.)
| |
Collapse
|
11
|
Robinson KF, Narasipura SD, Wallace J, Ritz EM, Al-Harthi L. β-Catenin and TCFs/LEF signaling discordantly regulate IL-6 expression in astrocytes. Cell Commun Signal 2020; 18:93. [PMID: 32546183 PMCID: PMC7296971 DOI: 10.1186/s12964-020-00565-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022] Open
Abstract
Background The Wnt/β-catenin signaling pathway is a prolific regulator of cell-to-cell communication and gene expression. Canonical Wnt/β-catenin signaling involves partnering of β-catenin with members of the TCF/LEF family of transcription factors (TCF1, TCF3, TCF4, LEF1) to regulate gene expression. IL-6 is a key cytokine involved in inflammation and is particularly a hallmark of inflammation in the brain. Astrocytes, specialized glial cells in the brain, secrete IL-6. How astrocytes regulate IL-6 expression is not entirely clear, although in other cells NFκB and C/EBP pathways play a role. We evaluated here the interface between β-catenin, TCFs/LEF and C/EBP and NF-κB in relation to IL-6 gene regulation in astrocytes. Methods We performed molecular loss and/or gain of function studies of β-catenin, TCF/LEF, NFκB, and C/EBP to assess IL-6 regulation in human astrocytes. Specifically, siRNA mediated target gene knockdown, cDNA over expression of target gene, and pharmacological agents for regulation of target proteins were used. IL-6 levels was evaluated by real time quantitative PCR and ELISA. We also cloned the IL-6 promoter under a firefly luciferase reporter and used bioinformatics, site directed mutagenesis, and chromatin immunoprecipitation to probe the interaction between β-catenin/TCFs/LEFs and IL-6 promoter activity. Results β-catenin binds to TCF/LEF to inhibits IL-6 while TCFs/LEF induce IL-6 transcription through interaction with ATF-2/SMADs. β-catenin independent of TCFs/LEF positively regulates C/EBP and NF-κB, which in turn activate IL-6 expression. The IL-6 promoter has two putative regions for TCFs/LEF binding, a proximal site located at -91 nt and a distal site at -948 nt from the transcription start site, both required for TCF/LEF induction of IL-6 independent of β-catenin. Conclusion IL-6 regulation in human astrocytes engages a discordant interaction between β-catenin and TCF/LEF. These findings are intriguing given that no role for β-catenin nor TCFs/LEF to date is associated with IL-6 regulation and suggest that β-catenin expression in astrocytes is a critical regulator of anti-inflammatory responses and its disruption can potentially mediate persistent neuroinflammation. Video Abstract
Graphical abstract ![]()
Collapse
Affiliation(s)
- KaReisha F Robinson
- Rush University Medical Center, Department of Microbial Pathogens and Immunity, Rush University Medical College, 1735 W. Harrison Street, 614 Cohn, Chicago, IL, 60612, USA
| | - Srinivas D Narasipura
- Rush University Medical Center, Department of Microbial Pathogens and Immunity, Rush University Medical College, 1735 W. Harrison Street, 614 Cohn, Chicago, IL, 60612, USA
| | - Jennillee Wallace
- Rush University Medical Center, Department of Microbial Pathogens and Immunity, Rush University Medical College, 1735 W. Harrison Street, 614 Cohn, Chicago, IL, 60612, USA
| | - Ethan M Ritz
- Rush Biostatistics Core, Rush University Medical College, Chicago, IL, USA
| | - Lena Al-Harthi
- Rush University Medical Center, Department of Microbial Pathogens and Immunity, Rush University Medical College, 1735 W. Harrison Street, 614 Cohn, Chicago, IL, 60612, USA.
| |
Collapse
|
12
|
Li GH, Maric D, Major EO, Nath A. Productive HIV infection in astrocytes can be established via a nonclassical mechanism. AIDS 2020; 34:963-978. [PMID: 32379159 PMCID: PMC7429268 DOI: 10.1097/qad.0000000000002512] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Astrocytes are proposed to be a critical reservoir of HIV in the brain. However, HIV infection of astrocytes is inefficient in vitro except for cell-to-cell transmission from HIV-infected cells. Here, we explore mechanisms by which cell-free HIV bypasses entry and postentry barriers leading to a productive infection. METHODS HIV infection of astrocytes was investigated by a variety of techniques including transfection of CD4-expressing plasmid, treatment with lysosomotropic agents or using a transwell culture system loaded with HIV-infected lymphocytes. Infection was monitored by HIV-1 p24 in culture supernatants and integrated proviral DNA was quantified by Alu-PCR. RESULTS Persistent HIV infection could be established in astrocytes by transfection of proviral DNA, transduction with VSV-G-pseudotyped viruses, transient expression of CD4 followed by HIV infection, or simultaneous treatment with lysosomotropic chloroquine or Tat-HA2 peptide with HIV infection. In absence of these treatments, HIV entered via endocytosis as seen by electronmicroscopy and underwent lysosomal degradation without proviral integration, indicating endocytosis is a dead end for HIV in astrocytes. Nevertheless, productive infection was observed when astrocytes were in close proximity but physically separated from HIV-infected lymphocytes in the transwell cultures. This occurred with X4 or dual tropic R5X4 viruses and was blocked by an antibody or antagonist to CXCR4. CONCLUSION A CD4-independent, CXCR4-dependent mechanism of viral entry is proposed, by which immature HIV particles from infected lymphocytes might directly bind to CXCR4 on astrocytes and trigger virus--cell fusion during or after the process of viral maturation. This mechanism may contribute to the formation of brain HIV reservoirs.
Collapse
Affiliation(s)
- Guan-Han Li
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Dragan Maric
- Flow and Imaging Cytometry Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Eugene O. Major
- Laboratory of Molecular Medicine and Neuroscience, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| | - Avindra Nath
- Section of Infections of the Nervous System, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD
| |
Collapse
|
13
|
Ross RD, Sharma A, Shi Q, Hoover DR, Weber KM, Tien PC, French AL, Al-Harthi L, Yin MT. Circulating sclerostin is associated with bone mineral density independent of HIV-serostatus. Bone Rep 2020; 12:100279. [PMID: 32455152 PMCID: PMC7235609 DOI: 10.1016/j.bonr.2020.100279] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 01/14/2023] Open
Abstract
Background Low bone mineral density (BMD) is commonly observed in people living with HIV (PLWH), however the cause for this BMD loss remains unclear. Sclerostin, a bone-derived antagonist to the Wnt/β-catenin-pathway, suppresses bone remodeling and is positively associated with BMD. The goal of the current study was to investigate associations between sclerostin and BMD in a cohort of HIV-seropositive and demographically-matched seronegative women. Methods This cross-sectional analysis used a subset of early postmenopausal women enrolled in the Women's Interagency HIV Study (WIHS). BMD was assessed at the lumbar spine, total hip, femoral neck, and distal and ultradistal radius via dual energy x-ray absorptiometry (DXA). Circulating sclerostin was assessed via commercial ELISAs. Univariate and multivariate linear regression modeling tested associations between sclerostin and BMD after adjusting for a variety of BMD-modifying variables. Results HIV-seropositive women had significantly reduced BMD at all skeletal sites compared to HIV-seronegative women. There was no difference in sclerostin levels according to HIV-serostatus (0.25 vs 0.27 ng/mL in HIV-seronegative and HIV-seropositive, respectively, p = 0.71). Circulating sclerostin was positively associated with BMD at all sites in both univariate and multivariate models adjusting for HIV status, age, BMI, and race, although the coefficients of association were attenuated in HIV-seropositive women. The positive association between sclerostin and BMD among seropositive women remained statistically significant after adjusting for ART or tenofovir disoproxil fumarate (TDF) use. Conclusions The current study suggests that circulating sclerostin is a biomarker for bone mass for both HIV seronegative and seropositive women using and not using ART. The lower coefficients of association between sclerostin and BMD by HIV status may suggest HIV-induced alternation in osteocyte function.
