1
|
Lazarević M, Stanisavljević S, Nikolovski N, Dimitrijević M, Miljković Đ. Complete Freund's adjuvant as a confounding factor in multiple sclerosis research. Front Immunol 2024; 15:1353865. [PMID: 38426111 PMCID: PMC10902151 DOI: 10.3389/fimmu.2024.1353865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Complete Freund's adjuvant (CFA) is used as a standard adjuvant for the induction of experimental autoimmune encephalomyelitis (EAE), the most commonly used animal model in multiple sclerosis studies. Still, CFA induces glial activation and neuroinflammation on its own and provokes pain. In addition, as CFA contains Mycobacteria, an immune response against bacterial antigens is induced in parallel to the response against central nervous system antigens. Thus, CFA can be considered as a confounding factor in multiple sclerosis-related studies performed on EAE. Here, we discuss the effects of CFA in EAE in detail and present EAE variants induced in experimental animals without the use of CFA. We put forward CFA-free EAE variants as valuable tools for studying multiple sclerosis pathogenesis and therapeutic approaches.
Collapse
Affiliation(s)
| | | | | | | | - Đorđe Miljković
- Department of Immunology, Institute for Biological Research “Siniša Stanković” - National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
2
|
Maxwell DL, Orian JM. Cerebellar pathology in multiple sclerosis and experimental autoimmune encephalomyelitis: current status and future directions. J Cent Nerv Syst Dis 2023; 15:11795735231211508. [PMID: 37942276 PMCID: PMC10629308 DOI: 10.1177/11795735231211508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 10/15/2023] [Indexed: 11/10/2023] Open
Abstract
Recent decades have witnessed significant progress in understanding mechanisms driving neurodegeneration and disease progression in multiple sclerosis (MS), but with a focus on the cerebrum. In contrast, there have been limited studies of cerebellar disease, despite the common occurrence of cerebellar symptoms in this disorder. These rare studies, however, highlight the early cerebellar involvement in disease development and an association between the early occurrence of cerebellar lesions and risk of worse prognosis. In parallel developments, it has become evident that far from being a region specialized in movement control, the cerebellum plays a crucial role in cognitive function, via circuitry connecting the cerebellum to association areas of the cerebrum. This complexity, coupled with challenges in imaging of the cerebellum have been major obstacles in the appreciation of the spatio-temporal evolution of cerebellar damage in MS and correlation with disability and progression. MS studies based on animal models have relied on an induced neuroinflammatory disease known as experimental autoimmune encephalomyelitis (EAE), in rodents and non-human primates (NHP). EAE has played a critical role in elucidating mechanisms underpinning tissue damage and been validated for the generation of proof-of-concept for cerebellar pathological processes relevant to MS. Additionally, rodent and NHP studies have formed the cornerstone of current knowledge of functional anatomy and cognitive processes. Here, we propose that improved insight into consequences of cerebellar damage in MS at the functional, cellular and molecular levels would be gained by more extensive characterization of EAE cerebellar pathology combined with the power of experimental paradigms in the field of cognition. Such combinatorial approaches would lead to improved potential for the development of MS sensitive markers and evaluation of candidate therapeutics.
Collapse
Affiliation(s)
- Dain L. Maxwell
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
- Department of Anatomy and Neuroscience, The University of Melbourne, Parkville, VIC, Australia
| | - Jacqueline M. Orian
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
3
|
Nihei Y, Higashiyama M, Miyauchi K, Haniuda K, Suzuki Y, Kubo M, Kitamura D. Subcutaneous immunisation with zymosan generates mucosal IgA-eliciting memory and protects mice from heterologous influenza virus infection. Int Immunol 2023; 35:377-386. [PMID: 37140172 DOI: 10.1093/intimm/dxad013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 04/29/2023] [Indexed: 05/05/2023] Open
Abstract
Immunoglobulin A (IgA) is the most abundant isotype of antibodies and provides a first line of defense at the mucosa against pathogens invading the host. It has been widely accepted that the mucosal IgA response provided by vaccination requires mucosal inoculation, and intranasal inoculation has been proposed for vaccines against influenza virus. Considering the difficulty of intranasal vaccination in infants or elderly people, however, parenteral vaccination that provides the mucosal IgA response is desirable. Here, we demonstrate that subcutaneous immunisation with zymosan, a yeast cell wall constituent known to be recognised by Dectin-1 and TLR2, potentiates the production of antigen-specific IgA antibodies in the sera and airway mucosa upon intranasal antigen challenge. We confirmed that the antigen-specific IgA-secreting cells accumulated in the lung and nasal-associated lymphoid tissues after the antigen challenge. Such an adjuvant effect of zymosan in the primary immunisation for the IgA response depended on Dectin-1 signalling, but not on TLR2. The IgA response to the antigen challenge required both antigen-specific memory B and T cells, and the generation of memory T cells, but not memory B cells, depended on zymosan as an adjuvant. Finally, we demonstrated that subcutaneous inoculation of inactivated influenza virus with zymosan, but not with alum, mostly protected the mice from infection with a lethal dose of a heterologous virus strain. These data suggest that zymosan is a possible adjuvant for parenteral immunisation that generates memory IgA responses to respiratory viruses such as influenza virus.
Collapse
Affiliation(s)
- Yoshihito Nihei
- Department of Nephrology, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
- Division of Cancer Cell Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Chiba 278-0022, Japan
| | - Mizuki Higashiyama
- Division of Cancer Cell Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Chiba 278-0022, Japan
| | - Kosuke Miyauchi
- Laboratory for Cytokine Regulation, Center for Integrative Medical Science, RIKEN Yokohama Institute, Yokohama, Kanagawa 230-0045, Japan
| | - Kei Haniuda
- Division of Cancer Cell Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Chiba 278-0022, Japan
| | - Yusuke Suzuki
- Department of Nephrology, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Masato Kubo
- Laboratory for Cytokine Regulation, Center for Integrative Medical Science, RIKEN Yokohama Institute, Yokohama, Kanagawa 230-0045, Japan
- Division of Molecular Pathology, RIBS, Tokyo University of Science, Noda, Chiba 278-0022, Japan
| | - Daisuke Kitamura
- Division of Cancer Cell Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Chiba 278-0022, Japan
| |
Collapse
|
4
|
Müller SA, Shmueli MD, Feng X, Tüshaus J, Schumacher N, Clark R, Smith BE, Chi A, Rose-John S, Kennedy ME, Lichtenthaler SF. The Alzheimer's disease-linked protease BACE1 modulates neuronal IL-6 signaling through shedding of the receptor gp130. Mol Neurodegener 2023; 18:13. [PMID: 36810097 PMCID: PMC9942414 DOI: 10.1186/s13024-023-00596-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/11/2023] [Indexed: 02/24/2023] Open
Abstract
BACKGROUND The protease BACE1 is a major drug target for Alzheimer's disease, but chronic BACE1 inhibition is associated with non-progressive cognitive worsening that may be caused by modulation of unknown physiological BACE1 substrates. METHODS To identify in vivo-relevant BACE1 substrates, we applied pharmacoproteomics to non-human-primate cerebrospinal fluid (CSF) after acute treatment with BACE inhibitors. RESULTS Besides SEZ6, the strongest, dose-dependent reduction was observed for the pro-inflammatory cytokine receptor gp130/IL6ST, which we establish as an in vivo BACE1 substrate. Gp130 was also reduced in human CSF from a clinical trial with a BACE inhibitor and in plasma of BACE1-deficient mice. Mechanistically, we demonstrate that BACE1 directly cleaves gp130, thereby attenuating membrane-bound gp130 and increasing soluble gp130 abundance and controlling gp130 function in neuronal IL-6 signaling and neuronal survival upon growth-factor withdrawal. CONCLUSION BACE1 is a new modulator of gp130 function. The BACE1-cleaved, soluble gp130 may serve as a pharmacodynamic BACE1 activity marker to reduce the occurrence of side effects of chronic BACE1 inhibition in humans.
Collapse
Affiliation(s)
- Stephan A Müller
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Merav D Shmueli
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Xiao Feng
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Johanna Tüshaus
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | | | - Ryan Clark
- Neuroscience, Merck & Co. Inc., Boston, MA, USA
| | - Brad E Smith
- Laboratory Animal Resources, Merck & Co. Inc., West Point, PA, USA
| | - An Chi
- Chemical Biology, Merck & Co. Inc., Boston, MA, USA
| | | | | | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany. .,Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany. .,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
5
|
McCombe PA, Greer JM. Effects of biological sex and pregnancy in experimental autoimmune encephalomyelitis: It's complicated. Front Immunol 2022; 13:1059833. [PMID: 36518769 PMCID: PMC9742606 DOI: 10.3389/fimmu.2022.1059833] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 11/03/2022] [Indexed: 11/29/2022] Open
Abstract
Experimental autoimmune encephalomyelitis (EAE) can be induced in many animal strains by inoculation with central nervous system antigens and adjuvant or by the passive transfer of lymphocytes reactive with these antigens and is widely used as an animal model for multiple sclerosis (MS). There are reports that female sex and pregnancy affect EAE. Here we review the effects of biological sex and the effects of pregnancy on the clinical features (including disease susceptibility) and pathophysiology of EAE. We also review reports of the possible mechanisms underlying these differences. These include sex-related differences in the immune system and in the central nervous system, the effects of hormones and the sex chromosomes and molecules unique to pregnancy. We also review sex differences in the response to factors that can modify the course of EAE. Our conclusion is that the effects of biological sex in EAE vary amongst animal models and should not be widely extrapolated. In EAE, it is therefore essential that studies looking at the effects of biological sex or pregnancy give full information about the model that is used (i.e. animal strain, sex, the inducing antigen, timing of EAE induction in relation to pregnancy, etc.). In addition, it would be preferable if more than one EAE model were used, to show if any observed effects are generalizable. This is clearly a field that requires further work. However, understanding of the mechanisms of sex differences could lead to greater understanding of EAE, and suggest possible therapies for MS.
Collapse
Affiliation(s)
| | - Judith M. Greer
- UQ Centre for Clinical Research, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
6
|
Spatially resolved gene regulatory and disease-related vulnerability map of the adult Macaque cortex. Nat Commun 2022; 13:6747. [PMID: 36347848 PMCID: PMC9643508 DOI: 10.1038/s41467-022-34413-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Abstract
Single cell approaches have increased our knowledge about the cell type composition of the non-human primate (NHP), but a detailed characterization of area-specific regulatory features remains outstanding. We generated single-cell transcriptomic and chromatin accessibility (single-cell ATAC) data of 358,237 cells from prefrontal cortex (PFC), primary motor cortex (M1) and primary visual cortex (V1) of adult female cynomolgus monkey brain, and integrated this dataset with Stereo-seq (spatial enhanced resolution omics-sequencing) of the corresponding cortical areas to assign topographic information to molecular states. We identified area-specific chromatin accessible sites and their targeted genes, including the cell type-specific transcriptional regulatory network associated with excitatory neurons heterogeneity. We reveal calcium ion transport and axon guidance genes related to specialized functions of PFC and M1, identified the similarities and differences between adult macaque and human oligodendrocyte trajectories, and mapped the genetic variants and gene perturbations of human diseases to NHP cortical cells. This resource establishes a transcriptomic and chromatin accessibility combinatory regulatory landscape at a single-cell and spatially resolved resolution in NHP cortex.