Collapse
Affiliation(s)
- Ryan D. Ross
- Department of Cell & Molecular Medicine, Rush University Medical Center, Chicago, IL, United States of America
- Corresponding author.
| | - Anjali Sharma
- State University of New York, Downstate, Brooklyn, NY, United States of America
| | - Qiuhu Shi
- New York Medical College, Valhalla, NY, United States of America
| | - Donald R. Hoover
- Department of Statistics and Institute for Health Health Care Policy and Aging Research Rutgers University, Piscataway, NJ, United States of America
| | - Kathleen M. Weber
- Cook County Health/CORE Center and Hektoen Institute of Medicine, Chicago, IL, United States of America
| | - Phyllis C. Tien
- Department of Medicine, University of California, San Francisco and Medical Service, Department of Veteran Affairs Medical Center, San Francisco, CA, United States of America
| | - Audrey L. French
- Department of Medicine, Stroger Hospital of Cook County/CORE Center, Rush University, Chicago, IL, United States of America
| | - Lena Al-Harthi
- Department of Microbial Pathogens and immunity, Rush University Medical Center, Chicago, IL, United States of America
| | - Michael T. Yin
- Columbia University Medical Center, New York, NY, United States of America
| |
Collapse
|
14
|
Chen K, Phan T, Lin A, Sardo L, Mele AR, Nonnemacher MR, Klase Z. Morphine exposure exacerbates HIV-1 Tat driven changes to neuroinflammatory factors in cultured astrocytes. PLoS One 2020; 15:e0230563. [PMID: 32210470 PMCID: PMC7094849 DOI: 10.1371/journal.pone.0230563] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 03/03/2020] [Indexed: 12/16/2022] Open
Abstract
Despite antiretroviral therapy human immunodeficiency virus type-1 (HIV-1) infection results in neuroinflammation of the central nervous system that can cause HIV-associated neurocognitive disorders (HAND). The molecular mechanisms involved in the development of HAND are unclear, however, they are likely due to both direct and indirect consequences of HIV-1 infection and inflammation of the central nervous system. Additionally, opioid abuse in infected individuals has the potential to exacerbate HIV-comorbidities, such as HAND. Although restricted for productive HIV replication, astrocytes (comprising 40-70% of all brain cells) likely play a significant role in neuropathogenesis in infected individuals due to the production and response of viral proteins. The HIV-1 protein Tat is critical for viral transcription, causes neuroinflammation, and can be secreted from infected cells to affect uninfected bystander cells. The Wnt/β-catenin signaling cascade plays an integral role in restricting HIV-1 infection in part by negatively regulating HIV-1 Tat function. Conversely, Tat can overcome this negative regulation and inhibit β-catenin signaling by sequestering the critical transcription factor TCF-4 from binding to β-catenin. Here, we aimed to explore how opiate exposure affects Tat-mediated suppression of β-catenin in astrocytes and the downstream modulation of neuroinflammatory genes. We observed that morphine can potentiate Tat suppression of β-catenin activity in human astrocytes. In contrast, Tat mutants deficient in secretion, and lacking neurotoxic effects, do not affect β-catenin activity in the presence or absence of morphine. Finally, morphine treatment of astrocytes was sufficient to reduce the expression of genes involved in neuroinflammation. Examining the molecular mechanisms of how HIV-1 infection and opiate exposure exacerbate neuroinflammation may help us inform or predict disease progression prior to HAND development.
Collapse
Affiliation(s)
- Kenneth Chen
- Department of Biological Sciences, University of the Sciences, Philadelphia, Pennsylvania, United States of America
| | - Thienlong Phan
- Department of Biological Sciences, University of the Sciences, Philadelphia, Pennsylvania, United States of America
| | - Angel Lin
- Department of Biological Sciences, University of the Sciences, Philadelphia, Pennsylvania, United States of America
| | - Luca Sardo
- Department of Biological Sciences, University of the Sciences, Philadelphia, Pennsylvania, United States of America
- Current institution – Department of Infectious Diseases and Vaccines, MRL, Merck & Co., Inc., West Point, Pennsylvania, United States of America
| | - Anthony R. Mele
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Michael R. Nonnemacher
- Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
- Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Zachary Klase
- Department of Biological Sciences, University of the Sciences, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
15
|
Abstract
People living with HIV can experience accelerated aging and the development of neurological disorders. Recently, we reported that HIV-1 infection results in a dramatic loss of peroxisomes in macrophages and brain tissue. This is significant because (i) peroxisomes are important for the innate immune response and (ii) loss of peroxisome function is associated with cellular aging and neurodegeneration. Accordingly, understanding how HIV-1 infection causes peroxisome depletion may provide clues regarding how the virus establishes persistent infections and, potentially, the development of neurological disorders. Here, we show that the accessory protein Vpu is necessary and sufficient for the induction of microRNAs that target peroxisome biogenesis factors. The ability of Vpu to downregulate peroxisome formation depends on the Wnt/β-catenin pathway. Thus, in addition to revealing a novel mechanism by which HIV-1 uses intracellular signaling pathways to target antiviral signaling platforms (peroxisomes), we have uncovered a previously unknown link between the Wnt/β-catenin pathway and peroxisome homeostasis. Human immunodeficiency virus type 1 (HIV-1) establishes lifelong infections in humans, a process that relies on its ability to thwart innate and adaptive immune defenses of the host. Recently, we reported that HIV-1 infection results in a dramatic reduction of the cellular peroxisome pool. Peroxisomes are metabolic organelles that also function as signaling platforms in the innate immune response. Here, we show that the HIV-1 accessory protein Vpu is necessary and sufficient for the depletion of cellular peroxisomes during infection. Vpu induces the expression of four microRNAs that target mRNAs encoding proteins required for peroxisome formation and metabolic function. The ability of Vpu to downregulate peroxisomes was found to be dependent upon the Wnt/β-catenin signaling pathway. Given the importance of peroxisomes in innate immune signaling and central nervous system function, the roles of Vpu in dampening antiviral signaling appear to be more diverse than previously realized. Finally, our findings highlight a potential role for Wnt/β-catenin signaling in peroxisome homeostasis through modulating the production of biogenesis factors.