Collapse
|
7
|
Laman JD. Cutting edge technologies in chronic inflammation research. Exp Dermatol 2022; 31 Suppl 1:17-21. [PMID: 36059185 PMCID: PMC9539701 DOI: 10.1111/exd.14648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/27/2022]
Abstract
This concise review provides the broad background and selection from the literature for a Keynote lecture at EHSF 2022 on state of the art technologies in inflammation research, with an emphasis on disease of the skin and the nervous system. The value of ex vivo skin explant models is discussed, as well as the innovative use of animal models, wherein the crucial roles of antigen experience and "wild" microbiota are emphasized. Spectral flow cytometry allowing large surface marker panels to be explored is touched upon, as well as multiplex technology for cytokines and other analytes important for inflammation and tissue damage. Single-cell sequencing and in situ transcriptomics (spatial profiling) now provide exciting granular information on functional cell subsets, interactions and plasticity. A selection of novel research and diagnostic tools for antibodies against linear peptides or gangliosides is presented. Finally, the review discusses a new anti-inflammatory strategy against skin inflammation with a panel of protease inhibitors derived from the protein fraction of industrial starch potatoes.
Collapse
Affiliation(s)
- Jon D Laman
- Department of Pathology and Medical Biology, University Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
| |
Collapse
|
8
|
Poster Presentations. J Cereb Blood Flow Metab 2022; 42:108-273. [PMID: 35645154 PMCID: PMC9152586 DOI: 10.1177/0271678x221096357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
9
|
Stimmer L, Confais J, Jong A, Veth J, Fovet CM, Horellou P, Massonneau J, Perrin A, Miotello G, Avazeri E, Hart B, Deiva K, Le Grand R, Armengaud J, Bajramovic JJ, Contamin H, Serguera C. Recombinant myelin oligodendrocyte glycoprotein quality modifies evolution of experimental autoimmune encephalitis in macaques. J Transl Med 2021; 101:1513-1522. [PMID: 34376778 DOI: 10.1038/s41374-021-00646-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 07/11/2021] [Accepted: 07/16/2021] [Indexed: 11/09/2022] Open
Abstract
Experimental autoimmune encephalitis (EAE) is a well-recognized model for the study of human acquired demyelinating diseases (ADD), a group of inflammatory disorders of the central nervous system (CNS) characterized by inflammation, myelin loss, and neurological impairment of variable severity. In rodents, EAE is typically induced by active immunization with a combination of myelin-derived antigen and a strong adjuvant as complete Freund's adjuvant (CFA), containing components of the mycobacterial wall, while myelin antigen alone or associated with other bacterial components, as lipopolysaccharides (LPS), often fails to induce EAE. In contrast to this, EAE can be efficiently induced in non-human primates by immunization with the recombinant human myelin oligodendrocyte glycoprotein (rhMOG), produced in Escherichia coli (E. coli), purified and formulated with incomplete Freund's adjuvant (IFA), which lacks bacterial elements. Here, we provide evidence indicating how trace amounts of bacterial contaminants within rhMOG may influence the course and severity of EAE in the cynomolgus macaque immunized with rhMOG/IFA. The residual amount of E. coli contaminants, as detected with mass spectrometry within rhMOG protein stocks, were found to significantly modulate the severity of clinical, radiological, and histologic hallmarks of EAE in macaques. Indeed, animals receiving the purest rhMOG showed milder disease severity, increased numbers of remissions, and reduced brain damage. Histologically, these animals presented a wider diversity of lesion types, including changes in normal-appearing white matter and prephagocytic lesions. Non-human primates EAE model with milder histologic lesions reflect more accurately ADD and permits to study of the pathogenesis of disease initiation and progression.
Collapse
Affiliation(s)
- Lev Stimmer
- Commissariat à l'Énergie Atomique (CEA), Institut de Biologie François Jacob, Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses, France. .,INSERM, UMR 1127, Paris Brain & Spine Institute (ICM), Paris, France.
| | | | - Anke't Jong
- Alternatives Unit, Biomedical Primate Research Centre (BPRC), Rijswijk, the Netherlands
| | - Jennifer Veth
- Alternatives Unit, Biomedical Primate Research Centre (BPRC), Rijswijk, the Netherlands
| | - Claire-Maëlle Fovet
- Commissariat à l'Énergie Atomique (CEA), Institut de Biologie François Jacob, Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses, France.,Université Paris-Sud, CEA, Inserm UMR 1184 and Institut de biologie François Jacob, Infectious Diseases Models for Innovative Therapies (IDMIT), Fontenay-aux-Roses, France
| | - Philippe Horellou
- Université Paris-Sud, CEA, Inserm UMR 1184 and Institut de biologie François Jacob, Infectious Diseases Models for Innovative Therapies (IDMIT), Fontenay-aux-Roses, France
| | - Julie Massonneau
- Commissariat à l'Énergie Atomique (CEA), Institut de Biologie François Jacob, Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses, France
| | - Audrey Perrin
- Commissariat à l'Énergie Atomique (CEA), Institut de Biologie François Jacob, Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses, France
| | - Guylaine Miotello
- Département Médicaments et Technologie pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, Bagnols-sur-Cèze, France
| | - Emilie Avazeri
- Département Médicaments et Technologie pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, Bagnols-sur-Cèze, France
| | - Bert't Hart
- Department Anatomy and Neuroscience, Amsterdam University Medical Center (VUMC), Amsterdam, Netherlands and University of Groningen, Department Biomedical Sciences of Cells and Systems, University Medical Center Groningen, Groningen, the Netherlands
| | - Kumaran Deiva
- Université Paris-Sud, CEA, Inserm UMR 1184 and Institut de biologie François Jacob, Infectious Diseases Models for Innovative Therapies (IDMIT), Fontenay-aux-Roses, France.,AP-HP, Hôpitaux Universitaires Paris Saclay, Department of Pediatric Neurology, National Reference Center for Rare Inflammatory and Auto-immune Brain and Spinal Diseases, Paris, France
| | - Roger Le Grand
- Université Paris-Sud, CEA, Inserm UMR 1184 and Institut de biologie François Jacob, Infectious Diseases Models for Innovative Therapies (IDMIT), Fontenay-aux-Roses, France
| | - Jean Armengaud
- Département Médicaments et Technologie pour la Santé (DMTS), Université Paris-Saclay, CEA, INRAE, SPI, Bagnols-sur-Cèze, France
| | - Jeffrey J Bajramovic
- Alternatives Unit, Biomedical Primate Research Centre (BPRC), Rijswijk, the Netherlands
| | | | - Ché Serguera
- Commissariat à l'Énergie Atomique (CEA), Institut de Biologie François Jacob, Molecular Imaging Research Center (MIRCen), Fontenay-aux-Roses, France.,INSERM, UMR 1127, Paris Brain & Spine Institute (ICM), Paris, France.,Asfalia Biologics, Paris Brain & Spine Institute (ICM), Paris, France
| |
Collapse
|
10
|
Shimizu K, Agata K, Takasugi S, Goto S, Narita Y, Asai T, Magata Y, Oku N. New strategy for MS treatment with autoantigen-modified liposomes and their therapeutic effect. J Control Release 2021; 335:389-397. [PMID: 34033858 DOI: 10.1016/j.jconrel.2021.05.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023]
Abstract
As current treatments for multiple sclerosis (MS) remain chemotherapeutic ones directed toward symptoms, the development of a curative treatment is urgently required. Herein, we show an autoreactive immune cell-targetable approach using autoantigen-modified liposomes for the curative treatment of MS. In these experiments, experimental autoimmune encephalomyelitis (EAE) induced by autoantigenic myelin oligodendrocyte glycoprotein (MOG) peptide was used as a model of primary progressive MS, and MOG-modified liposomes encapsulating doxorubicin (MOG-LipDOX) were used as a therapeutic drug. The results showed that the progression of encephalomyelitis symptoms was significantly suppressed by MOG-LipDOX injection, whereas the other samples failed to show any effect. Additionally, invasion of inflammatory immune cells into the spinal cord and demyelination of neurons were clearly suppressed in the MOG-LipDOX-treated mice. FACS analysis revealed that the number of both MOG-recognizable CD4+ T cells in the spleen was obviously decreased after MOG-LipDOX treatment. Furthermore, the number of effector Th17 cells in the spleen was significantly decreased and that of regulatory Treg cells was concomitantly increased. Finally, we demonstrated that myelin proteolipid protein (PLP)-modified liposomes encapsulating DOX (PLP-LipDOX) also showed the therapeutic effect on relapsing-remitting EAE. These findings indicate that autoantigen-modified liposomal drug produced a highly therapeutic effect on EAE by delivering the encapsulated drug to autoantigen-recognizable CD4+ T cells and thus suppressing autoreactive immune responses. The present study suggests that the use of these autoantigen-modified liposomes promises to be a suitable therapeutic approach for the cure of MS.
Collapse
Affiliation(s)
- Kosuke Shimizu
- Department of Molecular Imaging, Institute of Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu City, Shizuoka 431-3192, Japan; Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka City, Shizuoka 422-8526, Japan.
| | - Kazuki Agata
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka City, Shizuoka 422-8526, Japan
| | - Shohei Takasugi
- Department of Molecular Imaging, Institute of Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu City, Shizuoka 431-3192, Japan; Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka City, Shizuoka 422-8526, Japan
| | - Shungo Goto
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka City, Shizuoka 422-8526, Japan
| | - Yudai Narita
- Department of Molecular Imaging, Institute of Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu City, Shizuoka 431-3192, Japan; Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka City, Shizuoka 422-8526, Japan
| | - Tomohiro Asai
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka City, Shizuoka 422-8526, Japan
| | - Yasuhiro Magata
- Department of Molecular Imaging, Institute of Medical Photonics Research, Preeminent Medical Photonics Education & Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu City, Shizuoka 431-3192, Japan
| | - Naoto Oku
- Department of Medical Biochemistry, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka City, Shizuoka 422-8526, Japan; Faculty of Pharma-Science, Teikyo University, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| |
Collapse
|
11
|
Ramasamy R, Smith PP. PART 2: Mouse models for multiple sclerosis research. Neurourol Urodyn 2021; 40:958-967. [PMID: 33739481 DOI: 10.1002/nau.24654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 12/20/2022]
Abstract
Lower urinary tract symptoms and dysfunction (LUTS/LUTD) contribute to loss of quality of life, morbidity, and need for medical intervention in most patients with multiple sclerosis (MS). Although MS is an inflammatory neurodegenerative disease, clinical manifestations including continence control disorders have traditionally been attributed to the loss of neural signaling due to neurodegeneration. Clinical approaches to MS-LUTS/LUTD have focused on addressing symptoms in the context of urodynamic dysfunctions as pathophysiologic understandings are incomplete. The mouse model provides a useful research platform for discovery of more detailed molecular, cellular, and tissue-level knowledge of the disease and its clinical manifestations. The aim of this two-part review is to provide a state-of-the-art update on the use of the mouse model for MS research, with a focus on lower urinary tract symptoms. Part I presents a summary of current understanding of MS pathophysiology, the impact on lower urinary tract symptoms, and briefly introduces the types of mouse models available to study MS. Part II presents the common animal models that are currently available to study MS, their mechanism, relevance to MS-LUTS/LUTD and their urinary pathophysiology, advantages and disadvantages.
Collapse
Affiliation(s)
- Ramalakshmi Ramasamy
- UConn Center on Aging, UConn Health, Farmington, CT, USA.,Department of Neuroscience, University of Connecticut Graduate School, Farmington, Connecticut, USA.,Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, Connecticut, USA
| | - Phillip P Smith
- UConn Center on Aging, UConn Health, Farmington, CT, USA.,Department of Neuroscience, University of Connecticut Graduate School, Farmington, Connecticut, USA.,Connecticut Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, Connecticut, USA.,Department of Surgery, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| |
Collapse
|
12
|
Complete Freund's adjuvant-free experimental autoimmune encephalomyelitis in Dark Agouti rats is a valuable tool for multiple sclerosis studies. J Neuroimmunol 2021; 354:577547. [PMID: 33765502 DOI: 10.1016/j.jneuroim.2021.577547] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/02/2021] [Accepted: 03/12/2021] [Indexed: 12/21/2022]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is classically induced with complete Freund's adjuvant (CFA). The immune response against CFA has a confounding influence on the translational capacity of EAE as a multiple sclerosis model. Here, we compare clinical, cellular and molecular properties between syngeneic spinal cord homogenate (SCH)- and SCH + CFA-immunized Dark Agouti rats. EAE signs were observed earlier and the cumulative clinical score was higher without CFA. Also, a higher number of immune cells infiltrates in the spinal cords was noticed at the peak of EAE without CFA. High spinal cord abundance of CD8+CD11bc+MHC class II+ cells was detected in SCH-immunized rats. Myelin basic protein -specific response can be elicited in the cells from the lymph nodes draining the site of SCH immunization. This CFA-free EAE is a reliable multiple sclerosis model.
Collapse
|
13
|
Butruille L, Vancamp P, Demeneix BA, Remaud S. Thyroid hormone regulation of adult neural stem cell fate: A comparative analysis between rodents and primates. VITAMINS AND HORMONES 2021; 116:133-192. [PMID: 33752817 DOI: 10.1016/bs.vh.2021.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Thyroid hormone (TH) signaling, a highly conserved pathway across vertebrates, is crucial for brain development and function throughout life. In the adult mammalian brain, including that of humans, multipotent neural stem cells (NSCs) proliferate and generate neuronal and glial progenitors. The role of TH has been intensively investigated in the two main neurogenic niches of the adult mouse brain, the subventricular and the subgranular zone. A key finding is that T3, the biologically active form of THs, promotes NSC commitment toward a neuronal fate. In this review, we first discuss the roles of THs in the regulation of adult rodent neurogenesis, as well as how it relates to functional behavior, notably olfaction and cognition. Most research uncovering these roles of TH in adult neurogenesis was conducted in rodents, whose genetic background, brain structure and rate of neurogenesis are considerably different from that of humans. To bridge the phylogenetic gap, we also explore the similarities and divergences of TH-dependent adult neurogenesis in non-human primate models. Lastly, we examine how photoperiodic length changes TH homeostasis, and how that might affect adult neurogenesis in seasonal species to increase fitness. Several aspects by which TH acts on adult NSCs seem to be conserved among mammals, while we only start to uncover the molecular pathways, as well as how other in- and extrinsic factors are intertwined. A multispecies approach delivering more insights in the matter will pave the way for novel NSC-based therapies to combat neurological disorders.
Collapse
Affiliation(s)
- Lucile Butruille
- UMR 7221 Phyma, CNRS/Muséum National d'Histoire Naturelle, Paris, France
| | - Pieter Vancamp
- UMR 7221 Phyma, CNRS/Muséum National d'Histoire Naturelle, Paris, France
| | - Barbara A Demeneix
- UMR 7221 Phyma, CNRS/Muséum National d'Histoire Naturelle, Paris, France
| | - Sylvie Remaud
- UMR 7221 Phyma, CNRS/Muséum National d'Histoire Naturelle, Paris, France.
| |
Collapse
|
14
|
't Hart BA. A Tolerogenic Role of Cathepsin G in a Primate Model of Multiple Sclerosis: Abrogation by Epstein-Barr Virus Infection. Arch Immunol Ther Exp (Warsz) 2020; 68:21. [PMID: 32556812 PMCID: PMC7299916 DOI: 10.1007/s00005-020-00587-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 06/11/2020] [Indexed: 11/25/2022]
Abstract
Using a non-human primate model of the autoimmune neuroinflammatory disease multiple sclerosis (MS), we have unraveled the role of B cells in the making and breaking of immune tolerance against central nervous system myelin. It is discussed here that B cells prevent the activation of strongly pathogenic T cells present in the naïve repertoire, which are directed against the immunodominant myelin antigen MOG (myelin oligodendrocyte glycoprotein). Prevention occurs via destructive processing of a critical epitope (MOG34-56) through the lysosomal serine protease cathepsin G. This effective tolerance mechanism is abrogated when the B cells are infected with Epstein–Barr virus, a ubiquitous γ1-herpesvirus that entails the strongest non-genetic risk factor for MS.
Collapse
Affiliation(s)
- Bert A 't Hart
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center, Groningen, The Netherlands. .,Department of Anatomy and Neurosciences, VU Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
15
|
da Silva APB, Silva RBM, Goi LDS, Molina RD, Machado DC, Sato DK. Experimental Models of Neuroimmunological Disorders: A Review. Front Neurol 2020; 11:389. [PMID: 32477252 PMCID: PMC7235321 DOI: 10.3389/fneur.2020.00389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/17/2020] [Indexed: 12/11/2022] Open
Abstract
Immune-mediated inflammatory diseases of the central nervous system (CNS) are a group of neurological disorders in which inflammation and/or demyelination are induced by cellular and humoral immune responses specific to CNS antigens. They include diseases such as multiple sclerosis (MS), neuromyelitis optica spectrum disorders (NMOSD), acute disseminated encephalomyelitis (ADEM) and anti-NMDA receptor encephalitis (NMDAR encephalitis). Over the years, many in vivo and in vitro models were used to study clinical, pathological, physiological and immunological features of these neuroimmunological disorders. Nevertheless, there are important aspects of human diseases that are not fully reproduced in the experimental models due to their technical limitations. In this review, we describe the preclinical models of neuroimmune disorders, and how they contributed to the understanding of these disorders and explore potential treatments. We also describe the purpose and limitation of each one, as well as the recent advances in this field.
Collapse
Affiliation(s)
- Ana Paula Bornes da Silva
- Neuroinflammation and Neuroimmunology Laboratory, Brain Institute, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,School of Medicine, Graduate Program in Pediatrics and Child Health, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - Rodrigo Braccini Madeira Silva
- Research Center in Toxicology and Pharmacology, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - Leise Daniele Sckenal Goi
- Neuroinflammation and Neuroimmunology Laboratory, Brain Institute, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,School of Medicine, Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - Rachel Dias Molina
- Neuroinflammation and Neuroimmunology Laboratory, Brain Institute, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,School of Medicine, Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - Denise Cantarelli Machado
- School of Medicine, Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,Molecular and Cellular Biology Laboratory, Brain Institute, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| | - Douglas Kazutoshi Sato
- Neuroinflammation and Neuroimmunology Laboratory, Brain Institute, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,School of Medicine, Graduate Program in Pediatrics and Child Health, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil.,School of Medicine, Graduate Program in Medicine and Health Sciences, Pontifical Catholic University of Rio Grande Do Sul (PUCRS), Porto Alegre, Brazil
| |
Collapse
|
16
|
Torre-Fuentes L, Moreno-Jiménez L, Pytel V, Matías-Guiu J, Gómez-Pinedo U, Matías-Guiu J. Experimental models of demyelination and remyelination. NEUROLOGÍA (ENGLISH EDITION) 2020. [PMCID: PMC7148713 DOI: 10.1016/j.nrleng.2019.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
17
|
Serguera C, Stimmer L, Fovet CM, Horellou P, Contreras V, Tchitchek N, Massonneau J, Leroy C, Perrin A, Flament J, Hantraye P, Demilly J, Marignier R, Chrétien P, Hart B, Boutonnat J, Adam C, Le-Grand R, Deiva K. Anti-MOG autoantibodies pathogenicity in children and macaques demyelinating diseases. J Neuroinflammation 2019; 16:244. [PMID: 31785610 PMCID: PMC6884758 DOI: 10.1186/s12974-019-1637-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 11/11/2019] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Autoantibodies against myelin oligodendrocyte glycoprotein (anti-MOG-Abs) occur in a majority of children with acquired demyelinating syndromes (ADS) and physiopathology is still under investigation. As cynomolgus macaques immunized with rhMOG, all develop an experimental autoimmune encephalomyelitis (EAE), we assessed relatedness between anti-MOG-Abs associated diseases in both species. METHODS The study includes 27 children followed for ADS and nine macaques with rhMOG-induced EAE. MRI lesions, cytokines in blood, and CSF at onset of ADS or EAE, as well as histopathological features of brain lesions were compared. RESULTS Twelve children with anti-MOG-Abs ADS (ADS MOG+) and nine macaques with EAE, presented increased IL-6 and G-CSF in the CSF, whereas no such signature was found in 15 ADS MOG-. Furthermore, IgG and C1q were associated to myelin and phagocytic cells in brains with EAE (n = 8) and in biopsies of ADS MOG+ (n = 2) but not ADS MOG- children (n = 1). Macaque brains also revealed prephagocytic lesions with IgG and C1q depositions but no leukocyte infiltration. CONCLUSIONS Children with ADS MOG+ and macaques with EAE induced with rhMOG, present a similar cytokine signature in the CSF and a comparable aspect of brain lesions indicating analogous pathophysiological processes. In EAE, prephagocytic lesions points at IgG as an initial effector of myelin attack. These results support the pertinence of modeling ADS MOG+ in non-human primates to apprehend the natural development of anti-MOG-associated disease, find markers of evolution, and above all explore the efficacy of targeted therapies to test primate-restricted molecules.