Collapse
|
16
|
Comparative transcriptome analysis of the human endocervix and ectocervix during the proliferative and secretory phases of the menstrual cycle. Sci Rep 2019; 9:13494. [PMID: 31530865 PMCID: PMC6749057 DOI: 10.1038/s41598-019-49647-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 08/24/2019] [Indexed: 12/18/2022] Open
Abstract
Despite extensive studies suggesting increased susceptibility to HIV during the secretory phase of the menstrual cycle, the molecular mechanisms involved remain unclear. Our goal was to analyze transcriptomes of the endocervix and ectocervix during the proliferative and secretory phases using RNA sequencing to explore potential molecular signatures of susceptibility to HIV. We identified 202 differentially expressed genes (DEGs) between the proliferative and secretory phases of the cycle in the endocervix (adjusted p < 0.05). The biofunctions and pathways analysis of DEGs revealed that cellular assembly and epithelial barrier function in the proliferative phase and inflammatory response/cellular movement in the secretory phase were among the top biofunctions and pathways. The gene set enrichment analysis of ranked DEGs (score = log fold change/p value) in the endocervix and ectocervix revealed that (i) unstimulated/not activated immune cells gene sets positively correlated with the proliferative phase and negatively correlated with the secretory phase in both tissues, (ii) IFNγ and IFNα response gene sets positively correlated with the proliferative phase in the ectocervix, (iii) HIV restrictive Wnt/β-catenin signaling pathway negatively correlated with the secretory phase in the endocervix. Our data show menstrual cycle phase-associated changes in both endocervix and ectocervix, which may modulate susceptibility to HIV.
Collapse
|
17
|
Dave S, Chen L, Yu C, Seaton M, Khodr CE, Al-Harthi L, Hu XT. Methamphetamine decreases K + channel function in human fetal astrocytes by activating the trace amine-associated receptor type-1. J Neurochem 2018; 148:29-45. [PMID: 30295919 DOI: 10.1111/jnc.14606] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 09/28/2018] [Accepted: 10/03/2018] [Indexed: 12/22/2022]
Abstract
Methamphetamine (Meth) is a potent and commonly abused psychostimulant. Meth alters neuron and astrocyte activity; yet the underlying mechanism(s) is not fully understood. Here we assessed the impact of acute Meth on human fetal astrocytes (HFAs) using whole-cell patch-clamping. We found that HFAs displayed a large voltage-gated K+ efflux (IKv ) through Kv /Kv -like channels during membrane depolarization, and a smaller K+ influx (Ikir ) via inward-rectifying Kir /Kir -like channels during membrane hyperpolarization. Meth at a 'recreational' (20 μM) or toxic/fatal (100 μM) concentration depolarized resting membrane potential (RMP) and suppressed IKv/Kv-like . These changes were associated with a decreased time constant (Ƭ), and mimicked by blocking the two-pore domain K+ (K2P )/K2P -like and Kv /Kv -like channels, respectively. Meth also diminished IKir/Kir-like , but only at toxic/fatal levels. Given that Meth is a potent agonist for the trace amine-associated receptor type-1 (TAAR1), and TAAR1-coupled cAMP/cAMP-activated protein kinase (PKA) cascade, we further evaluated whether the Meth impact on K+ efflux was mediated by this pathway. We found that antagonizing TAAR1 with N-(3-Ethoxyphenyl)-4-(1-pyrrolidinyl)-3-(trifluoromethyl)benzamide (EPPTB) reversed Meth-induced suppression of IKv/Kv-like ; and inhibiting PKA activity by H89 abolished Meth effects on suppressing IKv/Kv-like . Antagonizing TAAR1 might also attenuate Meth-induced RMP depolarization. Voltage-gated Ca2+ currents were not detected in HFAs. These novel findings demonstrate that Meth suppresses IKv/Kv-like by facilitating the TAAR1/Gs /cAMP/PKA cascade and altering the kinetics of Kv /Kv -like channel gating, but reduces K2P /K2P -like channel activity through other pathway(s), in HFAs. Given that Meth-induced decrease in astrocytic K+ efflux through K2P /K2P -like and Kv /Kv -like channels reduces extracellular K+ levels, such reduction could consequently contribute to a decreased excitability of surrounding neurons. OPEN SCIENCE BADGES: This article has received a badge for *Open Materials* because it provided all relevant information to reproduce the study in the manuscript. The complete Open Science Disclosure form for this article can be found at the end of the article. More information about the Open Practices badges can be found at https://cos.io/our-services/open-science-badges/.
Collapse
Affiliation(s)
- Sonya Dave
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, USA
| | - Lihua Chen
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, USA
| | - Chunjiang Yu
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, USA
| | - Melanie Seaton
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, USA
| | - Christina E Khodr
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, USA
| | - Lena Al-Harthi
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, USA
| | - Xiu-Ti Hu
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
18
|
Pinkham C, Ahmed A, Bracci N, Narayanan A, Kehn-Hall K. Host-based processes as therapeutic targets for Rift Valley fever virus. Antiviral Res 2018; 160:64-78. [PMID: 30316916 DOI: 10.1016/j.antiviral.2018.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/27/2018] [Accepted: 10/05/2018] [Indexed: 12/28/2022]
Abstract
Rift Valley fever virus (RVFV) is an enveloped, segmented, negative sense RNA virus that replicates within the host's cytoplasm. To facilitate its replication, RVFV must utilize host cell processes and as such, these processes may serve as potential therapeutic targets. This review summarizes key host cell processes impacted by RVFV infection. Specifically the influence of RVFV on host transcriptional regulation, post-transcriptional regulation, protein half-life and availability, host signal transduction, trafficking and secretory pathways, cytoskeletal modulation, and mitochondrial processes and oxidative stress are discussed. Therapeutics targeted towards host processes that are essential for RVFV to thrive as well as their efficacy and importance to viral pathogenesis are highlighted.