Collapse
Affiliation(s)
- Che Serguera
- Commissariat à l’Energie Atomique (CEA), Institut de biologie François Jacob, Molecular Imaging Research Center (MIRCen), 92265 Fontenay-aux-Roses, France
- Institut national de la santé et de la recherche médicale (INSERM), MIRCen, UMS 27, 92265 Fontenay-aux-Roses, France
- Asfalia Biologics, Institut du Cerveau et de la Moelle épinière (ICM), Hôpital Pitié-Salpêtrière, Paris, France
| | - Lev Stimmer
- Commissariat à l’Energie Atomique (CEA), Institut de biologie François Jacob, Molecular Imaging Research Center (MIRCen), 92265 Fontenay-aux-Roses, France
- Institut national de la santé et de la recherche médicale (INSERM), MIRCen, UMS 27, 92265 Fontenay-aux-Roses, France
| | - Claire-Maelle Fovet
- Commissariat à l’Energie Atomique (CEA), Institut de biologie François Jacob, Molecular Imaging Research Center (MIRCen), 92265 Fontenay-aux-Roses, France
- Asfalia Biologics, Institut du Cerveau et de la Moelle épinière (ICM), Hôpital Pitié-Salpêtrière, Paris, France
| | - Philippe Horellou
- CEA, Inserm UMR 1184 and Institut de biologie François Jacob, Infectious Diseases Models for Innovative Therapies (IDMIT), Université Paris-Sud, 92265 Fontenay-aux-Roses, France
| | - Vanessa Contreras
- CEA, Inserm UMR 1184 and Institut de biologie François Jacob, Infectious Diseases Models for Innovative Therapies (IDMIT), Université Paris-Sud, 92265 Fontenay-aux-Roses, France
| | - Nicolas Tchitchek
- CEA, Inserm UMR 1184 and Institut de biologie François Jacob, Infectious Diseases Models for Innovative Therapies (IDMIT), Université Paris-Sud, 92265 Fontenay-aux-Roses, France
| | - Julie Massonneau
- Commissariat à l’Energie Atomique (CEA), Institut de biologie François Jacob, Molecular Imaging Research Center (MIRCen), 92265 Fontenay-aux-Roses, France
- Institut national de la santé et de la recherche médicale (INSERM), MIRCen, UMS 27, 92265 Fontenay-aux-Roses, France
| | - Carole Leroy
- Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Pediatric Neurology Department, National Referral Center for Rare Inflammatory Brain and Spinal Diseases, Hôpitaux Universitaires Paris-Sud, Paris, France
| | - Audrey Perrin
- CEA, Inserm UMR 1184 and Institut de biologie François Jacob, Infectious Diseases Models for Innovative Therapies (IDMIT), Université Paris-Sud, 92265 Fontenay-aux-Roses, France
| | - Julien Flament
- Commissariat à l’Energie Atomique (CEA), Institut de biologie François Jacob, Molecular Imaging Research Center (MIRCen), 92265 Fontenay-aux-Roses, France
| | - Philippe Hantraye
- Commissariat à l’Energie Atomique (CEA), Institut de biologie François Jacob, Molecular Imaging Research Center (MIRCen), 92265 Fontenay-aux-Roses, France
| | - Joanna Demilly
- Commissariat à l’Energie Atomique (CEA), Institut de biologie François Jacob, Molecular Imaging Research Center (MIRCen), 92265 Fontenay-aux-Roses, France
- Institut national de la santé et de la recherche médicale (INSERM), MIRCen, UMS 27, 92265 Fontenay-aux-Roses, France
| | - Romain Marignier
- Hôpital Neurologique Pierre Wertheimer, Service de Neurologie, Sclérose en plaques, pathologies de la myéline et neuro-inflammation, CHU de Lyon, 69677 Bron Cedex, France
| | - Pascale Chrétien
- Immunology Department AP-HP, Hôpitaux Universitaires Paris-Sud, Le Kremlin Bicêtre, France
| | - Bert‘t Hart
- Department of Immunobiology, Biomedical Primate Research Centre (BPRC), Rijswijk, The Netherlands
- Department Biomedial Sciences of Cells and Systems, University Medical Center Groningen, Groningen, The Netherlands
| | - Jean Boutonnat
- CHU Grenoble-Alpes - TIMC UMR CNRS 5525, Grenoble, France
| | - Clovis Adam
- Lab. de Neuropathologie, GHU Paris-Sud - Hopital Bicêtre, 94270 Le Kremlin Bicêtre, France
| | - Roger Le-Grand
- CEA, Inserm UMR 1184 and Institut de biologie François Jacob, Infectious Diseases Models for Innovative Therapies (IDMIT), Université Paris-Sud, 92265 Fontenay-aux-Roses, France
| | - Kumaran Deiva
- CEA, Inserm UMR 1184 and Institut de biologie François Jacob, Infectious Diseases Models for Innovative Therapies (IDMIT), Université Paris-Sud, 92265 Fontenay-aux-Roses, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Bicêtre, Pediatric Neurology Department, National Referral Center for Rare Inflammatory Brain and Spinal Diseases, Hôpitaux Universitaires Paris-Sud, Paris, France
| |
Collapse
|
18
|
Intradermal vaccination prevents anti-MOG autoimmune encephalomyelitis in macaques. EBioMedicine 2019; 47:492-505. [PMID: 31492559 PMCID: PMC6796575 DOI: 10.1016/j.ebiom.2019.08.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/21/2019] [Accepted: 08/23/2019] [Indexed: 12/28/2022] Open
Abstract
Background Autoimmune demyelinating diseases (ADD) are a major cause of neurological disability due to autoreactive cellular and humoral immune responses against brain antigens. A cure for chronic ADD could be obtained by appropriate immunomodulation. Methods We implemented a preclinical scheme to foster immune tolerance to myelin oligodendrocyte glycoprotein (MOG), in a cynomolgus-macaque model of experimental autoimmune encephalomyelitis (EAE), in which administration of recombinant human MOG (rhMOG) elicits brain inflammation mediated by MOG-autoreactive CD4+ lymphocytes and anti-MOG IgG. For immunotherapy, we used a recombinant antibody (Ab) directed against the dendritic cell-asialoglycoprotein receptor (DC-ASGPR) fused either to MOG or a control antigen PSA (prostate-specific antigen). Findings rhMOG and the anti-DC-ASGPR-MOG were respectively detected in CD1a+ DCs or CD163+ cells in the skin of macaques. Intradermal administration of anti-DC-ASGPR-MOG, but not control anti-DC-ASGPR-PSA, was protective against EAE. The treatment prevented the CD4+ T cell activation and proinflammatory cytokine production observed in controls. Moreover, the administration of anti-DC-ASGPR-MOG induced MOG-specific CD4+CD25+FOXP3+CD39+ regulatory lymphocytes and favoured an upsurge in systemic TGFβ and IL-8 upon rhMOG re-administration in vivo. Interpretation We show that the delivery of an anti-DC-ASGPR-MOG allows antigen-specific adaptive immune modulation to prevent the breach of immune tolerance to MOG. Our findings pave the way for therapeutic vaccines for long-lasting remission to grave encephalomyelitis with identified autoantigens, such as ADD associated with anti-MOG autoantibodies. Fund Work supported by the French ANR (ANR-11-INBS-0008 and ANR-10-EQPX-02-01), NIH (NIH 1 R01 AI 105066), the Baylor Scott and White Healthcare System funding and Roche Research Collaborative grants.
Collapse
|
19
|
Bronge M, Ruhrmann S, Carvalho-Queiroz C, Nilsson OB, Kaiser A, Holmgren E, Macrini C, Winklmeier S, Meinl E, Brundin L, Khademi M, Olsson T, Gafvelin G, Grönlund H. Myelin oligodendrocyte glycoprotein revisited-sensitive detection of MOG-specific T-cells in multiple sclerosis. J Autoimmun 2019; 102:38-49. [PMID: 31054941 DOI: 10.1016/j.jaut.2019.04.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/09/2019] [Accepted: 04/12/2019] [Indexed: 12/20/2022]
Abstract
Autoreactive CD4+ T-cells are believed to be a main driver of multiple sclerosis (MS). Myelin oligodendrocyte glycoprotein (MOG) is considered an autoantigen, yet doubted in recent years. The reason is in part due to low frequency and titers of MOG autoantibodies and the challenge to detect MOG-specific T-cells. In this study we aimed to analyze T-cell reactivity and frequency utilizing a novel method for detection of antigen-specific T-cells with bead-bound MOG as stimulant. Peripheral blood mononuclear cells (PBMCs) from natalizumab treated persons with MS (n = 52) and healthy controls (HCs) (n = 24) were analyzed by IFNγ/IL-22/IL-17A FluoroSpot. A higher number of IFNγ (P = 0.001), IL-22 (P = 0.003), IL-17A (P < 0.0001) as well as double and triple cytokine producing MOG-specific T-cells were detected in persons with MS compared to HCs. Of the patients, 46.2-59.6% displayed MOG-reactivity. Depletion of CD4+ T-cells or monocytes or blocking HLA-DR completely eliminated the MOG specific response. Anti-MOG antibodies did not correlate with T-cell MOG-responses. In conclusion, we present a sensitive method to detect circulating autoreactive CD4+ T-cells producing IFNγ, IL-22 or IL-17A using MOG as a model antigen. Further, we demonstrate that MOG-specific T-cells are present in approximately half of persons with MS.
Collapse
Affiliation(s)
- Mattias Bronge
- Therapeutic Immune Design, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine L8:02, 171 76, Stockholm, Sweden.
| | - Sabrina Ruhrmann
- Therapeutic Immune Design, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine L8:02, 171 76, Stockholm, Sweden.
| | - Claudia Carvalho-Queiroz
- Therapeutic Immune Design, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine L8:02, 171 76, Stockholm, Sweden.
| | - Ola B Nilsson
- Therapeutic Immune Design, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine L8:02, 171 76, Stockholm, Sweden.
| | - Andreas Kaiser
- Therapeutic Immune Design, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine L8:02, 171 76, Stockholm, Sweden.
| | - Erik Holmgren
- Therapeutic Immune Design, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine L8:02, 171 76, Stockholm, Sweden.
| | - Caterina Macrini
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospitals, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 821 52, Planegg-Martinsried, Germany.
| | - Stephan Winklmeier
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospitals, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 821 52, Planegg-Martinsried, Germany.
| | - Edgar Meinl
- Institute of Clinical Neuroimmunology, Biomedical Center and University Hospitals, Ludwig-Maximilians-Universität München, Großhaderner Str. 9, 821 52, Planegg-Martinsried, Germany.
| | - Lou Brundin
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine L8:04, 171 76, Stockholm, Sweden.
| | - Mohsen Khademi
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine L8:04, 171 76, Stockholm, Sweden.
| | - Tomas Olsson
- Neuroimmunology Unit, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine L8:04, 171 76, Stockholm, Sweden.
| | - Guro Gafvelin
- Therapeutic Immune Design, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine L8:02, 171 76, Stockholm, Sweden.
| | - Hans Grönlund
- Therapeutic Immune Design, Department of Clinical Neuroscience, Karolinska Institutet, Center for Molecular Medicine L8:02, 171 76, Stockholm, Sweden.
| |
Collapse
|
20
|
Reijers JAA, Malone KE, Bajramovic JJ, Verbeek R, Burggraaf J, Moerland M. Adverse immunostimulation caused by impurities: The dark side of biopharmaceuticals. Br J Clin Pharmacol 2019; 85:1418-1426. [PMID: 30920013 PMCID: PMC6595286 DOI: 10.1111/bcp.13938] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/10/2019] [Accepted: 03/21/2019] [Indexed: 02/06/2023] Open
Abstract
Drug safety is an important issue, especially in the experimental phases of development. Adverse immunostimulation (AI) is sometimes encountered following treatment with biopharmaceuticals, which can be life-threatening if it results in a severe systemic inflammatory reaction. Biopharmaceuticals that unexpectedly induce an inflammatory response still enter the clinic, even while meeting all regulatory requirements. Impurities (of microbial origin) in biopharmaceuticals are an often-overlooked cause of AI. This demonstrates that the current guidelines for quality control and safety pharmacology testing are not flawless. Here, based on two case examples, several shortcomings of the guidelines are discussed. The most important of these are the lack of sensitivity for impurities, lack of testing for pyrogens other than endotoxin, and the use of insensitive animal species and biomarkers in preclinical investigations. Moreover, testing for the immunotoxicity of biopharmaceuticals is explicitly not recommended by the international guidelines. Publication of cases of AI is pivotal, both to increase awareness and to facilitate scientific discussions on how to prevent AI in the future.
Collapse
Affiliation(s)
| | | | | | - Richard Verbeek
- Department of Clinical Pharmacy and ToxicologyLeiden University Medical CenterLeidenthe Netherlands
| | | | | |
Collapse
|
21
|
Theil D, Smith P, Huck C, Gilbart Y, Kakarieka A, Leppert D, Rauld C, Schmid C, Baumgartner R, Stuber N, Cordoba F, Dubost V, Darribat K, Jivkov M, Frieauff W, Kneuer R, Stoeckli M, Reinker S, Mansfield K, Carballido JM, Couttet P, Weckbecker G. Imaging Mass Cytometry and Single-Cell Genomics Reveal Differential Depletion and Repletion of B-Cell Populations Following Ofatumumab Treatment in Cynomolgus Monkeys. Front Immunol 2019; 10:1340. [PMID: 31281311 PMCID: PMC6596277 DOI: 10.3389/fimmu.2019.01340] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/28/2019] [Indexed: 12/31/2022] Open
Abstract
Ofatumumab is the first, fully human, anti-CD20 monoclonal antibody in Phase 3 development for multiple sclerosis (MS). The study focused on changes in lymphocyte subsets in blood and lymphoid tissues and on potential novel biomarkers as a result of anti-CD20 antibody action in Cynomolgus monkeys treated with human equivalent doses of subcutaneous (s.c.) ofatumumab on Days 0, 7, and 14. Axillary lymph nodes (LNs) and blood samples were collected at various time points until Day 90. Lymphocyte subsets were quantified by flow cytometry, while morphological and immune cell changes were assessed by imaging mass cytometry (IMC), immunohistochemistry (IHC), in situ hybridization (ISH), and transcriptome analyses using single-cell methodology. Ofatumumab treatment resulted in a potent and rapid reduction of B cells along with a simultaneous drop in CD20+ T cell counts. At Day 21, IHC revealed B-cell depletion in the perifollicular and interfollicular area of axillary LNs, while only the core of the germinal center was depleted of CD20+CD21+ cells. By Day 62, the perifollicular and interfollicular areas were abundantly infiltrated by CD21+ B cells and this distribution returned to the baseline cytoarchitecture by Day 90. By IMC CD20+CD3+CD8+ cells could be identified at the margin of the follicles, with a similar pattern of distribution at Day 21 and 90. Single-cell transcriptomics analysis showed that ofatumumab induced reversible changes in t-distributed stochastic neighbor embedding (t-SNE) defined B-cell subsets that may serve as biomarkers for drug action. In summary, low dose s.c. ofatumumab potently depletes both B cells and CD20+ T cells but apparently spares marginal zone (MZ) B cells in the spleen and LN. These findings add to our molecular and tissue-architectural understanding of ofatumumab treatment effects on B-cell subsets.