Collapse
Affiliation(s)
- Chelsea Pinkham
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Aslaa Ahmed
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Nicole Bracci
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Aarthi Narayanan
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Kylene Kehn-Hall
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA.
| |
Collapse
|
19
|
Khanizadeh S, Hasanvand B, Esmaeil Lashgarian H, Almasian M, Goudarzi G. Interaction of viral oncogenic proteins with the Wnt signaling pathway. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2018; 21:651-659. [PMID: 30140402 PMCID: PMC6098952 DOI: 10.22038/ijbms.2018.28903.6982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 03/08/2018] [Indexed: 12/13/2022]
Abstract
It is estimated that up to 20% of all types of human cancers worldwide are attributed to viruses. The genome of oncogenic viruses carries genes that have protein products that act as oncoproteins in cell proliferation and transformation. The modulation of cell cycle control mechanisms, cellular regulatory and signaling pathways by oncogenic viruses, plays an important role in viral carcinogenesis. Different signaling pathways play a part in the carcinogenesis that occurs in a cell. Among these pathways, the Wnt signaling pathway plays a predominant role in carcinogenesis and is known as a central cellular pathway in the development of tumors. There are three Wnt signaling pathways that are well identified, including the canonical or Wnt/β-catenin dependent pathway, the noncanonical or β-catenin-independent planar cell polarity (PCP) pathway, and the noncanonical Wnt/Ca2+ pathway. Most of the oncogenic viruses modulate the canonical Wnt signaling pathway. This review discusses the interaction between proteins of several human oncogenic viruses with the Wnt signaling pathway.
Collapse
Affiliation(s)
- Sayyad Khanizadeh
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
- Department of Virology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Banafsheh Hasanvand
- Hepatitis Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | | | - Mohammad Almasian
- Department of English Language, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Gholamreza Goudarzi
- Department of Microbiology, School of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
20
|
No reliable gene expression biomarkers of current or impending neurocognitive impairment in peripheral blood monocytes of persons living with HIV. J Neurovirol 2018; 24:350-361. [PMID: 29582356 DOI: 10.1007/s13365-018-0625-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 02/20/2018] [Accepted: 02/22/2018] [Indexed: 10/17/2022]
Abstract
Events leading to and propagating neurocognitive impairment (NCI) in HIV-1-infected (HIV+) persons are largely mediated by peripheral blood monocytes. We previously identified expression levels of individual genes and gene networks in peripheral blood monocytes that correlated with neurocognitive functioning in HIV+ adults. Here, we expand upon those findings by examining if gene expression data at baseline is predictive of change in neurocognitive functioning 2 years later. We also attempt to validate the original findings in a new sample of HIV+ patients and determine if the findings are HIV specific by including HIV-uninfected (HIV-) participants as a comparison group. At two time points, messenger RNA (mRNA) was isolated from the monocytes of 123 HIV+ and 60 HIV- adults enrolled in the Multicenter AIDS Cohort Study and analyzed with the Illumina HT-12 v4 Expression BeadChip. All participants received baseline and follow-up neurocognitive testing 2 years after mRNA analysis. Data were analyzed using standard gene expression analysis and weighted gene co-expression network analysis with correction for multiple testing. Gene sets were analyzed for GO term enrichment. Only weak reproducibility of associations of single genes with neurocognitive functioning was observed, indicating that such measures are unreliable as biomarkers for HIV-related NCI; however, gene networks were generally preserved between time points and largely reproducible, suggesting that these may be more reliable. Several gene networks associated with variables related to HIV infection were found (e.g., MHC I antigen processing, TNF signaling, interferon gamma signaling, and antiviral defense); however, no significant associations were found for neurocognitive function. Furthermore, neither individual gene probes nor gene networks predicted later neurocognitive change. This study did not validate our previous findings and does not support the use of monocyte gene expression profiles as a biomarker for current or future HIV-associated neurocognitive impairment.
Collapse
|
21
|
Identification of Interleukin-27 (IL-27)/IL-27 Receptor Subunit Alpha as a Critical Immune Axis for In Vivo HIV Control. J Virol 2017; 91:JVI.00441-17. [PMID: 28592538 PMCID: PMC5533920 DOI: 10.1128/jvi.00441-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/28/2017] [Indexed: 11/20/2022] Open
Abstract
Intact and broad immune cell effector functions and specific individual cytokines have been linked to HIV disease outcome, but their relative contribution to HIV control remains unclear. We asked whether the proteome of secreted cytokines and signaling factors in peripheral blood can be used to discover specific pathways critical for host viral control. A custom glass-based microarray, able to measure >600 plasma proteins involved in cell-to-cell communication, was used to measure plasma protein profiles in 96 HIV-infected, treatment-naive individuals with high (>50,000) or low (<10,000 HIV RNA copies/ml) viral loads. Univariate and regression model analysis demonstrate that plasma levels of soluble interleukin-27 (IL-27) are significantly elevated in individuals with high plasma viremia (P < 0.0001) and are positively correlated with proviral HIV-DNA copy numbers in peripheral blood mononuclear cells (PBMC) (Rho = 0.4011; P = 0.0027). Moreover, soluble IL-27 plasma levels are negatively associated with the breadth and magnitude of the total virus-specific T-cell responses and directly with plasma levels of molecules involved in Wnt/β-catenin signaling. In addition to IL-27, gene expression levels of the specific IL-27 receptor (IL27RA) in PBMC correlated directly with both plasma viral load (Rho = 0.3531; P = 0.0218) and the proviral copy number in the peripheral blood as an indirect measure of partial viral reservoir (Rho = 0.4580; P = 0.0030). These results were validated in unrelated cohorts of early infected subjects as well as subjects before and after initiation of antiretroviral treatment, and they identify IL-27 and its specific receptor as a critical immune axis for the antiviral immune response and as robust correlates of viral load and proviral reservoir size in PBMC. IMPORTANCE The detailed knowledge of immune mechanisms that contribute to HIV control is a prerequisite for the design of effective treatment strategies to achieve HIV cure. Cells communicate with each other by secreting signaling proteins, and the blood is a key conduit for transporting such factors. Investigating the communication factors promoting effective immune responses and having potentially antiviral functions against HIV using a novel focused omics approach (“communicome”) has the potential to significantly improve our knowledge of effective host immunity and accelerate the HIV cure agenda. Including 140 subjects with variable viral loads and measuring the plasma levels of >600 soluble proteins, our data highlight the importance of Th17 cells and Wnt/β-catenin signaling in HIV control and especially identify the IL-27/IL-27 receptor subunit alpha (IL-27RA) axis as a predictor of plasma viral load and proviral copy number in the peripheral blood. These data may provide important guidance to therapeutic approaches in the HIV cure agenda.
Collapse
|
22
|
HIV-1 gp120 Upregulates Brain-Derived Neurotrophic Factor (BDNF) Expression in BV2 Cells via the Wnt/β-Catenin Signaling Pathway. J Mol Neurosci 2017; 62:199-208. [PMID: 28560687 DOI: 10.1007/s12031-017-0931-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 05/08/2017] [Indexed: 01/11/2023]
Abstract
HIV-1 gp120 plays a critical role in the pathogenesis of HIV-associated pain, but the underlying molecular mechanisms are incompletely understood. This study aims to determine the effect and possible mechanism of HIV-1 gp120 on BDNF expression in BV2 cells (a murine-derived microglial cell line). We observed that gp120 (10 ng/ml) activated BV2 cells in cultures and upregulated proBDNF/mBDNF. Furthermore, gp120-treated BV2 also accumulated Wnt3a and β-catenin, suggesting the activation of the Wnt/β-catenin pathway. We demonstrated that activation of the pathway by Wnt3a upregulated BDNF expression. In contrast, inhibition of the Wnt/β-catenin pathway by either DKK1 or IWR-1 attenuated BDNF upregulation induced by gp120 or Wnt3a. These findings collectively suggest that gp120 stimulates BDNF expression in BV2 cells via the Wnt/β-catenin signaling pathway.