Collapse
Affiliation(s)
| | | | | | | | | | - David Leppert
- Neurological Clinic and Policlinic, University Hospital Basel, Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
't Hart BA. Experimental autoimmune encephalomyelitis in the common marmoset: a translationally relevant model for the cause and course of multiple sclerosis. Primate Biol 2019; 6:17-58. [PMID: 32110715 PMCID: PMC7041540 DOI: 10.5194/pb-6-17-2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023] Open
Abstract
Aging Western societies are facing an increasing prevalence of chronic
autoimmune-mediated inflammatory disorders (AIMIDs) for which treatments that are safe and effective are scarce. One of the
main reasons for this situation is the lack of animal models, which accurately replicate
clinical and pathological aspects of the human diseases. One important AIMID is the
neuroinflammatory disease multiple sclerosis (MS), for which the mouse experimental
autoimmune encephalomyelitis (EAE) model has been frequently used in preclinical
research. Despite some successes, there is a long list of experimental treatments that
have failed to reproduce promising effects observed in murine EAE models when they were
tested in the clinic. This frustrating situation indicates a wide validity gap between
mouse EAE and MS. This monography describes the development of an EAE model in nonhuman
primates, which may help to bridge the gap.
Collapse
Affiliation(s)
- Bert A 't Hart
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, the Netherlands.,Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, the Netherlands
| |
Collapse
|
23
|
Griffin JD, Christopher MA, Thati S, Salash JR, Pressnall MM, Weerasekara DB, Lunte SM, Berkland CJ. Tocopherol Emulsions as Functional Autoantigen Delivery Vehicles Evoke Therapeutic Efficacy in Experimental Autoimmune Encephalomyelitis. Mol Pharm 2019; 16:607-617. [PMID: 30615457 PMCID: PMC6557722 DOI: 10.1021/acs.molpharmaceut.8b00887] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Contemporary approaches to treating autoimmune diseases like multiple sclerosis broadly modulate the immune system and leave patients susceptible to severe adverse effects. Antigen-specific immunotherapies (ASIT) offer a unique opportunity to selectively suppress autoreactive cell populations but have suffered from marginal efficacy even when employing traditional adjuvants to improve delivery. The development of immunologically active antigen delivery vehicles could potentially increase the clinical success of antigen-specific immunotherapies. An emulsion of the antioxidant tocopherol delivering an epitope of proteolipid protein autoantigen (PLP139-151) yielded significant efficacy in mice with experimental autoimmune encephalomyelitis (EAE). In vitro studies indicated tocopherol emulsions reduced oxidative stress in antigen-presenting cells. Ex vivo analysis revealed that tocopherol emulsions shifted cytokine responses in EAE splenocytes. In addition, IgG responses against PLP139-151 were increased in mice treated with tocopherol emulsions delivering the antigen, suggesting a possible skew in immunity. Overall, tocopherol emulsions provide a functional delivery vehicle for ASIT capable of ameliorating autoimmunity in a murine model.
Collapse
Affiliation(s)
| | - Matthew A Christopher
- Department of Pharmaceutical Chemistry , University of Kansas , Lawrence , Kansas 66047 , United States
| | - Sharadvi Thati
- Department of Pharmaceutical Chemistry , University of Kansas , Lawrence , Kansas 66047 , United States
| | - Jean R Salash
- Department of Pharmaceutical Chemistry , University of Kansas , Lawrence , Kansas 66047 , United States
| | - Melissa M Pressnall
- Department of Pharmaceutical Chemistry , University of Kansas , Lawrence , Kansas 66047 , United States
| | | | | | - Cory J Berkland
- Department of Pharmaceutical Chemistry , University of Kansas , Lawrence , Kansas 66047 , United States
| |
Collapse
|
24
|
Yan L, Jiang B, Niu Y, Wang H, Li E, Yan Y, Sun H, Duan Y, Chang S, Chen G, Ji W, Xu RH, Si W. Intrathecal delivery of human ESC-derived mesenchymal stem cell spheres promotes recovery of a primate multiple sclerosis model. Cell Death Discov 2018; 4:28. [PMID: 30131877 PMCID: PMC6102276 DOI: 10.1038/s41420-018-0091-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/27/2018] [Accepted: 07/05/2018] [Indexed: 12/31/2022] Open
Abstract
Nonhuman primate experimental autoimmune encephalomyelitis (EAE) is a valuable model for multiple sclerosis, an inflammatory demyelinating disease in the central nervous system (CNS). Human embryonic stem cell-derived mesenchymal stem cells (EMSC) are effective in treating murine EAE. Yet, it remains unknown whether the EMSC efficacy is translatable to humans. Here we induced a primate EAE model in cynomolgus monkeys and delivered EMSC in spheres (EMSCsp) to preserve the cell viability during long-distance transportation. EMSCsp intrathecally injected into the CNS, remarkably reduced the clinical symptoms, brain lesions, and neuronal demyelination in the EAE monkeys during a 3-month observation. Whereas, symptoms in the vehicle control-injected EAE monkey remained and reduced slowly and MRI lesions in brain expanded. Moreover, EMSC could transdifferentiate into neural cells in vivo in the CNS of the treated animals. Supporting evidence demonstrated that EMSCsp cells cultured in cerebrospinal fluid from the EAE monkeys largely converted to neural cells with elevated expression of genes for neuronal markers, neurotrophic factors, and neuronal myelination. Thus, this study demonstrates that EMSCsp injected directly into the CNS, can attenuate the disease progression in the primate EAE model, highly encouraging for clinical translation.
Collapse
Affiliation(s)
- Li Yan
- Faculty of Health Sciences, University of Macau, Taipa, Macau China
| | - Bin Jiang
- Faculty of Health Sciences, University of Macau, Taipa, Macau China
| | - Yuyu Niu
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan China
| | - Hongxuan Wang
- Faculty of Health Sciences, University of Macau, Taipa, Macau China
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Enqin Li
- Faculty of Health Sciences, University of Macau, Taipa, Macau China
| | - Yaping Yan
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan China
| | - Huiyan Sun
- Faculty of Health Sciences, University of Macau, Taipa, Macau China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, College of Computer Science and Technology, Jilin University, Changchun, Jilin China
| | - Yanchao Duan
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan China
| | - Shaohui Chang
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan China
| | - Guokai Chen
- Faculty of Health Sciences, University of Macau, Taipa, Macau China
| | - Weizhi Ji
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan China
| | - Ren-He Xu
- Faculty of Health Sciences, University of Macau, Taipa, Macau China
| | - Wei Si
- Yunnan Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan China
| |
Collapse
|
25
|
IFN-β regulates Th17 differentiation partly through the inhibition of osteopontin in experimental autoimmune encephalomyelitis. Mol Immunol 2018; 93:20-30. [PMID: 29127843 DOI: 10.1016/j.molimm.2017.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 10/08/2017] [Accepted: 11/06/2017] [Indexed: 11/15/2022]
|
26
|
Dunham J, van de Vis R, Bauer J, Wubben J, van Driel N, Laman JD, ‘t Hart BA, Kap YS. Severe oxidative stress in an acute inflammatory demyelinating model in the rhesus monkey. PLoS One 2017; 12:e0188013. [PMID: 29136024 PMCID: PMC5685592 DOI: 10.1371/journal.pone.0188013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 10/29/2017] [Indexed: 12/23/2022] Open
Abstract
Oxidative stress is increasingly implicated as a co-factor of tissue injury in inflammatory/demyelinating disorders of the central nervous system (CNS), such as multiple sclerosis (MS). While rodent experimental autoimmune encephalomyelitis (EAE) models diverge from human demyelinating disorders with respect to limited oxidative injury, we observed that in a non-human primate (NHP) model for MS, namely EAE in the common marmoset, key pathological features of the disease were recapitulated, including oxidative tissue injury. Here, we investigated the presence of oxidative injury in another NHP EAE model, i.e. in rhesus macaques, which yields an acute demyelinating disease, which may more closely resemble acute disseminated encephalomyelitis (ADEM) than MS. Rhesus monkey EAE diverges from marmoset EAE by abundant neutrophil recruitment into the CNS and destructive injury to white matter. This difference prompted us to investigate to which extent the oxidative pathway features elicited in MS and marmoset EAE are reflected in the acute rhesus monkey EAE model. The rhesus EAE brain was characterized by widespread demyelination and active lesions containing numerous phagocytic cells and to a lesser extent T cells. We observed induction of the oxidative stress pathway, including injury, with a predilection of p22phox expression in neutrophils and macrophages/microglia. In addition, changes in iron were observed. These results indicate that pathogenic mechanisms in the rhesus EAE model may differ from the marmoset EAE and MS brain due to the neutrophil involvement, but may in the end lead to similar induction of oxidative stress and injury.
Collapse
Affiliation(s)
- Jordon Dunham
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
- University Groningen, University Medical Center, Department of Neuroscience, Groningen, The Netherlands
| | - Reinofke van de Vis
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Jan Bauer
- Department Neuroimmunology, Brain Research Institute, Medical University, Vienna, Austria
| | - Jacqueline Wubben
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Nikki van Driel
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Jon D. Laman
- University Groningen, University Medical Center, Department of Neuroscience, Groningen, The Netherlands
| | - Bert A. ‘t Hart
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
- University Groningen, University Medical Center, Department of Neuroscience, Groningen, The Netherlands
| | - Yolanda S. Kap
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
- * E-mail:
| |
Collapse
|
27
|
Torre-Fuentes L, Moreno-Jiménez L, Pytel V, Matías-Guiu JA, Gómez-Pinedo U, Matías-Guiu J. Experimental models of demyelination and remyelination. Neurologia 2017; 35:32-39. [PMID: 28863829 PMCID: PMC7115679 DOI: 10.1016/j.nrl.2017.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 11/07/2022] Open
Abstract
Introducción El uso de modelos experimentales en animales permite aumentar el conocimiento sobre la patología del sistema nervioso central. Sin embargo, en la esclerosis múltiple, no existe un modelo que permita una visión general de la enfermedad, de forma que es necesario utilizar una variedad de modelos que abarquen los distintos cambios que se producen. Desarrollo Se revisan los distintos modelos experimentales que pueden ser utilizados en la investigación en la esclerosis múltiple, tanto in vitro como in vivo. En relación a los modelos in vitro se analizan los distintos cultivos celulares y sus potenciales modificaciones así como los modelos en rodajas. En los modelos in vivo, se analizan los modelos de base inmune-inflamatoria como la encefalitis alérgica experimental en los distintos animales, además de las enfermedades desmielinizantes por virus. Por otro lado, se analizan los modelos de desmielinización-remielinización incluyéndose las lesiones químicas por cuprizona, lisolecitina, bromuro de etidio, así como el modelo de zebrafish y los modelos transgénicos. Conclusiones Los modelos experimentales nos permiten acercarnos al conocimiento de los diversos mecanismos que ocurren en la esclerosis múltiple. La utilización de cada uno de ellos depende de los objetivos de investigación que planteen.