Collapse
|
23
|
Hu XT. HIV-1 Tat-Mediated Calcium Dysregulation and Neuronal Dysfunction in Vulnerable Brain Regions. Curr Drug Targets 2016; 17:4-14. [PMID: 26028040 DOI: 10.2174/1389450116666150531162212] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 05/26/2015] [Indexed: 01/08/2023]
Abstract
Despite the success of combined antiretroviral therapy, more than half of HIV-1-infected patients in the USA show HIV-associated neurological and neuropsychiatric deficits. This is accompanied by anatomical and functional alterations in vulnerable brain regions of the mesocorticolimbic and nigrostriatal systems that regulate cognition, mood and motivation-driven behaviors, and could occur at early stages of infection. Neurons are not infected by HIV, but HIV-1 proteins (including but not limited to the HIV-1 trans-activator of transcription, Tat) induce Ca(2+) dysregulation, indicated by abnormal and excessive Ca(2+) influx and increased intracellular Ca(2+) release that consequentially elevate cytosolic free Ca(2+) levels ([Ca(2+)]in). Such alterations in intracellular Ca(2+) homeostasis significantly disturb normal functioning of neurons, and induce dysregulation, injury, and death of neurons or non-neuronal cells, and associated tissue loss in HIV-vulnerable brain regions. This review discusses certain unique mechanisms, particularly the over-activation and/or upregulation of the ligand-gated ionotropic glutamatergic NMDA receptor (NMDAR), the voltage-gated L-type Ca(2+) channel (L-channel) and the transient receptor potential canonical (TRPC) channel (a non-selective cation channel that is also permeable for Ca(2+)), which may underlie the deleterious effects of Tat on intracellular Ca(2+) homeostasis and neuronal hyper-excitation that could ultimately result in excitotoxicity. This review also seeks to provide summarized information for future studies focusing on comprehensive elucidation of molecular mechanisms underlying the pathophysiological effects of Tat (as well as some other HIV-1 proteins and immunoinflammatory molecules) on neuronal function, particularly in HIV-vulnerable brain regions.
Collapse
Affiliation(s)
- Xiu-Ti Hu
- Department of Pharmacology, Rush University Medical Center, Cohn Research Building, Rm. 414, 1735 W. Harrison Street, Chicago, IL 60612, USA.
| |
Collapse
|
24
|
Soontornniyomkij V, Kesby JP, Morgan EE, Bischoff-Grethe A, Minassian A, Brown GG, Grant I. Effects of HIV and Methamphetamine on Brain and Behavior: Evidence from Human Studies and Animal Models. J Neuroimmune Pharmacol 2016; 11:495-510. [PMID: 27484318 PMCID: PMC4985024 DOI: 10.1007/s11481-016-9699-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/26/2016] [Indexed: 10/21/2022]
Abstract
Methamphetamine (Meth) use is frequent among HIV-infected persons. Combined HIV and Meth insults may exacerbate neural injury in vulnerable neuroanatomic structures or circuitries in the brain, leading to increased behavioral disturbance and cognitive impairment. While acute and chronic effects of Meth in humans and animal models have been studied for decades, the neurobehavioral effects of Meth in the context of HIV infection are much less explored. In-depth understanding of the scope of neurobehavioral phenotypes and mechanisms in HIV/Meth intersection is needed. The present report summarizes published research findings, as well as unpublished data, in humans and animal models with regard to neurobehavioral disturbance, neuroimaging, and neuropathology, and in vitro experimental systems, with an emphasis on findings emerging from the National Institute on Drug Abuse (NIDA) funded Translational Methamphetamine AIDS Research Center (TMARC). Results from human studies and animal (primarily HIV-1 gp120 transgenic mouse) models thus far suggest that combined HIV and Meth insults increase the likelihood of neural injury in the brain. The neurobehavioral effects include cognitive impairment and increased tendencies toward impaired behavioral inhibition and social cognition. These impairments are relevant to behaviors that affect personal and social risks, e.g. worse medication adherence, riskier behaviors, and greater likelihood of HIV transmission. The underlying mechanisms may include electrochemical changes in neuronal circuitries, injury to white matter microstructures, synaptodendritic damage, and selective neuronal loss. Utilization of research methodologies that are valid across species is instrumental in generating new knowledge with clinical translational value.
Collapse
Affiliation(s)
- Virawudh Soontornniyomkij
- Department of Psychiatry, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0603, USA.
| | - James P Kesby
- Department of Psychiatry, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0603, USA
- Queensland Brain Institute, The University of Queensland, St. Lucia, Qld, Australia
| | - Erin E Morgan
- Department of Psychiatry, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0603, USA
| | - Amanda Bischoff-Grethe
- Department of Psychiatry, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0603, USA
| | - Arpi Minassian
- Department of Psychiatry, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0603, USA
| | - Gregory G Brown
- Department of Psychiatry, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0603, USA
| | - Igor Grant
- Department of Psychiatry, School of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0603, USA
| |
Collapse
|
25
|
A Genome-Wide RNA Interference Screen Identifies a Role for Wnt/β-Catenin Signaling during Rift Valley Fever Virus Infection. J Virol 2016; 90:7084-7097. [PMID: 27226375 PMCID: PMC4984662 DOI: 10.1128/jvi.00543-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/14/2016] [Indexed: 01/18/2023] Open
Abstract
Rift Valley fever virus (RVFV) is an arbovirus within the Bunyaviridae family capable of causing serious morbidity and mortality in humans and livestock. To identify host factors involved in bunyavirus replication, we employed genome-wide RNA interference (RNAi) screening and identified 381 genes whose knockdown reduced infection. The Wnt pathway was the most represented pathway when gene hits were functionally clustered. With further investigation, we found that RVFV infection activated Wnt signaling, was enhanced when Wnt signaling was preactivated, was reduced with knockdown of β-catenin, and was blocked using Wnt signaling inhibitors. Similar results were found using distantly related bunyaviruses La Crosse virus and California encephalitis virus, suggesting a conserved role for Wnt signaling in bunyaviral infection. We propose a model where bunyaviruses activate Wnt-responsive genes to regulate optimal cell cycle conditions needed to promote efficient viral replication. The findings in this study should aid in the design of efficacious host-directed antiviral therapeutics. IMPORTANCE RVFV is a mosquito-borne bunyavirus that is endemic to Africa but has demonstrated a capacity for emergence in new territories (e.g., the Arabian Peninsula). As a zoonotic pathogen that primarily affects livestock, RVFV can also cause lethal hemorrhagic fever and encephalitis in humans. Currently, there are no treatments or fully licensed vaccines for this virus. Using high-throughput RNAi screening, we identified canonical Wnt signaling as an important host pathway regulating RVFV infection. The beneficial role of Wnt signaling was observed for RVFV, along with other disparate bunyaviruses, indicating a conserved bunyaviral replication mechanism involving Wnt signaling. These studies supplement our knowledge of the fundamental mechanisms of bunyavirus infection and provide new avenues for countermeasure development against pathogenic bunyaviruses.