Collapse
Affiliation(s)
- L Torre-Fuentes
- Servicio de Neurología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España.
| | - L Moreno-Jiménez
- Servicio de Neurología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| | - V Pytel
- Servicio de Neurología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| | - J A Matías-Guiu
- Servicio de Neurología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| | - U Gómez-Pinedo
- Servicio de Neurología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| | - J Matías-Guiu
- Servicio de Neurología, Instituto de Neurociencias, IdISSC, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, España
| |
Collapse
|
28
|
't Hart BA, Laman JD, Kap YS. Reverse Translation for Assessment of Confidence in Animal Models of Multiple Sclerosis for Drug Discovery. Clin Pharmacol Ther 2017; 103:262-270. [DOI: 10.1002/cpt.801] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/06/2017] [Accepted: 07/17/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Bert A. 't Hart
- Department Immunobiology; Biomedical Primate Research Centre; Rijswijk The Netherlands
- University of Groningen, University Medical Centre, Dept. Neuroscience; Groningen The Netherlands
- MS Center Noord-Nederland; Groningen The Netherlands
| | - Jon D. Laman
- University of Groningen, University Medical Centre, Dept. Neuroscience; Groningen The Netherlands
- MS Center Noord-Nederland; Groningen The Netherlands
| | - Yolanda S. Kap
- Department Immunobiology; Biomedical Primate Research Centre; Rijswijk The Netherlands
| |
Collapse
|
29
|
Dunham J, Bauer J, Campbell GR, Mahad DJ, van Driel N, van der Pol SMA, 't Hart BA, Lassmann H, Laman JD, van Horssen J, Kap YS. Oxidative Injury and Iron Redistribution Are Pathological Hallmarks of Marmoset Experimental Autoimmune Encephalomyelitis. J Neuropathol Exp Neurol 2017; 76:467-478. [PMID: 28505283 DOI: 10.1093/jnen/nlx034] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Oxidative damage and iron redistribution are associated with the pathogenesis and progression of multiple sclerosis (MS), but these aspects are not entirely replicated in rodent experimental autoimmune encephalomyelitis (EAE) models. Here, we report that oxidative burst and injury as well as redistribution of iron are hallmarks of the MS-like pathology in the EAE model in the common marmoset. Active lesions in the marmoset EAE brain display increased expression of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (p22phox, p47phox, and gp91phox) and inducible nitric oxide synthase immunoreactivity within lesions with active inflammation and demyelination, coinciding with enhanced expression of mitochondrial heat-shock protein 70 and superoxide dismutase 1 and 2. The EAE lesion-associated liberation of iron (due to loss of iron-containing myelin) was associated with altered expression of the iron metabolic markers FtH1, lactoferrin, hephaestin, and ceruloplasmin. The enhanced expression of oxidative damage markers in inflammatory lesions indicates that the enhanced antioxidant enzyme expression could not counteract reactive oxygen and nitrogen species-induced cellular damage, as is also observed in MS brains. This study demonstrates that oxidative injury and aberrant iron distribution are prominent pathological hallmarks of marmoset EAE thus making this model suitable for therapeutic intervention studies aimed at reducing oxidative stress and associated iron dysmetabolism.
Collapse
Affiliation(s)
- Jordon Dunham
- From the Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands (JD, NvD, BAH, YSK); Department of Neuroscience, University Medical Center, University of Groningen, Groningen, The Netherlands (JD, BAH, JDL); Medical University of Vienna, Center for Brain Research, Vienna, Austria (JB, HL); Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom (GRC, DJM); and Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands (SMAvdP, JvH)
| | - Jan Bauer
- From the Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands (JD, NvD, BAH, YSK); Department of Neuroscience, University Medical Center, University of Groningen, Groningen, The Netherlands (JD, BAH, JDL); Medical University of Vienna, Center for Brain Research, Vienna, Austria (JB, HL); Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom (GRC, DJM); and Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands (SMAvdP, JvH)
| | - Graham R Campbell
- From the Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands (JD, NvD, BAH, YSK); Department of Neuroscience, University Medical Center, University of Groningen, Groningen, The Netherlands (JD, BAH, JDL); Medical University of Vienna, Center for Brain Research, Vienna, Austria (JB, HL); Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom (GRC, DJM); and Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands (SMAvdP, JvH)
| | - Don J Mahad
- From the Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands (JD, NvD, BAH, YSK); Department of Neuroscience, University Medical Center, University of Groningen, Groningen, The Netherlands (JD, BAH, JDL); Medical University of Vienna, Center for Brain Research, Vienna, Austria (JB, HL); Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom (GRC, DJM); and Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands (SMAvdP, JvH)
| | - Nikki van Driel
- From the Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands (JD, NvD, BAH, YSK); Department of Neuroscience, University Medical Center, University of Groningen, Groningen, The Netherlands (JD, BAH, JDL); Medical University of Vienna, Center for Brain Research, Vienna, Austria (JB, HL); Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom (GRC, DJM); and Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands (SMAvdP, JvH)
| | - Susanne M A van der Pol
- From the Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands (JD, NvD, BAH, YSK); Department of Neuroscience, University Medical Center, University of Groningen, Groningen, The Netherlands (JD, BAH, JDL); Medical University of Vienna, Center for Brain Research, Vienna, Austria (JB, HL); Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom (GRC, DJM); and Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands (SMAvdP, JvH)
| | - Bert A 't Hart
- From the Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands (JD, NvD, BAH, YSK); Department of Neuroscience, University Medical Center, University of Groningen, Groningen, The Netherlands (JD, BAH, JDL); Medical University of Vienna, Center for Brain Research, Vienna, Austria (JB, HL); Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom (GRC, DJM); and Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands (SMAvdP, JvH)
| | - Hans Lassmann
- From the Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands (JD, NvD, BAH, YSK); Department of Neuroscience, University Medical Center, University of Groningen, Groningen, The Netherlands (JD, BAH, JDL); Medical University of Vienna, Center for Brain Research, Vienna, Austria (JB, HL); Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom (GRC, DJM); and Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands (SMAvdP, JvH)
| | - Jon D Laman
- From the Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands (JD, NvD, BAH, YSK); Department of Neuroscience, University Medical Center, University of Groningen, Groningen, The Netherlands (JD, BAH, JDL); Medical University of Vienna, Center for Brain Research, Vienna, Austria (JB, HL); Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom (GRC, DJM); and Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands (SMAvdP, JvH)
| | - Jack van Horssen
- From the Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands (JD, NvD, BAH, YSK); Department of Neuroscience, University Medical Center, University of Groningen, Groningen, The Netherlands (JD, BAH, JDL); Medical University of Vienna, Center for Brain Research, Vienna, Austria (JB, HL); Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom (GRC, DJM); and Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands (SMAvdP, JvH)
| | - Yolanda S Kap
- From the Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands (JD, NvD, BAH, YSK); Department of Neuroscience, University Medical Center, University of Groningen, Groningen, The Netherlands (JD, BAH, JDL); Medical University of Vienna, Center for Brain Research, Vienna, Austria (JB, HL); Centre for Neuroregeneration, University of Edinburgh, Edinburgh, United Kingdom (GRC, DJM); and Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands (SMAvdP, JvH)
| |
Collapse
|
30
|
Stimmer L, Fovet CM, Serguera C. Experimental Models of Autoimmune Demyelinating Diseases in Nonhuman Primates. Vet Pathol 2017; 55:27-41. [DOI: 10.1177/0300985817712794] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Human idiopathic inflammatory demyelinating diseases (IIDD) are a heterogeneous group of autoimmune inflammatory and demyelinating disorders of the central nervous system (CNS). These include multiple sclerosis (MS), the most common chronic IIDD, but also rarer disorders such as acute disseminated encephalomyelitis (ADEM) and neuromyelitis optica (NMO). Great efforts have been made to understand the pathophysiology of MS, leading to the development of a few effective treatments. Nonetheless, IIDD still require a better understanding of the causes and underlying mechanisms to implement more effective therapies and diagnostic methods. Experimental autoimmune encephalomyelitis (EAE) is a commonly used animal model to study the pathophysiology of IIDD. EAE is principally induced through immunization with myelin antigens combined with immune-activating adjuvants. Nonhuman primates (NHP), the phylogenetically closest relatives of humans, challenged by similar microorganisms as other primates may recapitulate comparable immune responses to that of humans. In this review, the authors describe EAE models in 3 NHP species: rhesus macaques ( Macaca mulatta), cynomolgus macaques ( Macaca fascicularis), and common marmosets ( Callithrix jacchus), evaluating their respective contribution to the understanding of human IIDD. EAE in NHP is a heterogeneous disease, including acute monophasic and chronic polyphasic forms. This diversity makes it a versatile model to use in translational research. This clinical variability also creates an opportunity to explore multiple facets of immune-mediated mechanisms of neuro-inflammation and demyelination as well as intrinsic protective mechanisms. Here, the authors review current insights into the pathogenesis and immunopathological mechanisms implicated in the development of EAE in NHP.
Collapse
Affiliation(s)
- Lev Stimmer
- U1169/US27 Platform for experimental pathology, Molecular Imaging Research Center, INSERM-CEA, Fontenay-aux-Roses, France
| | - Claire-Maëlle Fovet
- U1169/US27 Platform for general surgery, Molecular Imaging Research Center, INSERM-CEA, Fontenay-aux-Roses, France
| | - Ché Serguera
- US27, Molecular Imaging Research Center, INSERM-CEA, Fontenay-aux-Roses, France
| |
Collapse
|
31
|
Peschl P, Bradl M, Höftberger R, Berger T, Reindl M. Myelin Oligodendrocyte Glycoprotein: Deciphering a Target in Inflammatory Demyelinating Diseases. Front Immunol 2017; 8:529. [PMID: 28533781 PMCID: PMC5420591 DOI: 10.3389/fimmu.2017.00529] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 04/19/2017] [Indexed: 12/23/2022] Open
Abstract
Myelin oligodendrocyte glycoprotein (MOG), a member of the immunoglobulin (Ig) superfamily, is a myelin protein solely expressed at the outermost surface of myelin sheaths and oligodendrocyte membranes. This makes MOG a potential target of cellular and humoral immune responses in inflammatory demyelinating diseases. Due to its late postnatal developmental expression, MOG is an important marker for oligodendrocyte maturation. Discovered about 30 years ago, it is one of the best-studied autoantigens for experimental autoimmune models for multiple sclerosis (MS). Human studies, however, have yielded controversial results on the role of MOG, especially MOG antibodies (Abs), as a biomarker in MS. But with improved detection methods using different expression systems to detect Abs in patients' samples, this is meanwhile no longer the case. Using cell-based assays with recombinant full-length, conformationally intact MOG, several recent studies have revealed that MOG Abs can be found in a subset of predominantly pediatric patients with acute disseminated encephalomyelitis (ADEM), aquaporin-4 (AQP4) seronegative neuromyelitis optica spectrum disorders (NMOSD), monophasic or recurrent isolated optic neuritis (ON), or transverse myelitis, in atypical MS and in N-methyl-d-aspartate receptor-encephalitis with overlapping demyelinating syndromes. Whereas MOG Abs are only transiently observed in monophasic diseases such as ADEM and their decline is associated with a favorable outcome, they are persistent in multiphasic ADEM, NMOSD, recurrent ON, or myelitis. Due to distinct clinical features within these diseases it is controversially disputed to classify MOG Ab-positive cases as a new disease entity. Neuropathologically, the presence of MOG Abs is characterized by MS-typical demyelination and oligodendrocyte pathology associated with Abs and complement. However, it remains unclear whether MOG Abs are a mere inflammatory bystander effect or truly pathogenetic. This article provides deeper insight into recent developments, the clinical relevance of MOG Abs and their role in the immunpathogenesis of inflammatory demyelinating disorders.