Collapse
|
26
|
Sardo L, Vakil PR, Elbezanti W, El-Sayed A, Klase Z. The inhibition of microRNAs by HIV-1 Tat suppresses beta catenin activity in astrocytes. Retrovirology 2016; 13:25. [PMID: 27060080 PMCID: PMC4826512 DOI: 10.1186/s12977-016-0256-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 03/23/2016] [Indexed: 12/15/2022] Open
Abstract
Background
Long term infection with HIV-1, even in the context of therapy, leads to chronic health problems including an array of neurocognitive dysfunctions. The viral Tat protein has previously been implicated in neuropathogenesis through its effect on astrocytes. Tat has also been shown to inhibit the biogenesis of miRNAs by inhibiting the activity of the cellular Dicer protein in an RNA dependent fashion. Whether there is a mechanistic connection between the ability of HIV-1 Tat to alter miRNAs and its observed effects on cells of the central nervous system has not been well examined. Results Here, we examined the ability of HIV-1 Tat to bind to and inhibit the production of over 300 cellular miRNAs. We found that the Tat protein only binds to and inhibits a fraction of the total cellular miRNAs. By mapping the downstream targets of these miRNAs we have determined a possible role for Tat alterations of miRNAs in the development of neuropathogenesis. Specifically, this work points to suppression of miRNAs function as the mechanism for Tat suppression of β-catenin activity. Conclusions The discovery that HIV-1 Tat inhibits only a fraction of miRNAs opens new areas of research regarding changes in cellular pathways through suppression of RNA interference. Our initial analysis strongly suggests that these pathways may contribute to HIV-1 disruption of the central nervous system. Electronic supplementary material The online version of this article (doi:10.1186/s12977-016-0256-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Luca Sardo
- Department of Biological Sciences, McNeil Science and Technology Center Room 273, University of the Sciences, 600 S 43rd Street, Philadelphia, PA, 19104, USA
| | - Priyal R Vakil
- Department of Biological Sciences, McNeil Science and Technology Center Room 273, University of the Sciences, 600 S 43rd Street, Philadelphia, PA, 19104, USA
| | - Weam Elbezanti
- Department of Biological Sciences, McNeil Science and Technology Center Room 273, University of the Sciences, 600 S 43rd Street, Philadelphia, PA, 19104, USA
| | - Anas El-Sayed
- Department of Biological Sciences, McNeil Science and Technology Center Room 273, University of the Sciences, 600 S 43rd Street, Philadelphia, PA, 19104, USA
| | - Zachary Klase
- Department of Biological Sciences, McNeil Science and Technology Center Room 273, University of the Sciences, 600 S 43rd Street, Philadelphia, PA, 19104, USA.
| |
Collapse
|
27
|
Berman JW, Carvallo L, Buckner CM, Luers A, Prevedel L, Bennett MV, Eugenin EA. HIV-tat alters Connexin43 expression and trafficking in human astrocytes: role in NeuroAIDS. J Neuroinflammation 2016; 13:54. [PMID: 26934876 PMCID: PMC4774036 DOI: 10.1186/s12974-016-0510-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/14/2016] [Indexed: 11/16/2022] Open
Abstract
Background HIV-associated neurocognitive disorders (HAND) are a major complication in at least half of the infected population despite effective antiretroviral treatment and immune reconstitution. HIV-associated CNS damage is not correlated with active viral replication but instead is associated with mechanisms that regulate inflammation and neuronal compromise. Our data indicate that one of these mechanisms is mediated by gap junction channels and/or hemichannels. Normally, gap junction channels shutdown under inflammatory conditions, including viral diseases. However, HIV infection upregulates Connexin43 (Cx43) expression and maintains gap junctional communication by unknown mechanism(s). Methods Human primary astrocytes were exposed to several HIV proteins as well as to HIV, and expression and function of Connexin43- and Connexin30-containing channels were determined by western blot, immunofluorescence, microinjection of a fluorescent tracer and chromatin immunoprecipitation (ChIP). Results Here, we demonstrate that HIV infection increases Cx43 expression in vivo. HIV-tat, the transactivator of the virus, and no other HIV proteins tested, increases Cx43 expression and maintains functional gap junctional communication in human astrocytes. Cx43 upregulation is mediated by binding of the HIV-tat protein to the Cx43 promoter, but not to the Cx30 promoter, resulting in increased Cx43 messenger RNA (mRNA) and protein as well as gap junctional communication. Conclusions We propose that HIV-tat contributes to the spread of intracellular toxic signals generated in a few HIV-infected cells into surrounding uninfected cells by upregulating gap junctional communication. In the current antiretroviral era, where HIV replication is often completely suppressed, viral factors such as HIV-tat are still produced and released from infected cells. Thus, blocking the effects of HIV-tat could result in new strategies to reduce the damaging consequences of HIV infection of the CNS.
Collapse
Affiliation(s)
- Joan W Berman
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA. .,Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Loreto Carvallo
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Clarisa M Buckner
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA. .,Current address: Laboratory of Immunoregulation, NIAID, Bethesda, MD, USA.
| | - Aimée Luers
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Lisa Prevedel
- Public Health Research Institute (PHRI), 225 Warren Street, Newark, NJ, 07103, USA.,Department of Microbiology and Molecular Genetics, Rutgers University, 225 Warren Street, Newark, NJ, 07103, USA
| | - Michael V Bennett
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Eliseo A Eugenin
- Public Health Research Institute (PHRI), 225 Warren Street, Newark, NJ, 07103, USA. .,Department of Microbiology and Molecular Genetics, Rutgers University, 225 Warren Street, Newark, NJ, 07103, USA.
| |
Collapse
|
28
|
Xie YK, Ding D, Wang HM, Kang CJ. A homologue gene of β-catenin participates in the development of shrimps and immune response to bacteria and viruses. FISH & SHELLFISH IMMUNOLOGY 2015; 47:147-156. [PMID: 26334791 DOI: 10.1016/j.fsi.2015.08.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 08/24/2015] [Accepted: 08/26/2015] [Indexed: 06/05/2023]
Abstract
β-Catenin is a multifunctional protein that is involved in many physiological processes, including development, cell proliferation, cell migration, and apoptosis. However, the function of β-Catenin in crustacean is unknown. In this study, the first shrimp homologous gene of β-catenin in Marsupenaeus japonicus (i.e., Mjβ-catenin) was identified and characterized. The full-length of the complementary DNA of Mjβ-catenin is 3130 bp, including a 2463 bp open reading frame that encodes 821 amino acid. Multiple alignment of β-Catenin proteins suggested that the Armadillo/β-Catenin-like repeat domains were conserved. Phylogenetic analysis showed that β-Catenin from shrimp was clustered into one group with invertebrate β-Catenin. The transcription of β-catenin in various development stages of shrimp was detected and persistently increased as the shrimp matured. In adult shrimp, β-catenin was widely distributed in detected tissues and has the relatively high expression level in gills, hemocytes, testes, and ovaries. The transcripts of β-catenin in tissues of adult shrimp were significantly up-regulated at various time points after infecting with Staphylococcus aureus, Vibrio anguillarum, and white-spot syndrome virus. Furthermore, knockdown of β-catenin resulted in impaired bacterial clearance ability and increased virus copy in shrimp in vivo. Therefore, β-Catenin in shrimp participates in the development and immune response of shrimps.