Collapse
Affiliation(s)
- Patrick Peschl
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Monika Bradl
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Romana Höftberger
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Thomas Berger
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Markus Reindl
- Clinical Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
32
|
Otting N, van der Wiel MKH, de Groot N, de Vos-Rouweler AJM, de Groot NG, Doxiadis GGM, Wiseman RW, O'Connor DH, Bontrop RE. The orthologs of HLA-DQ and -DP genes display abundant levels of variability in macaque species. Immunogenetics 2016; 69:87-99. [PMID: 27771735 DOI: 10.1007/s00251-016-0954-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/12/2016] [Indexed: 11/29/2022]
Abstract
The human major histocompatibility complex (MHC) region encodes three types of class II molecules designated HLA-DR, -DQ, and -DP. Both the HLA-DQ and -DP gene region comprise a duplicated tandem of A and B genes, whereas in macaques, only one set of genes is present per region. A substantial sequencing project on the DQ and DP genes in various macaque populations resulted in the detection of previously 304 unreported full-length alleles. Phylogenetic studies showed that humans and macaques share trans-species lineages for the DQA1 and DQB1 genes, whereas the DPA1 and DPB1 lineages in macaques appear to be species-specific. Amino acid variability plot analyses revealed that each of the four genes displays more allelic variation in macaques than is encountered in humans. Moreover, the numbers of different amino acids at certain positions in the encoded proteins are higher than in humans. This phenomenon is remarkably prominent at the contact positions of the peptide-binding sites of the deduced macaque DPβ-chains. These differences in the MHC class II DP regions of macaques and humans suggest separate evolutionary mechanisms in the generation of diversity.
Collapse
Affiliation(s)
- Nel Otting
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre (BPRC), Lange Kleiweg 161, 2288 GJ, Rijswijk, The Netherlands.
| | - Marit K H van der Wiel
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre (BPRC), Lange Kleiweg 161, 2288 GJ, Rijswijk, The Netherlands
| | - Nanine de Groot
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre (BPRC), Lange Kleiweg 161, 2288 GJ, Rijswijk, The Netherlands
| | - Annemiek J M de Vos-Rouweler
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre (BPRC), Lange Kleiweg 161, 2288 GJ, Rijswijk, The Netherlands
| | - Natasja G de Groot
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre (BPRC), Lange Kleiweg 161, 2288 GJ, Rijswijk, The Netherlands
| | - Gaby G M Doxiadis
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre (BPRC), Lange Kleiweg 161, 2288 GJ, Rijswijk, The Netherlands
| | - Roger W Wiseman
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - David H O'Connor
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Ronald E Bontrop
- Department of Comparative Genetics and Refinement, Biomedical Primate Research Centre (BPRC), Lange Kleiweg 161, 2288 GJ, Rijswijk, The Netherlands.,Department of Biology, Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
33
|
Burm SM, Peferoen LAN, Zuiderwijk-Sick EA, Haanstra KG, 't Hart BA, van der Valk P, Amor S, Bauer J, Bajramovic JJ. Expression of IL-1β in rhesus EAE and MS lesions is mainly induced in the CNS itself. J Neuroinflammation 2016; 13:138. [PMID: 27266875 PMCID: PMC4895983 DOI: 10.1186/s12974-016-0605-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 05/30/2016] [Indexed: 12/21/2022] Open
Abstract
Background Interleukin (IL)-1β is a pro-inflammatory cytokine that plays a role in the pathogenesis of multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE), the animal model for MS. Yet, detailed studies on IL-1β expression in different stages of MS lesion development and a comparison of IL-1β expression in MS and EAE are lacking. Methods Here, we performed an extensive characterization of IL-1β expression in brain tissue of MS patients, which included different MS lesion types, and in brain tissue of rhesus macaques with EAE. Results In rhesus EAE brain tissue, we observed prominent IL-1β staining in MHC class II+ cells within perivascular infiltrates and at the edges of large demyelinating lesions. Surprisingly, staining was localized to resident microglia or differentiated macrophages rather than to infiltrating monocytes, suggesting that IL-1β expression is induced within the central nervous system (CNS). By contrast, IL-1β staining in MS brain tissue was much less pronounced. Staining was found in the parenchyma of active and chronic active MS lesions and in nodules of MHC class II+ microglia in otherwise normal appearing white matter. IL-1β expression was detected in a minority of the nodules only, which could not be distinguished by the expression of pro- and anti-inflammatory markers. These nodules were exclusively found in MS, and it remains to be determined whether IL-1β+ nodules are destined to progress into active lesions or whether they merely reflect a transient response to cellular stress. Conclusions Although the exact localization and relative intensity of IL-1β expression in EAE and MS is different, the staining pattern in both neuroinflammatory disorders is most consistent with the idea that the expression of IL-1β during lesion development is induced in the tissue rather than in the periphery. Electronic supplementary material The online version of this article (doi:10.1186/s12974-016-0605-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Saskia Maria Burm
- Alternatives Unit, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ, Rijswijk, The Netherlands
| | | | - Ella Alwine Zuiderwijk-Sick
- Alternatives Unit, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ, Rijswijk, The Netherlands
| | - Krista Geraldine Haanstra
- Department of Immunobiology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ, Rijswijk, The Netherlands
| | - Bert Adriaan 't Hart
- Department of Immunobiology, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ, Rijswijk, The Netherlands
| | - Paul van der Valk
- Department of Pathology, VU Medical Center, PO Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - Sandra Amor
- Department of Pathology, VU Medical Center, PO Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - Jan Bauer
- Department of Neuroimmunology, Medical University of Vienna, Spitalgasse 4, A-1090, Vienna, Austria
| | - Jeffrey John Bajramovic
- Alternatives Unit, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ, Rijswijk, The Netherlands.
| |
Collapse
|
34
|
miRNAs Participate in MS Pathological Processes and Its Therapeutic Response. Mediators Inflamm 2016; 2016:4578230. [PMID: 27073296 PMCID: PMC4814683 DOI: 10.1155/2016/4578230] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 02/29/2016] [Indexed: 12/22/2022] Open
Abstract
Multiple sclerosis is the most common autoimmune disease of the central nervous system. It is believed that the increased migration of autoreactive lymphocytes across the blood-brain barrier (BBB) may be responsible for axonal demyelination of neurons. In this review, we discuss microRNAs participating in the pathological processes of MS, including periphery inflammation, blood-brain barrier disruption, and CNS lesions, and in its therapeutic response, in order to find biomarkers of disease severity and to predict the response to therapy of the diseases.
Collapse
|
35
|
Stassart RM, Helms G, Garea-Rodríguez E, Nessler S, Hayardeny L, Wegner C, Schlumbohm C, Fuchs E, Brück W. A New Targeted Model of Experimental Autoimmune Encephalomyelitis in the Common Marmoset. Brain Pathol 2015. [PMID: 26207848 DOI: 10.1111/bpa.12292] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Multiple sclerosis (MS) is the most common cause for sustained disability in young adults, yet treatment options remain very limited. Although numerous therapeutic approaches have been effective in rodent models of experimental autoimmune encephalomyelitis (EAE), only few proved to be beneficial in patients with MS. Hence, there is a strong need for more predictive animal models. Within the past decade, EAE in the common marmoset evolved as a potent, alternative model for MS, with immunological and pathological features resembling more closely the human disease. However, an often very rapid and severe disease course hampers its implementation for systematic testing of new treatment strategies. We here developed a new focal model of EAE in the common marmoset, induced by myelin oligodendrocyte glycoprotein (MOG) immunization and stereotactic injections of proinflammatory cytokines. At the injection site of cytokines, confluent inflammatory demyelinating lesions developed that strongly resembled human MS lesions. In a proof-of-principle treatment study with the immunomodulatory compound laquinimod, we demonstrate that targeted EAE in marmosets provides a promising and valid tool for preclinical experimental treatment trials in MS research.
Collapse
Affiliation(s)
- Ruth Martha Stassart
- Institute of Neuropathology, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
| | - Gunther Helms
- Department of Cognitive Neurology, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
| | - Enrique Garea-Rodríguez
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany.,Clinical Neurobiology Laboratory, German Primate Center, Göttingen, Germany
| | - Stefan Nessler
- Institute of Neuropathology, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
| | | | - Christiane Wegner
- Institute of Neuropathology, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
| | - Christina Schlumbohm
- Clinical Neurobiology Laboratory, German Primate Center, Göttingen, Germany.,Encepharm GmbH, Göttingen, Germany
| | - Eberhard Fuchs
- Clinical Neurobiology Laboratory, German Primate Center, Göttingen, Germany.,Encepharm GmbH, Göttingen, Germany.,Department of Neurology, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
| | - Wolfgang Brück
- Institute of Neuropathology, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
36
|
Jagessar SA, Heijmans N, Blezer ELA, Bauer J, Weissert R, 't Hart BA. Immune profile of an atypical EAE model in marmoset monkeys immunized with recombinant human myelin oligodendrocyte glycoprotein in incomplete Freund's adjuvant. J Neuroinflammation 2015; 12:169. [PMID: 26377397 PMCID: PMC4574133 DOI: 10.1186/s12974-015-0378-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/16/2015] [Indexed: 11/21/2022] Open
Abstract
Background Experimental autoimmune encephalomyelitis (EAE) in the common marmoset monkey (Callithrix jacchus) is a relevant preclinical model for translational research into immunopathogenic mechanisms operating in multiple sclerosis (MS). Prior studies showed a core pathogenic role of T and B cells specific for myelin oligodendrocyte glycoprotein (MOG). However, in those studies, the quality of the response against MOG epitopes was strongly biased by bacterial antigens in the complete Freund’s adjuvant (CFA), in which the immunizing recombinant human (rh) MOG protein had been formulated. In response to the need of a more refined EAE model, we have tested whether disease could also be induced with rhMOG in incomplete Freund’s adjuvant (IFA). Method Marmosets were immunized with rhMOG emulsified in IFA in the dorsal skin. Monkeys that did not develop neurological deficit were given booster immunizations at 28-day interval with the same antigen preparation. In a second experiment, three marmoset twin pairs were sensitized against MOG peptides in IFA to study a possibility for suppressive activity towards pathogenic T cells directed against the encephalitogenic epitope MOG40-48. Results Despite the absence of strong danger signals in the rhMOG/IFA inoculum, all monkeys developed clinically evident EAE symptoms. Moreover, in all monkeys, demyelinated lesions were present in the white matter and in two cases also in the cortical grey matter. Immune profiling at height of the disease showed a dominant T cell response against the overlapping peptides 14–36 and 24–46, but reactivity against the pathogenically most relevant peptide 34–56 was conspicuously absent. In the second experiment, there was an indication for a possible suppressive mechanism. Conclusions Immunization of marmoset monkeys with rhMOG in IFA elicits clinical EAE in all animals. Moreover, rhMOG contains pathogenic and regulatory epitopes, but the pathogenic hierarchy of rhMOG epitopes is strongly influenced by the adjuvant in which the protein is formulated. Electronic supplementary material The online version of this article (doi:10.1186/s12974-015-0378-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- S Anwar Jagessar
- Department of Immunobiology, Biomedical Primate Research Centre, P.O. Box 3306, 2280, GH, Rijswijk, The Netherlands. .,ErasMS Centre, Erasmus Medical Center, Rotterdam, The Netherlands.