Collapse
Affiliation(s)
- Ya-Kai Xie
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation of the Ministry of Education; Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology; School of Life Sciences, Shandong University, 27 Shanda South Road, Jinan, Shandong 250100, China
| | - Ding Ding
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation of the Ministry of Education; Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology; School of Life Sciences, Shandong University, 27 Shanda South Road, Jinan, Shandong 250100, China
| | - Hui-Min Wang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation of the Ministry of Education; Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology; School of Life Sciences, Shandong University, 27 Shanda South Road, Jinan, Shandong 250100, China
| | - Cui-Jie Kang
- The Key Laboratory of Plant Cell Engineering and Germplasm Innovation of the Ministry of Education; Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology; School of Life Sciences, Shandong University, 27 Shanda South Road, Jinan, Shandong 250100, China.
| |
Collapse
|
29
|
Aljawai Y, Richards MH, Seaton MS, Narasipura SD, Al-Harthi L. β-Catenin/TCF-4 signaling regulates susceptibility of macrophages and resistance of monocytes to HIV-1 productive infection. Curr HIV Res 2015; 12:164-73. [PMID: 24862328 DOI: 10.2174/1570162x12666140526122249] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 09/26/2013] [Accepted: 10/01/2013] [Indexed: 01/07/2023]
Abstract
Cells of the monocyte/macrophage lineage are an important target for HIV-1 infection. They are often at anatomical sites linked to HIV-1 transmission and are an important vehicle for disseminating HIV-1 throughout the body, including the central nervous system. Monocytes do not support extensive productive HIV-1 replication, but they become more susceptible to HIV-1infection as they differentiate into macrophages. The mechanisms guiding susceptibility of HIV-1 replication in monocytes versus macrophages are not entirely clear. We determined whether endogenous activity of β-catenin signaling impacts differential susceptibility of monocytes and monocyte-derived macrophages (MDMs) to productive HIV-1 replication. We show that monocytes have an approximately 4-fold higher activity of β-catenin signaling than MDMs. Inducing β-catenin in MDMs suppressed HIV-1 replication by 5-fold while inhibiting endogenous β-catenin signaling in monocytes by transfecting with a dominant negative mutant for the downstream effector of β- catenin (TCF-4) promoted productive HIV-1 replication by 6-fold. These findings indicate that β-catenin/TCF-4 is an important pathway for restricted HIV-1 replication in monocytes and plays a significant role in potentiating HIV-1 replication as monocytes differentiate into macrophages. Targeting this pathway may provide a novel strategy to purge the latent reservoir from monocytes/macrophages, especially in sanctuary sites for HIV-1 such as the central nervous system.
Collapse
Affiliation(s)
| | | | | | | | - Lena Al-Harthi
- Rush University Medical Center, Department of Immunology and Microbiology, 1735 W. Harrison Street, 614 Cohn, Chicago, IL 60612, USA.
| |
Collapse
|
30
|
Inestrosa NC, Varela-Nallar L. Wnt signaling in the nervous system and in Alzheimer's disease. J Mol Cell Biol 2014; 6:64-74. [PMID: 24549157 DOI: 10.1093/jmcb/mjt051] [Citation(s) in RCA: 240] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Wnts comprise a large family of proteins that have shown to be part of a signaling cascade that regulates several aspects of development including organogenesis, midbrain development as well as stem cell proliferation. Wnt signaling pathway plays different roles in the development of neuronal circuits and also in the adult brain, where it regulates synaptic transmission and plasticity. It has been also implicated in various diseases including cancer and neurodegenerative diseases, reflecting its relevance in fundamental biological processes. This review summarizes the progress about Wnts function in mature nervous system with a focus on Alzheimer's disease (AD). We discuss the prospects of modulating canonical and non-canonical Wnt signaling as a strategy for neuroprotection. This will include the potential of Wnts to: (i) act as potent regulators of hippocampal synapses and impact in learning and memory; (ii) regulate adult neurogenesis; and finally (iii) control AD pathogenesis.
Collapse
Affiliation(s)
- Nibaldo C Inestrosa
- Center for Aging and Regeneration (CARE), Department of Cell and Molecular Biology, Faculty of Biological Sciences, Pontifical Catholic University of Chile, Santiago, Chile
| | | |
Collapse
|
31
|
Porcupine is not required for the production of the majority of Wnts from primary human astrocytes and CD8+ T cells. PLoS One 2014; 9:e92159. [PMID: 24647048 PMCID: PMC3960167 DOI: 10.1371/journal.pone.0092159] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 02/18/2014] [Indexed: 11/19/2022] Open
Abstract
Wnts are small secreted glycoproteins that are highly conserved among species. To date, 19 Wnts have been described, which initiate a signal transduction cascade that is either β-catenin dependent or independent, culminating in the regulation of hundreds of target genes. Extracellular release of Wnts is dependent on lipidation of Wnts by porcupine, a membrane-bound-O-acyltransferase protein in the endoplasmic reticulum. Studies demonstrating the requirement of porcupine for Wnts production are based on cell line and non-human primary cells. We evaluated the requirement for porcupine for Wnts production in human primary astrocytes and CD8+ T cells. Using IWP-2, an inhibitor of porcupine, or siRNA targeting porcupine, we demonstrate that porcupine is not required for the release of Wnt 1, 3, 5b, 6,7a, 10b, and 16a. While IWP had no effect on Wnt 2b release, knockdown of porcupine by siRNA reduced Wnt 2b release by 60%. These data indicate that porcupine-mediated production of Wnts is context dependent and is not required for all Wnts production, suggesting that alternative mechanisms exist for Wnts production.