| | - Nicole Heijmans
- Department of Immunobiology, Biomedical Primate Research Centre, P.O. Box 3306, 2280, GH, Rijswijk, The Netherlands
| | - Erwin L A Blezer
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jan Bauer
- Center for Brain Research, Medical University of Vienna, Vienna, Austria.
| | - Robert Weissert
- Department of Neurology, University of Regensburg, Regensburg, Germany
| | - Bert A 't Hart
- Department of Immunobiology, Biomedical Primate Research Centre, P.O. Box 3306, 2280, GH, Rijswijk, The Netherlands. .,ErasMS Centre, Erasmus Medical Center, Rotterdam, The Netherlands. .,Department of Neuroscience, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
37
|
Blockade of CD127 Exerts a Dichotomous Clinical Effect in Marmoset Experimental Autoimmune Encephalomyelitis. J Neuroimmune Pharmacol 2015; 11:73-83. [DOI: 10.1007/s11481-015-9629-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 07/30/2015] [Indexed: 12/19/2022]
|
38
|
Kap YS, van Driel N, Arends R, Rouwendal G, Verolin M, Blezer E, Lycke N, 't Hart BA. Immune modulation by a tolerogenic myelin oligodendrocyte glycoprotein (MOG)10-60 containing fusion protein in the marmoset experimental autoimmune encephalomyelitis model. Clin Exp Immunol 2015; 180:28-39. [PMID: 25393803 DOI: 10.1111/cei.12487] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2014] [Indexed: 01/11/2023] Open
Abstract
Current therapies for multiple sclerosis (MS), a chronic autoimmune neuroinflammatory disease, mostly target general cell populations or immune molecules, which may lead to a compromised immune system. A more directed strategy would be to re-enforce tolerance of the autoaggressive T cells that drive tissue inflammation and injury. In this study, we have investigated whether the course of experimental autoimmune encephalomyelitis (EAE) in mice and marmosets can be altered by a potent tolerizing fusion protein. In addition, a multi-parameter immunological analysis was performed in marmosets to assess whether the treatment induces modulation of EAE-associated cellular and humoral immune reactions. The fusion protein, CTA1R9K-hMOG10-60-DD, contains a mutated cholera toxin A1 subunit (CTA1R9K), a dimer of the Ig binding D region of Staphylococcus aureus protein A (DD), and the human myelin oligodendrocyte glycoprotein (hMOG) sequence 10-60. We observed that intranasal application of CTA1R9K-hMOG10-60-DD seems to skew the immune response against myelin oligodendrocyte glycoprotein (MOG) towards a regulatory function. We show a reduced number of circulating macrophages, reduced MOG-induced expansion of mononuclear cells in peripheral blood, reduced MOG-induced production of interleukin (IL)-17A in spleen, increased MOG-induced production of IL-4 and IL-10 and an increased percentage of cells expressing programmed cell death-1 (PD-1) and CC chemokine receptor 4 (CCR4). Nevertheless, the treatment did not detectably change the EAE course and pathology. Thus, despite a detectable effect on relevant immune parameters, the fusion protein failed to influence the clinical and pathological outcome of disease. This result warrants further development and improvement of this specifically targeted tolerance inducing therapy.
Collapse
Affiliation(s)
- Y S Kap
- Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands; MS Centre ErasMS, Rotterdam, The Netherlands; Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
39
|
't Hart BA, Bogers WM, Haanstra KG, Verreck FA, Kocken CH. The translational value of non-human primates in preclinical research on infection and immunopathology. Eur J Pharmacol 2015; 759:69-83. [PMID: 25814254 DOI: 10.1016/j.ejphar.2015.03.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 02/09/2015] [Accepted: 03/12/2015] [Indexed: 01/01/2023]
Abstract
The immune system plays a central role in the defense against environmental threats - such as infection with viruses, parasites or bacteria - but can also be a cause of disease, such as in the case of allergic or autoimmune disorders. In the past decades the impressive development of biotechnology has provided scientists with biological tools for the development of highly selective treatments for the different types of disorders. However, despite some clear successes the translation of scientific discoveries into effective treatments has remained challenging. The often-disappointing predictive validity of the preclinical animal models that are used in the selection of the most promising vaccine or drug candidates is the Achilles heel in the therapy development process. This publication summarizes the relevance and usage of non-human primates as pre-clinical model in infectious and autoimmune diseases, in particular for biologicals, which due to their high species-specificity are inactive in lower species.
Collapse
Affiliation(s)
- Bert A 't Hart
- Department Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands; University of Groningen, University Medical Center, Department Neuroscience, Groningen, The Netherlands.
| | - Willy M Bogers
- Department Virology, Biomedical Primate Research Centre, Rijswijk, The Netherlands.
| | - Krista G Haanstra
- Department Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands.
| | - Frank A Verreck
- Department Parasitology, Biomedical Primate Research Centre, Rijswijk, The Netherlands.
| | - Clemens H Kocken
- Department Parasitology, Biomedical Primate Research Centre, Rijswijk, The Netherlands.
| |
Collapse
|
40
|
Haanstra KG, Dijkman K, Bashir N, Bauer J, Mary C, Poirier N, Baker P, Crossan CL, Scobie L, 't Hart BA, Vanhove B. Selective blockade of CD28-mediated T cell costimulation protects rhesus monkeys against acute fatal experimental autoimmune encephalomyelitis. THE JOURNAL OF IMMUNOLOGY 2015; 194:1454-66. [PMID: 25589073 DOI: 10.4049/jimmunol.1402563] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Costimulatory and coinhibitory receptor-ligand pairs on T cells and APC control the immune response. We have investigated whether selective blockade of CD28-CD80/86 costimulatory interactions, which preserves the coinhibitory CTLA4-CD80/86 interactions and the function of regulatory T (Treg) cells, abrogates the induction of experimental autoimmune encephalomyelitis (EAE) in rhesus monkeys. EAE was induced by intracutaneous immunization with recombinant human myelin oligodendrocyte glycoprotein (rhMOG) in CFA on day 0. FR104 is a monovalent, PEGylated-humanized Fab' Ab fragment against human CD28, cross-reactive with rhesus monkey CD28. FR104 or placebo was administered on days 0, 7, 14, and 21. FR104 levels remained high until the end of the study (day 42). Placebo-treated animals all developed clinical EAE between days 12 and 27. FR104-treated animals did not develop clinical EAE and were sacrificed at the end of the study resulting in a significantly prolonged survival. FR104 treatment diminished T and B cell responses against rhMOG, significantly reduced CNS inflammation and prevented demyelination. The inflammatory profile in the cerebrospinal fluid and brain material was also strongly reduced. Recrudescence of latent virus was investigated in blood, spleen, and brain. No differences between groups were observed for the β-herpesvirus CMV and the polyomaviruses SV40 and SA12. Cross-sectional measurement of lymphocryptovirus, the rhesus monkey EBV, demonstrated elevated levels in the blood of FR104-treated animals. Blocking rhesus monkey CD28 with FR104 mitigated autoreactive T and B cell activation and prevented CNS pathology in the rhMOG/CFA EAE model in rhesus monkeys.
Collapse
Affiliation(s)
- Krista G Haanstra
- Biomedical Primate Research Centre, 2280 GH Rijswijk, the Netherlands;
| | - Karin Dijkman
- Biomedical Primate Research Centre, 2280 GH Rijswijk, the Netherlands
| | - Noun Bashir
- Biomedical Primate Research Centre, 2280 GH Rijswijk, the Netherlands
| | - Jan Bauer
- Center for Brain Research, Medical University of Vienna, 1090 Vienna, Austria
| | | | | | - Paul Baker
- Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | | | - Linda Scobie
- Glasgow Caledonian University, Glasgow G4 0BA, United Kingdom
| | - Bert A 't Hart
- Biomedical Primate Research Centre, 2280 GH Rijswijk, the Netherlands; University of Groningen, University Medical Center, Department of Neuroscience, 9713 GZ Groningen, the Netherlands; and
| | - Bernard Vanhove
- Effimune SAS, 44035 Nantes, France; Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche 1064, 44093 Nantes, France
| |
Collapse
|
41
|
IFN-β inhibits T cells accumulation in the central nervous system by reducing the expression and activity of chemokines in experimental autoimmune encephalomyelitis. Mol Immunol 2014; 64:152-62. [PMID: 25433436 DOI: 10.1016/j.molimm.2014.11.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 11/10/2014] [Accepted: 11/11/2014] [Indexed: 11/21/2022]
Abstract
Multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE), are chronic neuroinflammatory autoimmune diseases characterized by axonal loss, demyelination and neurodegeneration of the central nervous system (CNS). Overactivation of CD4(+)T cells, especially the Th1 and Th17 subsets, is thought to play a causal role in this disease. In this study, we investigated the immunomodulatory effects of IFN-β treatment in EAE. IFN-β significantly inhibits disease severity, and decreases levels of CCR2, CCR4, CCR5, CCR6 and CXCR3 in the CNS. This was associated with fewer Th1/Th17 cells expressing these chemokine receptors. Furthermore, levels of their corresponding ligands CCL2, CCL3, CCL4, CCL5, CCL20, CCL22 and CXCL10 were also reduced, coinciding with reduced CNS inflammation and demyelination. Chemokine expression significantly correlated with disease severity. Furthermore, we demonstrate that IFN-β reduces CCL2/CCL5 induced-T cell migration by inhibiting p38-MAPK and ERK1/2 activation. Our results reveal that IFN-β reduces the expression of chemokines and chemokine receptors expressed by encephalitogenic Th1/Th17 cells, thereby decreasing their migration into the CNS.
Collapse
|
42
|
The extracellular domain of myelin oligodendrocyte glycoprotein elicits atypical experimental autoimmune encephalomyelitis in rat and Macaque species. PLoS One 2014; 9:e110048. [PMID: 25303101 PMCID: PMC4193844 DOI: 10.1371/journal.pone.0110048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 09/16/2014] [Indexed: 01/09/2023] Open
Abstract
Atypical models of experimental autoimmune encephalomyelitis (EAE) are advantageous in that the heterogeneity of clinical signs appears more reflective of those in multiple sclerosis (MS). Conversely, models of classical EAE feature stereotypic progression of an ascending flaccid paralysis that is not a characteristic of MS. The study of atypical EAE however has been limited due to the relative lack of suitable models that feature reliable disease incidence and severity, excepting mice deficient in gamma-interferon signaling pathways. In this study, atypical EAE was induced in Lewis rats, and a related approach was effective for induction of an unusual neurologic syndrome in a cynomolgus macaque. Lewis rats were immunized with the rat immunoglobulin variable (IgV)-related extracellular domain of myelin oligodendrocyte glycoprotein (IgV-MOG) in complete Freund’s adjuvant (CFA) followed by one or more injections of rat IgV-MOG in incomplete Freund’s adjuvant (IFA). The resulting disease was marked by torticollis, unilateral rigid paralysis, forelimb weakness, and high titers of anti-MOG antibody against conformational epitopes of MOG, as well as other signs of atypical EAE. A similar strategy elicited a distinct atypical form of EAE in a cynomolgus macaque. By day 36 in the monkey, titers of IgG against conformational epitopes of extracellular MOG were evident, and on day 201, the macaque had an abrupt onset of an unusual form of EAE that included a pronounced arousal-dependent, transient myotonia. The disease persisted for 6–7 weeks and was marked by a gradual, consistent improvement and an eventual full recovery without recurrence. These data indicate that one or more boosters of IgV-MOG in IFA represent a key variable for induction of atypical or unusual forms of EAE in rat and Macaca species. These studies also reveal a close correlation between humoral immunity against conformational epitopes of MOG, extended confluent demyelinating plaques in spinal cord and brainstem, and atypical disease induction.
Collapse
|