Collapse
|
32
|
Orellana JA, Sáez JC, Bennett MVL, Berman JW, Morgello S, Eugenin EA. HIV increases the release of dickkopf-1 protein from human astrocytes by a Cx43 hemichannel-dependent mechanism. J Neurochem 2013; 128:752-63. [PMID: 24134157 DOI: 10.1111/jnc.12492] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/27/2013] [Accepted: 10/11/2013] [Indexed: 11/26/2022]
Abstract
Human immunodeficiency virus-1 (HIV) is a public health issue and a major complication of the disease is NeuroAIDS. In vivo, microglia/macrophages are the main cells infected. However, a low but significant number of HIV-infected astrocytes has also been detected, but their role in the pathogenesis of NeuroAIDS is not well understood. Our previous data indicate that gap junction channels amplify toxicity from few HIV-infected into uninfected astrocytes. Now, we demonstrated that HIV infection of astrocytes results in the opening of connexin43 hemichannels (HCs). HIV-induced opening of connexin43 HCs resulted in dysregulated secretion of dickkopf-1 protein (DKK1, a soluble wnt pathway inhibitor). Treatment of mixed cultures of neurons and astrocytes with DKK1, in the absence of HIV infection, resulted in the collapse of neuronal processes. HIV infection of mixed cultures of human neurons and astrocytes also resulted in the collapse of neuronal processes through a DKK1-dependent mechanism. In addition, dysregulated DKK1 expression in astrocytes was observed in human brain tissue sections of individuals with HIV encephalitis as compared to tissue sections from uninfected individuals. Thus, we demonstrated that HIV infection of astrocytes induces dysregulation of DKK1 by a HC-dependent mechanism that contributes to the brain pathogenesis observed in HIV-infected individuals. Our studies demonstrated that HIV infection of astrocytes, despite minimal replication and a low number of infected cells, induces dysregulation of DKK1 secretion by a Cx43 hemichannel (HC)-dependent mechanism. Enhanced DKK1 secretion in response to HIV infection of glial cells compromised formation and stability of neuronal processes, similar to the synaptic compromise observed in HIV-infected individuals. In addition, analysis of human brain tissue sections obtained from encephalitic individuals also shows enhanced expression of DKK1 in astrocytes. Our data provide a novel mechanism by which HIV infection of glial cells participate in the pathogenesis of brain dysfunction observed in HIV-infected individuals. LRP5 = Low-density lipoprotein receptor-related protein 5.
Collapse
Affiliation(s)
- Juan Andres Orellana
- Public Health Research Institute (PHRI), Rutgers New Jersey Medical School, Rutgers The State University of New Jersey, Newark, New Jersey, USA
| | | | | | | | | | | |
Collapse
|
33
|
Weiser K, Barton M, Gershoony D, DasGupta R, Cardozo T. HIV's Nef interacts with β-catenin of the Wnt signaling pathway in HEK293 cells. PLoS One 2013; 8:e77865. [PMID: 24130899 PMCID: PMC3795062 DOI: 10.1371/journal.pone.0077865] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 09/13/2013] [Indexed: 11/18/2022] Open
Abstract
The Wnt signaling pathway is implicated in major physiologic cellular functions, such as proliferation, migration, cell fate specification, maintenance of pluripotency and induction of tumorigenicity. Proliferation and migration are important responses of T-cells, which are major cellular targets of HIV infection. Using an informatics screen, we identified a previously unsuspected interaction between HIV’s Nef protein and β-catenin, a key component of the Wnt pathway. A segment in Nef contains identical amino acids at key positions and structurally mimics the β-catenin binding sites on endogenous β-catenin ligands. The interaction between Nef and β-catenin was confirmed in vitro and in a co-immunoprecipitation from HEK293 cells. Moreover, the introduction of Nef into HEK293 cells specifically inhibited a Wnt pathway reporter.
Collapse
Affiliation(s)
- Keren Weiser
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, United States of America
| | - Meredith Barton
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, United States of America
| | - Dafna Gershoony
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, United States of America
| | - Ramanuj DasGupta
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, United States of America
| | - Timothy Cardozo
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
34
|
Szotek EL, Narasipura SD, Al-Harthi L. 17β-Estradiol inhibits HIV-1 by inducing a complex formation between β-catenin and estrogen receptor α on the HIV promoter to suppress HIV transcription. Virology 2013; 443:375-83. [PMID: 23769242 DOI: 10.1016/j.virol.2013.05.027] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 05/13/2013] [Accepted: 05/18/2013] [Indexed: 01/02/2023]
Abstract
Human Immunodeficiency virus type 1 (HIV-1) disproportionately affects women, accounting for > 50% of new HIV infections in adults worldwide. While multiple mechanisms may contribute to a greater degree of HIV infection in women than men, we evaluated the direct effect of 17β-estradiol, the most bioactive form of estrogen in women, on HIV replication in peripheral blood mononuclear cells (PBMCs). We demonstrate that 17β-estradiol, in an ERα dependent manner, inhibits HIV replication by activating β-catenin signaling. Specifically, we show for the first time that 17β-estradiol induces a complex formation between ERα and β-catenin which tether on the HIV LTR at -143nt site from +1 start site of HIV transcription to repress HIV promoter activity. These studies define a role of 17β-estradiol in inhibiting HIV replication which may impact HIV pathogenesis in women and add to a growing list of viruses that are inhibited by 17β-estradiol through ERα engagment.
Collapse
Affiliation(s)
- Erika L Szotek
- Department of Immunology/Microbiology, Rush University Medical Center, Chicago, IL 60612, USA
| | | | | |
Collapse
|
35
|
Wnt/β-catenin and its diverse physiological cell signaling pathways in neurodegenerative and neuropsychiatric disorders. J Neuroimmune Pharmacol 2012; 7:725-30. [PMID: 23114888 DOI: 10.1007/s11481-012-9412-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 10/09/2012] [Indexed: 01/08/2023]
Abstract
Wnt signaling is a fundamental pathway in embryogenesis which is evolutionary conserved from metazoans to humans. Much of our understanding of Wnt signaling events emerged from key developmental studies in drosophila, zebra fish, xenopus, and mice. Considerable data now exists on the role of Wnt signaling beyond these developmental processes and in particular its role in health and disease. The focus of this special issue is on Wnt/β-catenin and its diverse physiological cell signaling pathways in neurodegenerative and neuropsychiatric disorders. This special issue is composed of six reviews and two original articles selected to highlight recent advances in the role of Wnt signaling in CNS embryonic development, in adult brain function, in neurodegenerative conditions such as Alzheimer's disease, schizophrenia, NeuroAIDS, and in gliomas. The finding that β-catenin can translocate to the nucleus where it binds to TCF/LEF transcription factors to regulate target gene expression was a seminal observation that linked β-catenin/LEF to T cell development and differentiation. We also provide a nostalgic look on recent advances in role of Wnts in T cell development and maturation. These reviews highlight the extensive body of work in these thematic areas as well as identify knowledge gaps, where appropriate. Understanding Wnt function under healthy and diseased conditions may provide a therapeutic resource, albeit it a challenging one, in diseases where dysfunctional and/or diminished Wnt signaling is a prominent player in the disease process.
Collapse
|